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Abstract: The Sierra Seca aquifer system is located in the northeast (NE) of the province of Granada,
in the Prebetic Domain (Betic Cordillera). It is composed of different aquifer units hosted in the
Lower Cretaceous and Upper Cretaceous limestones. The two aquifers are separated by a low
permeability marl layer, which effectively acts as a barrier between them. To outline the behavior
of the hydrogeological system, 407 samples of precipitation and 67 samples of groundwater were
obtained from May 2020 to Oct. 2022 and isotopically (δ18O and δ2H) analyzed. For the estimation of
the recharge elevation, a new methodology has been applied to estimate the isotopic content of recharge
as a function of precipitation. This allowed the evaluation of the vertical gradient of both precipitation
(∇Zδ18OP = −2.9 ‰/km) and aquifer recharge (−4.4 ‰/km ≤ ∇Zδ18OR ≤ −2.9 ‰/km). Therefore,
estimating (1) the recharge zone elevation associated with the aquifer system, which is comprised
between 1500 and 1700 m a.s.l., and (2) the transit time of recharge to reach the outflow point of the
aquifer system, which varies between 4 and 5 months, is possible. Additionally, three tracer tests
were conducted to outline the hydrologic connection between the recharge and discharge zones of
the aquifer system. The results show that the Fuente Alta spring drains the limestones of the Lower
Cretaceous, while La Natividad spring does the same with the limestones of the Upper Cretaceous. In
the case of the Enmedio spring, groundwater discharge is related to infiltration through the streambed
of the watercourse fed by the Fuente Alta spring.

Keywords: artificial tracers; karst springs; isotopic content; recharge area; environmental tracer;
transit time

1. Introduction

Carbonate rocks outcrop on 15.2% of the Earth’s ice-free surface and are home to
16.5% of the planet’s population [1]. These rocks are exposed to weathering processes
that give rise to a relief with an abundance of karst morphologies and generate important
aquifers, on which 9.2% of the world’s population is totally dependent [2], although
this proportion increases to 20–25% when the dependence is not complete from these
aquifers [3]. Karst terrain is not only relevant in terms of water resources, but also contains
a variety of other natural resources and provides vital ecosystem functions, especially in
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headwater catchments in semi-arid mountain areas, where environmental conditions are
more demanding and surface water availability is critical.

The meteoric water that flows superficially through karst areas infiltrates, moving
rapidly through the more conductive structures of the karst, which favors the direct connec-
tion between the surface and the saturated zone of the aquifer. This makes karst aquifers
highly vulnerable to the impact of human activities on land use changes, especially in
terms of pollution [4]. To protect such aquifers, it is necessary to delimit activities in the
recharge zones and to define protection perimeters for the main springs [5]. The success in
the design and implementation of these measures depends profoundly on the degree of
characterization of the functioning of these aquifers.

Karst aquifers behave in a complex manner. They typically exhibit a hydrodynamic
duality that is a function of the flow pattern within the hydrogeological system: On the
one hand, there is a fast flow component through the main karst conduits of the system,
which typically exhibit fast response times to recharge in the springs draining the aquifer
(i.e., short transit times). On the other hand, a slower groundwater flow component flows
through the fractured rock matrix, which typically has a lower hydraulic conductivity.
This groundwater flow component has longer travel times than those associated with the
fast flow component. Various methods have been used to analyze such complex behavior
from the perspective of the hydrodynamic and hydrogeochemical/isotopic composition of
groundwater [1,6].

In mountain areas, environmental tracers, and, in particular, stable isotopes of the wa-
ter molecule, have become a fundamental tool to characterize the functioning of aquifers [7].
The isotopic content of meteoric water is intrinsically temperature-dependent [8], and,
therefore, it shows a seasonal variation [9]. Furthermore, such a dependence is propagated
by altitude given the relationship between altitude and atmospheric temperature, which
drives the altitudinal variation of both the mean isotopic content of precipitation [10] and
the amplitude of the seasonal variation of the isotopic content of precipitation [11]. The
isotopic signal of the meteoric water is transmitted through the aquifer from the recharge
zone to the discharge zone. The aquifer modifies the environmental tracer input signal
more significantly with longer transit times [12]. The isotopic content time series analysis of
the aquifer inflows (i.e., recharge) and outflows (i.e., discharge) allows the joint estimation
of the aquifer mean recharge rate, the associated elevation of the recharge zone, and the
corresponding groundwater renewal time [11,13,14].

Artificial tracers allow the profiling of the solute transport processes that control
contaminant migration in the aquifer and the connectivity of the karst flow network [15].
Obtaining this information is essential given the limitations often imposed by the lack
of detailed characterization of the geology and geomorphology associated with these
aquifers. The information obtained from the analysis of tracer breakthrough curves allows
the establishment of conceptual models for the behavior of such aquifers that are consistent
with the aquifer structure and groundwater flow patterns [16,17]. This provides a solid
basis to numerically simulate the behavior of such aquifers [14,18].

Given their applicability, chemical and environmental tracers have long been used,
along with aquifer discharge, to characterize the functioning of karst systems in mountain
areas. Andreo et al. (2004) [5] analyzed the origin of the groundwater recharge in the
aquifer karst system of Yunquera-Nieves (South Spain) by applying stable isotopes of the
water molecule (δ18O and δ2H). Lauber and Goldscheider (2014) [19] used both artificial
and isotopic tracers, to assess the groundwater transit time distribution of the Wetterstein
Mountains (Germany). Jódar et al. (2020) [17] used both dye tracers and stable isotopes to
characterize the role of both diffuse and focused recharge with respect to total recharge in
the aquifer system of Ordesa y Monte Perdido National Park, which is the highest karst
system in Western Europe. Luo et al. (2023) [20] used the thermal responses of groundwater
to reveal the recharge–discharge process and characterize the structure associated with the
Huangliang karst system (South China). Zhang et al. (2024) [21] used temperature and
isotopic tracers of groundwater discharge to estimate the transit time distribution of the
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aquifer system, which is the cornerstone for stimulating the hydrodynamic response of the
aquifer system [12].

This work focuses on the hydrogeological characterization of the Sierra Seca aquifer
karst system, using both artificial and environmental tracers: The former (i.e., uranine
and eosin) are used to delineate the recharge zones of the two aquifers that integrate the
hydrogeological system. The isotopic content of recharge (δR) is used to define the aquifer
recharge zones and to estimate the groundwater renewal time in the aquifer system [11,12].
Moreover, δR is a key factor driving the isotopic content of groundwater. Despite this, it
is not easy to characterize δR, and the isotopic content of precipitation (δP) is often used
as a proxy of δR [7]. This work considers some hypotheses regarding the precipitation
events that generate recharge, and thus estimate δR as a function of δP. Additionally,
two lumped models are combined in series to simulate the observed evolution of the
isotopic content of the groundwater discharge: (1) an HBV model [22,23] that estimates
the hydrological balance terms taking into account the elevation dependencies of different
hydrometeorological variables (i.e., precipitation and temperature) and associated processes
(e.g., snow accumulation and ablation), and (2) a FlowPC model [24] that estimates the mean
transit time of the hydrological system while simulating the evolution of the environmental
tracer content in the discharge of the system. This multidisciplinary approach, combining
experimental and modeling techniques, has enabled a consistent conceptual model of the
hydrogeological system to be established. The methodology used can be generally applied
to other mountain karst aquifers, thus favoring a better assessment and management of the
water resources of these aquifers.

2. Location, Geological, and Hydrogeological Context

The study area is at the southwestern foothills of the Sierra del Segura (Figure 1),
which constitutes the upper part of both the Segura and Guadalquivir River basins. The
study zone is bounded by two protected natural areas: the Biosphere Reserve of “Sierras de
Cazorla, Segura y las Villas” Natural Park, which is the largest protected area in Spain and
second in Europe, and the Natural Park of “Sierra de Castril”, which is a Site of Community
Importance (SCI) since 2006.
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Figure 1. (A) Geographical location of the study area within the southwestern foothills of Sierra
del Segura range. The cross and the triangle symbols indicate the location of the rain samplers and
the meteorological station, respectively. Digital terrain model PNOA-IGN. (B) The geographical
area of the Fuentes del Guardal spring system (i.e., FA, NAT and FEM springs) is framed by the
dashed red line. (B) Spatial distribution, at the local scale, of FA, FEM, and NAT (modified from
González-Ramón et al. 2024 [25]).

The climate in the study zone is temperate Mediterranean [26]. This means there
are no very hot temperatures, a cold and rainy winter and autumn, and a mild spring
and a hot summer. Precipitation is the highest in autumn and spring and the lowest in
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summer (Figure 2). From 1996 to 2022, the average temperature, precipitation, and potential
evapotranspiration at the Don Domingo meteorological station (1538 m; Figure 1A) were
10.3 ◦C, 560 mm/year, and 1029 mm/year, respectively.
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Figure 2. Mean monthly precipitation, potential evapotranspiration, and temperature at Don
Domingo weather station for the period 1996–2022 and mean monthly groundwater discharge
(QGW) in Fuente Alta (FA), Natividad (NAT) and Fuente de Enmedio (FEM) springs for the period
2019–2022.

The Sierra Seca range, which is made up of rocks of Cretaceous to Miocene age
(Figure 3), is located within the Internal Prebetic Domain of the Betic Cordillera, and
extends northward to the most developed karstic plateau in the Iberian Peninsula, which is
known as the Campos de Hernán Pelea [27]. The karst development is especially abundant
and widespread in the recharge zone, where karren, poljés, and large dolines can be found.
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in FA, NAT, and FEM, respectively. (B) Geological cross section A1-A2. (C) Geological cross section
B1-B2-B3.
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The structure of Sierra Seca range consists of an asymmetric anticlinal fold with gentle
dips of about 30◦ on the eastern flank (Figure 3), while the western flank is affected by faults
and a thrust that superimposes Cretaceous limestones on Miocene marls [27,28]. In the
core of the anticline, the older materials outcrop, consisting of dolomites and dolomitized
calcarenites belonging to the Lower Cretaceous and are approximately 200 m thick. Above
them, there is a stretch of marls and sands (Utrillas Facies) with a thickness that varies
between 20 and 70 m [29]. This section is easy to identify as it generates aligned depressions
between sections of greater resistance to erosion.

From a hydrogeological perspective, two different aquifers can be found in the Sierra
Seca range:

• The Lower Cretaceous aquifer developed in carbonate materials, predominantly lime-
stones with rudists, and exhibits a thickness of 400 m. These carbonates are partially
sealed at the roof in the slope break zone by a low permeability level of marls and marl
limestones of variable thickness [29]. The primary hydrogeological drainage zone of
this aquifer is the Fuente Alta (FA) spring, which is situated at the interface between
the carbonate aquifer and the sealing low-permeability level.

• The Upper Cretaceous aquifer is formed by limestones with an average thickness
of 150 m. This aquifer is drained by two springs, Natividad (NAT) and Fuente de
Enmedio (FEM). The former spring drains this aquifer while discharging through
a contact between the Upper Cretaceous limestone and the Paleocene marls. FEM
drains a small sector of the Upper Cretaceous aquifer, although some of the associated
groundwater discharge is probably generated by surface water infiltration along the
Fuente Alta riverbed, as suggested by González-Ramón et al. (2024) [25].

FA and NAT represent the main groundwater discharge points of the Sierra Seca
aquifer system. Both springs have associated an important karst conduit network (Figure S1;
Supplementary Materials), which is currently being explored [25,30].

The recharge zones associated with both the Upper and Lower Cretaceous aquifers
coincide with the corresponding limestone outcrop area shown in Figure 3. In the highest
zones of the Sierra Seca range, karst development is especially important. Here, large
dolines can be found, some with open sinkholes, karren, or poljes, such as the Laguna
polje, with several associated ponors (Figure S2; Supplementary Materials). Additionally,
karstification affects the discharge zones of both aquifers, creating the endokarst structures
with galleries of several hundred meters with springs at the end [2]. During precipitation
events, a very rapid flow augmentation response occurs, with a large volume of water
drained, depending on the intensity and form of precipitation (i.e., rain or snow). In the case
of FA, up to four overflows can be observed, which are activated consecutively depending
on the volume of water reaching the spring, while at NAT, the excess water is drained
through an artificial gallery (Figure S3; Supplementary Materials).

3. Methodology and Materials
3.1. Rainfall and Groundwater Sampling

During the research period (December 2019–September 2022), eight rainfall monitoring
stations were installed at different elevations in the study zone (Figure 1). The installation
was implemented considering the difficulty of taking precipitation samples for each event,
both in terms of access and due to typical winter snow events. Groundwater samples
were also taken from the FA, NAT, and FEM. A total of 474 samples between springs and
precipitation (Table S1; Supplementary Materials) were collected. All the water samples
were subsequently filtered in the laboratory and stored in 5 mL polypropylene tubes
without air inside and refrigerated until the isotopic analysis (δ18O and δ2H). In addition,
paraffin oil was used in the rainfall collectors to avoid evaporation during the period
between rainfall events and sampling.

The oxygen and hydrogen isotope composition (δ18O and δ2H
)

of rainwater were
measured by cavity ring-down spectroscopy (CRDS) [31] using a Picarro L2140-i isotope
analyzer at the Laboratory of Stable Isotopes of the University of Almería, Spain. The results
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were normalized to the V-SMOW scale by analyzing internal standards before and after a
set of measurements of 15–20 samples [32]. All isotopic deviations are reported in parts
per thousand (‰) relative to V-SMOW [31]. The in-sample reproducibility of oxygen and
hydrogen isotope analyses were evaluated by measuring each sample 10 consecutive times.
Memory effect from previous samples was minimized by rejecting the 3 first injections. The
in-sample reproducibility was better than ±0.05 and ±0.4‰ for δ18O and δ2H, respectively.
The long-term reproducibility was evaluated by measuring an internal water standard
(BOTTY) for every 5–6 samples in all the analytical sequences that extended from January
2020 to March 2023. The long-term reproducibility of 128 analyses was ±0.1 and ±0.9‰
for δ18O and δ2H, respectively [32].

3.2. Estimation of Aquifer Recharge Elevation

To estimate the elevation of the recharge zone associated with a spring discharge, it is
assumed that the average isotope content of the spring discharge corresponds to that of
recharge (i.e., the meteoric water entering the aquifer) at the corresponding elevation [33],
so defining the altitudinal dependence of the isotopic content of recharge allows estimating
the elevation of the recharge zone associated with the sampled spring. Nevertheless,
aquifer recharge is a complex phenomenon that is not easy to characterize, as is the
corresponding isotopic composition [7]. To overcome this problem, the isotopic content of
precipitation is often used as if it was that of recharge [11]. This is an interesting approach
because there is a linear relationship between the isotopic content of precipitation and
topographic elevation [34], which is known as the isotopic altitudinal line (IAL). Such
a relationship is characterized, locally, as a regression line between the average isotopic
content of precipitation at different sampling points and the elevation associated with such
sampling points. Characterizing IAL allows estimating the recharge elevation associated
with a given spring. This is performed by projecting the average isotopic content of the
spring discharge in the estimated IAL [11].

However, in semi-arid and arid areas, it is not straightforward to apply such an
approach because during the warm seasons, especially in summer, when most of the rainfall
is evaporated and recharge approaches zero. Therefore, using the isotopic composition of
precipitation as that of recharge may introduce a bias in the estimated isotopic composition
of recharge and in any other variable estimated based on such isotopic composition of
recharge. Additionally, groundwater recharge drives the hydrodynamic response of the
aquifer observed in the discharge points. Karst aquifers tend to show a rapid response
to precipitation events. The response of the hydrological system to an input hydrological
signal depends on both the internal structure of the karst system and the strength of the
input hydrological signal. In the case of the aquifer system of Sierra Seca, a minimum
precipitation length of 20 mm is needed to trigger a groundwater discharge response in the
monitored springs [35]. Such a rainfall threshold driving the aquifer recharge may modify,
in turn, the mean isotopic composition of recharge with respect to precipitation.

The hydrogeological response, in terms of groundwater flow discharge and corre-
sponding isotopic content, depends at least on the recharge input function. The isotopic
content of precipitation is traditionally used as if it was that of recharge. This is business as
usual because it is very complex to measure the isotopic content of recharge. In this paper,
different hypotheses are made about which precipitation events produce recharge in order
to estimate the mean isotopic content of recharge and thus profile the corresponding IAL.

The mean isotopic content of recharge (δR [-]), at a given elevation, is estimated as a
rainfall weighted average function of the isotopic content of precipitation at that elevation.
Five cases are considered to estimate δR :

A1. All the precipitation samples are considered.

δR =
∑N

j=1 δPj Pj

∑N
j=1 Pj

(1)
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where δPj [-] and Pj [L] are isotopic content and precipitation length of the j-th sampled
precipitation event, respectively, and N [-] is the total number of precipitation events
sampled. This case assumes that δR = δP.

A2. The same approach as A1 without considering the summer rainfall samples.
A3. The same approach as A2 without considering any water sample from rainfall events

lower than 20 mm.
A4. The same approach as A2 without considering any water sample from rainfall events

lower than 30 mm.
A5. The same approach as A2 without considering any water sample from rainfall events

lower than 40 mm.

3.3. Estimation of Groundwater Transit Times

For the estimation of the transit time of the discharge water in the springs, the method-
ology presented by [14] is applied, in which the temporal variation of the isotopic content
in the discharge at the spring is simulated with FlowPC [24,36]. FlowPC is a lumped
parameter model that allows for estimating the transit time of groundwater. The program
solves the convolution integral (Equation (2)) and transforms the isotopic signal of the
aquifer recharge water (i.e., input function; δin) into the isotopic signal of the aquifer water
at the point of discharge (i.e., output function; δout):

δout(t) =
∫ t

−∞
δin(t)g

(
t − t′

)
dt′ (2)

where t [T] is the time of tracer input as recharge, t′[T] is the integration variable, and g(t) is
a weighting function describing the Transit Time Distribution (TTD) in the aquifer. FlowPC
includes, among others, two parametric TTDs that are particularly suitable for simulating
karst aquifer systems: (A) the exponential model (EM), which is applied in systems where
subsurface flow lines converge, such as in springs [37–39] and (B) the exponential piston
model (EPM), which combines, in series, two flow systems, one upstream in which recharge
enters the aquifer by percolation from the surface, one in which an exponential distribution
of transit times is assumed, and another downstream system in which the flow pattern is
piston-like [38]. The weighting function for EPM is described by the following expression:

g(t) =

{
0 t < τ

(
1 − 1

η

)
≡ tτ

1
τ ηe−

η
τ +η−1 t ≥ tτ

(3)

τ =
∫ ∞

0
tg(t)dt =

Vd
QR

(4)

where η [-] is the ratio between the total volume of the hydrogeological system and the
volume of the system in which the exponential TDD exists. From the definition of η, it
is inferred that 1 ≤ η ≤ ∞, where η = 1 is the value of the parameter associated with
the EM flow scheme. τ [T] is the average transit time. In the case of aquifers with a
natural (i.e., uninfluenced) piezometric gradient, τ corresponds to the average time taken
for groundwater to travel from the recharge zone to the discharge source. In this situation,
τ is related to the recharge flow of the aquifer QR and the dynamic storage of the aquifer
Vd, as shown in the last right term of Equation (4) [7]. The parameters of the convolution
integral (i.e., η and τ) are calibrated manually by minimizing the Root Mean Squared Error
(RMSE) function.

FlowPC requires two time series for its operation:

• Monthly recharge flow to the aquifer. This time series is obtained as one of the terms
of the water balance, calculated by numerical modeling of the hydrodynamic behavior
of the aquifer. An HBV model has been implemented for both the Lower Cretaceous
aquifer and the Upper Cretaceous aquifer drained by FA and NAT springs, respectively,
HBV is a conceptual rainfall-runoff model for hydrodynamic modeling of hydrological
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basins, which solves a general water balance equation. This model has been used in
different hydrological research studies in mountain areas [40–45].

• Average isotopic content of the monthly recharge, which is obtained from the monthly
precipitation samples accumulated in the rainfall monitoring stations installed in the
study area. For the months in which precipitation samples could not be obtained in
the study area, they were estimated using the machine learning model developed
by [46], which generates, for any location in Europe, monthly time series of isotope
content in precipitation for the period 1950–2019. Outside this period, the monthly
values associated with a given month (e.g., January) are estimated as the average of all
the time series values associated with that month.

3.4. Artificial Tracers
3.4.1. Instrumentation

To measure the flowrate discharge in FA, NAT, and FEM, a OTT T800 unit, a SEBA
logger (SEBA Hydrometrie, Kaufbeuren, Germany) and an ODYSSEY (Stamford, CT, USA)
capacitance logger were installed, respectively.

The discharge of each spring is obtained by a function of the measured water column
and the point gauging data, from which the discharge curve of each gauging station was
obtained empirically [18].

For each tracer test, a GGUN-FL24 fluorometer (Albillia, Auvernier, Switzerland) [47]
was installed at each spring. This equipment was calibrated by making 17 standards
with concentrations between 1 ppm and 1 ppb. All the equipment was programmed to
measure the corresponding variables every 30 min. In addition, during the tracer tests,
additional samples were taken every 12 h from the three springs to rule out or demonstrate
the possibility that the tracer was detected in more than one spring. These samples were
subsequently analyzed in the laboratory of the University of Jaén using the same GGUN-
FL24 fluorometer used in the tracer tests.

3.4.2. Tracer Injection and Transport Modeling

Three tracer injection tests were carried out to verify hydrogeological connections
between different lithologies and to be able to estimate and delimit possible recharge areas
for each spring. The first test was conducted on 11 December 2020 in the Lower Cretaceous
(LC) limestones outcropping to the S of the Sierra Seca summit. A total of 1.5 kg of eosin
(Table 1) was injected into an active sinkhole at 1881 m a.s.l. (site α in Figure 3), which
is in the lower part of a large doline. The tracer entered the hydrogeological system and
dissolved in the water collected by such a doline during a precipitation event (75 mm) that
occurred while the tracer was being injected (Figure 4A).

Table 1. Characteristics of the tracing tests.

Tracer Test
Injection Point

Lithology a Injected Tracer Injected
Mass (g)

Tracer
Outflow Point

Tracer Test
Distance b L (km)

QGWFA
c

(m3/s)

1 LC Eosine 1500 FA 6.07 3.698
2 UC Uranine 2500 NAT 7.45 0.883
3 UC Uranine 200 FEM 0.84 0.013

Notes: a Lower Cretaceous (LC); Upper Cretaceous (UC); b Distance between the tracer injection and tracer outflow
points; c Mean groundwater discharge flow rate between the tracer injection and the first tracer arrival times.

The second test was carried out on 6 February 2021, in the Upper Cretaceous (UC)
carbonate rocks outcropping to the N and E of Sierra Seca. In these tests, 1.5 kg of uranine
was injected into a sinkhole at 1850 m a.s.l. (site β in Figure 3). The injection procedure was
different from the first case. This was a forced injection, using 8 m3 of water from a tanker
(Figure 4B). The subsequent precipitation of about 70 mm provided additional injection
water to push the tracer to the saturated zone.
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The third tracer injection test was carried out on 16 February 2022 by injecting 200 g
of uranine along a water-losing section of the Fuente Alta river (site ε in Figure 3), corre-
sponding to a UC limestone outcrop in the riverbed (Figure 4C).

All the three tracer tests conducted in the Sierra Seca aquifer system consisted of a
direct pulse tracer injection in a sinkhole. This type of instantaneous tracer injection, with
initial concentration C0 [ML−3], is mathematically represented by a Dirac delta function
δ(t) [-] as expressed by the following equation:

Cin(t) = C0δ(t) ∀t (5)

The aquifer output is given by the convolution integral (Equation (2)), where the
output and input isotopic content functions are replaced, without loss of validity, by Cout(t)
[ML−3] and Cin(t) [ML−3], respectively. In this case, the considered system response
function is given by the dispersion flow model [37] which is given by

g(t) = Γ·t−3/2e−( 1
4PD

( τ
t +

t
τ ))t ≥ 0 (6)

Γ =

√
τ

4πPD
e(

1
2PD

) (7)

where PD [-] is the inverse of the Péclet number (Pe [-]), which is a dimensionless number
defined as the ratio of the advective and the dispersion-diffusion characteristic times. When
Pe > 1, the advective flux is the dominant transport mechanism, and vice versa.

By considering Equations (5) and (6) in the convolution integral, the aquifer output
function is described by the following analytical expression [12]:

Cout(t) = C0·Γ·t−3/2e−( 1
4PD

( τ
t +

t
τ )) t ≥ 0 (8)

4. Results and Discussion
4.1. Hydrodynamic Data

The observed groundwater discharge in FA and NAT shows a karstic behavior with
a fast response to precipitation events (Figure 5) and short recessions that depend on the
karstification degree of the corresponding aquifer [25]. The hydrological response of FEM
is more inertial than that of the other two springs. This behavior may be due to the presence
of induced and permanent recharge generated by direct infiltration into the Fuente Alta
riverbed, through which the discharge of FA circulates [25]. The median value (i.e., 50th
percentile) of the flow rate discharge in FA, NATm and FEM is 369 L/s, 272 L/s, and 31 L/s,
respectively [25]. Considering the arid conditions of the study area, it is worth noting that
precipitation events of less than 20 mm do not generate a hydrological response in terms
of spring discharge [35]. Such a depth of precipitation is small enough to be absorbed by
the existing vegetation, but also to be retained by the soils of poljes and dolines and in
the epikarst.
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Figure 5. Hydrographs of FA, NAT, and FEM springs and precipitation for the period October
2021–October 2022.

4.2. Environmental Tracers (δ18O, δ2H and d-ex) in Precipitation and Groundwater

The precipitation samples obtained in Sierra Seca present a mean isotopic composition
(i.e., case A1) of −6.9‰ and −42.5‰ for δ18O and δ2H, respectively. From a seasonal
perspective, such isotopic composition shows a seasonal variation with heavier and lighter
isotopic contents in summer and winter, respectively (Figure 6).
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The mean isotopic content of groundwater is lighter than that of precipitation (Figure 6).
This behavior is driven by recharge. This process is the highest from October to March,
coinciding with the rainiest period in the study zone. During the warm seasons, especially
in summer, most of the rainfall is evapotranspired (Figure S4 in Supplementary Materials);
therefore, recharge decreases, and the average isotopic content of groundwater tends
towards light compositions, resembling the isotopic composition of recharge in the rainy
seasons (i.e., autumn and winter; Figure 6).

The estimated mean isotopic content of precipitation δP presents a linear relationship
with elevation (Figure 7, and Figure S5 in Supplementary Materials). Additionally, the
estimated mean isotopic content of recharge δR presents a linear relationship with elevation
(Figure S6 in Supplementary Materials) with vertical gradients (∇ZδR) of −3.4‰/km,
−23.2‰/km, and 4.2‰/km for the environmental tracers δ18OR, δ2HR, and d-exR, respec-



Water 2024, 16, 2768 11 of 19

tively. Regardless of such tracers, ∇ZδR is higher than ∇ZδP (Table 2) as would be expected
for isotopic tracers entering a sloping unconfined aquifer by diffuse recharge [33]. It is
important to keep this in mind because, from an empirical point of view, it is not easy to
characterize δR and therefore it is not easy to estimate ∇ZδR. This is the reason why ∇ZδP
is often used as a proxy for ∇ZδR. The estimated values of ∇Zδ18OP and ∇Zδ18OR in Sierra
Seca are −2.9‰/km and −3.1‰ /km, respectively.

Water 2024, 16, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Seasonal mean isotopic content of precipitation and mean isotopic content of groundwater 
discharge in FA, NAT, and FEM. WMMWL and GMLW indicate West Mediterranean Meteoric Wa-
ter Line (d-ex = 13.7 ‰) and Global Meteoric Water Line (d-ex = 10 ‰), respectively. The two-sided 
error bars indicate one standard deviation. 

The mean isotopic content of groundwater is lighter than that of precipitation (Figure 
6). This behavior is driven by recharge. This process is the highest from October to March, 
coinciding with the rainiest period in the study zone. During the warm seasons, especially 
in summer, most of the rainfall is evapotranspired (Figure S4 in Supplementary Materi-
als); therefore, recharge decreases, and the average isotopic content of groundwater tends 
towards light compositions, resembling the isotopic composition of recharge in the rainy 
seasons (i.e., autumn and winter; Figure 6). 

The estimated mean isotopic content of precipitation 𝛿 presents a linear relation-
ship with elevation (Figure 7, and Figure S5 in Supplementary Materials). Additionally, 
the estimated mean isotopic content of recharge 𝛿ோ presents a linear relationship with 
elevation (Figure S6 in Supplementary Materials) with vertical gradients (𝛻𝛿ோ) of −3.4 
‰/km, −23.2 ‰/km, and 4.2 ‰/km for the environmental tracers 𝛿ଵ଼𝑂ோ, 𝛿ଶ𝐻ோ, and 𝑑-𝑒𝑥ோ, respectively. Regardless of such tracers, 𝛻𝛿ோ is higher than 𝛻𝛿 (Table 2) as would 
be expected for isotopic tracers entering a sloping unconfined aquifer by diffuse recharge 
[33]. It is important to keep this in mind because, from an empirical point of view, it is not 
easy to characterize 𝛿ோ and therefore it is not easy to estimate 𝛻𝛿ோ. This is the reason 
why 𝛻𝛿  is often used as a proxy for 𝛻𝛿ோ . The estimated values of 𝛻𝛿ଵ଼𝑂  and 𝛻𝛿ଵ଼𝑂ோ in Sierra Seca are −2.9‰/km and −3.1‰ /km, respectively. 
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Table 2. Recharge elevation (ZR) for FA, NAT, and FEM, vertical gradient of the isotopic content of
recharge (∇ZδR) for the five cases considered to estimate the mean isotopic content of recharge from
that of precipitation (A1 to A5).

ZR (m a.s.l.) Isotopic Content Vertical Gradient
in Recharge

Case FA NAT FEM ∇Zδ18OR
(‰/km)

∇Zδ2HR
(‰/km)

∇Zd-exR
(‰/km)

A1 1710 1698 1650 −2.9 −19.5 4.0
A2 1708 1696 1648 −2.9 −19.1 4.4
A3 1673 1662 1617 −3.1 −20.6 4.3
A4 1626 1616 1578 −3.7 −25.2 4.1
A5 1589 1580 1548 −4.4 −31.4 4.0
ξ a 1661 1650 1608 −3.4 −23.2 4.2
σξ

b 53 51 45 0.7 5.2 0.2
∆ξMax (%) c 7.1 6.9 6.2 61.0 10.0 51.7

Notes: a Average of variable ξ for the whole ensemble values (i.e., A1 to A5); b Standard deviation of variable ξ
for the whole ensemble values (i.e., A1 to A5); c Maximum variation of variable ξ with respect ξA1, obtained as

ξMax = max
{∣∣∣∣ ξAi

−ξA1

ξA1

∣∣∣∣}; ∀i ∈ [1, 5].

The vertical gradient of the isotopic content of recharge ∇ZδR is needed to estimate
the elevation of the recharge zone (ZR) associated with the springs draining the aquifer. As
can be seen in Table 2, the mean ZR value obtained for FA, NAT, and FEM is 1661 m a.s.l.,
1650 m a.s.l., and 1608 m a.s.l., respectively (Table 2). For every spring, ZR does not present
large discrepancies along the ensemble of cases regarding the elevation of the recharge zone
estimated using ∇ZδP (caseA1), with variations ranging between 6.2% and 7.1%. Despite
that, ∇Zδ18OR shows variations, with respect to ∇Zδ18OP, of up to 61% (case A5). Such
a discrepancy in the vertical gradient does not translate into a large discrepancy in the
estimation of ZR because the karstification degree of the aquifer system outcrop zones.
Indeed, there is a diffuse recharge along the slope of such outcropping zones (i.e., sloping
recharge; [33]), which makes the isotopic content of the groundwater heavier than that
obtained if the recharge entered the aquifer through a well-defined recharge zone located
at a given elevation in the upper part of the massif.
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There are no remarkable differences between cases A1 and A2 in terms of both ZR
and ∇ZδR (Table 2). In the first case, the isotopic composition of all the rainfall events
recorded in the study area is considered to estimate the IAL, while in the second case,
summer rainfall events are excluded. Certainly, summer precipitation events are rare and,
in terms of recharge, not relevant as suggested by the isotopic composition of groundwater
(Figure 6). There are no remarkable differences between cases A1 and A2 in terms of both
ZR and ∇ZδR. Moreover, such discrepancies are even greater for the other cases considered,
where the excluded rainfall events have a greater precipitation length. It is difficult to
apply a criterion, other than the hydrological response of the springs, to select the best
scenario between cases A3, A4, and A5. In this line, it should be noted that there is no
hydrological response in terms of spring discharge to precipitation events of less than
20 mm [35]. Therefore, case A3 stands out as the most plausible working hypothesis in
terms of hydrological response to estimate the IAL for recharge. However, accepting case
A3 as the most appropriate to represent the isotopic content of the recharge does not imply
that the other cases considered are not also applicable. This has a direct impact on the
uncertainty associated with the recharge height, as there is a discrepancy of up to ±85 m
between the different cases with respect to the recharge height obtained with case 3.

Given the difficulty of estimating ∇ZδR, this value is often approximated by ∇ZδP.
In Sierra Seca ∇ZδR ∼ ∇ZδR.(Table 2), the ∇Zδ18OP values obtained by other authors for
southern Spain differ only slightly from that of the Sierra Seca: In the Subbetic Unit of
the Betic Cordillera, Liñán-Baena (2003) [48] obtained a value of −3.1‰/km. 1‰/km; in
the area of Chorros de Río Mundo, located in the northeastern foothills of the Sierra de
Segura, Hornero-Díaz (2018) [49] obtained a vertical gradient of −4.5‰/km. Moral-Martos
(2005) [27] estimated the vertical isotope gradient for the whole Sierra de Segura Range and
obtained a value of −2.8‰/km. In this line, and extending the precipitation sampling area
for isotopic characterization, Yanes (2022) [50] estimated a vertical gradient of −3.1‰/km
for southern Spain. Similar values have been found in other areas in Spain and most
mountain regions of the world ([50] and references therein). Table S2 (Supplementary
Materials [5,11,27,32,48–54]) provides more information on ∇Zδ18OP values estimated in
other geographical areas).

Indeed, the uncertainty associated with the estimation of the aquifer recharge height
can be large when using IAL (i.e., based on ∇ZδP). This uncertainty increases when there
is a large difference in elevation between the lower and upper aquifer zones, or even when
there is a vertical isotope gradient (∇ZδR or even ∇ZδP). Furthermore, in sloping aquifers,
where the carbonate outcrops through the slope, the uncertainty may be further increased
because diffuse recharge along the slope may be greater than concentrated recharge [17],
thus calling into question the applicability of the IAL to estimate the height of the aquifer
recharge zone.

4.3. Groundwater Transit Time

Groundwater transit time gives an indication of the hydraulic connection between
the aquifer recharge zone and the naturally occurring groundwater discharge points
(i.e., springs). Such a connection is provided by (1) the network of highly permeable
drainage channels associated with karst development and (2) the structure of the asso-
ciated primary porosity, including small joints and fractures, present in the limestone
formations hosting the aquifer system. The transit time associated with the most conduc-
tive karst features (τKF), which is associated with the fast flows through the aquifer, is
typically measured by conducting dye tracer tests, whereas the transit time associated
with the limestone formation hosting the aquifer (τiTR), which provides information on
how long it takes for in-transit recharge to reach the outflow point of the system, is esti-
mated by analyzing the input and output functions of environmental tracers in the aquifer.
τKF < τiTR because they correspond to different flow paths with different velocities through
the aquifer system.
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4.3.1. Determination of τKF Using Dye Tracer Tests

The objective of the tracer tests was to gain a deeper understanding of the highly
conductive features of the karst system that facilitate fast recharge and to establish a
hydrologic connection between the injection point and the different springs draining the
aquifer system. In all the three cases, the injection point corresponds to a sinkhole of the
karst system. Tracer test 1 was conducted in December 2020, injecting the tracer in the
Lower Cretaceous limestones (site α in Figure 3). The tracer outflow was only observed
in FA. Tracer test 2 was conducted in February 2021. The tracer was injected in the Upper
Cretaceous limestones (site β in Figure 3), and the tracer outflow was only detected in NAT.
Finally, tracer test 3 was conducted in February 2022. The tracer injection was conducted
in the Upper Cretaceous limestones outcropping at the Fuente Alta riverbed (site ε in
Figure 3). In this last case, the tracer outflow was only observed in FEM.

The three tracer tests were interpreted by calibrating the parameters τ and PD
(Equation (8)). Table 2 includes the calibrated parameters τKF and Péclet number (Pe = 1/PD)
for each tracer test, while Figure 8 shows the observed and computed concentrations for
every tracer test. In each case, the concentrations are normalized in accordance with the
observed maximum concentration of the test. As shown, the breakthrough curves of all
the tracer tests are left skewed, indicating that the injection and the sampling points were
well connected by conduits. Such a connection has been confirmed by the current speleo-
logical explorations in Sierra Seca [30,55], which provide direct information of the internal
geometry and actual functioning of the karts systems.
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(B) Tracer test 2, (C) Tracer test 3.

The hydrological conditions in Sierra Seca during the three tracer tests were different
as reflected in the spring discharge measured in FA, NAT, and FEM during such tracer
tests (Table 1). These conditions directly impact the time of the first tracer arrival (tFA;
Table 3) and the transit time estimated for the different tracer tests. τKF holds 1, 17, and
31 days for tracer tests 1, 2, and 3 respectively. Similar results, in terms of short transit
times, were obtained by Lauber and Goldscheider (2014) [19] and Jódar et al. (2020) [17] for
a number of tracer tests conducted in the alpine karst systems of the Wetterstein Mountains
and the PNOMP, respectively. The short transit times of the karst conduits minimize the
degradation and dilution of possible contaminants entering the system. These include fecal
bacteria from agricultural practices, which would be transported to the springs within
a relatively short period of time, highlighting the vulnerability of such karst systems to
groundwater contamination problems.

Despite the disparity of the hydrological conditions driving the different tracer tests,
it is possible to infer information of the internal structure of the karst system directly
from the breakthrough curves. If the whole karst conduit network draining the system
is conceptualized as a unique cylindrical conduit, an effective ratio (Re f f [L]) for such
a conduit can be estimated in terms of the distance between the tracer injection and
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outflow points (L; Table 1), the time of the tracer first arrival (tFA; Table 3), and the mean
groundwater discharge in the interval between the tracer injection (t = 0) and t = tFA,
which is given by QGWFA (Table 1). As can be shown in Table 3, Re f f is similar for tracer
tests 1 and 2, indicating that the Upper and Lower Cretaceous aquifers have a similar
development in terms of highly conductive karst features. This result is consistent with the
estimated Peclet numbers, which are greater than one in all cases, indicating that advection
is the main transport mechanism in the aquifer system. An advective tracer transport should
be likely related with simple conduits geometries (Figure S1; Supplementary Materials),
as it happens in the alpine Paleocene-Eocene limestone aquifer of the PNOMP and in the
Central Southern sector of the Pyrenees, which is the highest karst system of Western
Europe [16].

Table 3. Calibrated parameters of the solute transport equation for the different breakthrough
measured in the different tracer test conducted in Sierra Seca.

Pe (-) τKF (d)

Trace
Test

tFA
a

(Days) Reff
b (m)

Mass
Recovery (%) Flow Path 1 Flow Path 2 Average Flow Path 1 Flow

Path 2 Average

1 0.58 30.7 26.1 1000 10 505 0.809 1.200 1.005
2 3.28 33.6 4.4 22.2 21.7 22.0 11.110 21.883 16.500
3 14.56 20.33 75.4 37.0 30.3 38.7 24.271 38.187 31.230

Notes: a Time first tracer arrival since tracer injection; b Karst gallery effective radio assuming a cylindrical shape

Reff =

√
QGW FA

π
τFA

L .

Tracer recovery is low for tracer tests 1 and 2, reaching only 26% and 4% of the mass
of tracer injected, respectively. This result may be due to the large distance between the
tracer injection and the tracer recovery points in both tracer tests. Such a distance favors
the role played by localized karst features (e.g., channel junctions and bypasses) diverting
groundwater, and hence the dissolved tracer, from the mainstream and thereby feeding
uncontrolled diffuse discharge zones in the hydrogeological basin. In the case of tracer test
3, the tracer recovery increases up to 75%. A very low tracer recovery, which depends on
both the hydrodynamic state of the aquifer (e.g., low flow rates) and the internal geometry
of the aquifer (e.g., complex tectonic structure of the carbonate massif hosting the aquifer),
may prevent the application of this technique in other aquifer systems.

4.3.2. Determination of τiTR Using Environmental Tracers

The evolution of the isotope content in the discharge of FA and NAT has been simu-
lated with FlowPC (Figure 9). According to the hydrogeological framework, it is assumed
that the EPM flow model can describe the behavior of the aquifers drained by FA and NAT,
and, therefore, the parameters η and τiTR have been estimated. The obtained value of η is 1
for both aquifers, indicating that the flow scheme is that of a perfect mixing system with an
exponential distribution of groundwater flow lines (i.e., exponential model [37], which is
consistent with the behavior of a karst aquifer system discharging through a main spring.

The estimated τiTR values for FA and NAT are 5 and 4 months, respectively. These
values are similar to those obtained for other karst aquifers in mountain areas, such as in
the aquifer system of the Schneealpe massif, whose discharge represents the main drinking
water resource of Vienna (Austria). In this karst aquifer, Steig et al. (2014) [31] and Schoene-
mann et al. (2013) [56] obtained τiTR values between 1.2 and 2 months. Another example
is the karstic aquifer system of the Wetterstein Mountains, where Angert et al. (2004) [57]
estimated τiTR values ranging between 3 and 5 months for the main springs draining the
system. These values may seem small when compared to values obtained for other karst
aquifers also located in mountain areas, such as, for example, the karst aquifer system of
the Parque Nacional de Ordesa and Monte Perdido (PNOMP; Central Pyrenees, Spain),
which is the highest limestone massif in Western Europe. Here, Jódar et al. (2020) [17]
estimated τiTR for the most important springs in the aquifer, obtaining values between
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1.12 and 4.48 years. Similarly, Herms et al. (2019) [14] characterized the transit time of the
springs draining the karstic massif of Port del Comte (Eastern Pyrenees, Spain), obtaining
τiTR values between 1.69 and 2.85 years. Both in the case of Ordesa and in the case of Port
del Comte, the long transit times may be conditioned by the strength of the unsaturated
zone, which in both cases exceeds 1000 m in thickness.
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4.4. Definition of Hydrogeological Boundaries:

In hydrogeological sciences, one of the most common problems is the delineation
of hydrological and hydrogeological basins, as they often do not coincide [58] given the
complexity of the geological structure of the aquifers. Based on the geological structure
(Figure 3) and recharge elevation zones estimated for the aquifer system of Sierra Seca
(Section 4.2), this work allows defining the boundaries associated with the hydrogeological
system (Figure 10). Indeed, the hydrological boundary of the Segura and Guadalquivir
basins crosses the study area along the mountain range that defines the Sierra Seca. This
geographical boundary, which theoretically separates the hydrological basins of both
rivers, is larger, and hence different from the hydrogeological boundary that defines the
Sierra Seca aquifer system, which drains entirely into the Guadalquivir basin. This result
may be relevant and should be considered by the water authorities responsible for the
management of water resources in both river basins (i.e., Confederación del Guadalquivir
and Confederación del Segura). Additionally, the obtained results may be used be used to
include the recharge areas of the FA and NAT aquifers in the Catalogue of Underground
Natural Reserves of Spain [59].
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5. Conclusions

In the aquifer system of Sierra Seca, the vertical gradient of recharge ∇ZδR may be
larger than that of precipitation ∇ZδP Despite that, the estimation of the recharge zone
elevation (ZR) associated with the aquifer system is not very sensitive with respect to ∇ZδR,
obtaining the range of ZR between 1500 and 1700 m a.s.l.

The aquifer system behaves as a dual-porosity aquifer, with a highly permeable
domain created by (1) the most conductive karst features and (2) a connected porosity
domain integrated with small fractures and primary porosity. The first structure controls
the system response during rainfall events, whereas the second one does it during the long
and abundant dry spells occurring in the study zone.

The Upper and Lower Cretaceous aquifers exhibit similar behavior in terms of tracer
transport. From the perspective of environmental tracers, both aquifers exhibit similar
transit times between 4 and 5 months, for recharge to reach the outflow point of the system.
Moreover, in terms of a hypothetic karst conduit draining the aquifer system, the artificial
tracers point to a conduit of similar effective radius (Re f f ) for both the Upper and Lower
Cretaceous aquifers, highlighting a similar development of the most conductive karst
features in such aquifers.

The low transit times observed in both the high conductive karst features (tracers tests)
and the connected porosity domains (isotopic data) highlight the significant vulnerability
of the karst system to contamination risks.

Mountain karst aquifers are ideal watchtowers for monitoring the effects of climate
change on hydrological systems. More research is needed to characterize the behavior of
such aquifers, especially in the Mediterranean basin, which is a hotspot for climate change
impacts. This research will allow adaptation measures to be designed to minimize the
severity of such impacts.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w16192768/s1, Figure S1: Karst Network of FA and Nativi-
dad springs. (A) Flooded conduit of Natividad spring. (B) Aerial conduit of Natividad spring.
(C) Collapsed chamber in the FA karst network. (D) Karst gallery associated with FA. (E) Drainage
conduit of FA spring; Figure S2: Kast development of study area. (A) Uvala “La Laguna” with ponor.
(B) Lapiaz. (C) kastified surface. (D) Fuente Alta Spring. (E) Natividad Spring. (F) La Natividad
Gauging station; Figure S3: Activation sequence of the Fuente Alta Trop Pleins. (A) Trop Plein 1
inactive. (B) Trop Plein 1 active with low discharge flow rate (600 L/s). (C) Trop Plein 1 active with
high discharge flow rate (4000 l/s). (D) Trop Plein 2 active. (E) Trop Plein 3 active. (F) Trop Plein 3
active; Figure S4: Seasonal variation of the isotopic content of precipitation. WMMWL, GMLW and
Evap. L indicate West Mediterranean Meteoric Water Line (d-excess = 13.7‰), Global Meteoric Water
Line (d-excess = 10‰), and Evaporation Line (slope dδ2H/dδ18O = 5), respectively; Figure S5: Mean
isotopic content (δ18O) of precipitation in the rainfall monitoring stations. The numbers indicate the
elevation of the rainfall monitoring stations. The two-sided error bars indicate one standard deviation.
WMMWL and GMLW indicate West Mediterranean Meteoric Water Line (d-excess = 13.7‰), and
Global Meteoric Water Line (d-excess = 10‰), respectively; Figure S6: Isotopic (δ18O and d-ex)
Altitudinal Lines (IALs) of recharge for the different cases (i.e., A1 to A5) considered to estimate
the mean isotopic content of recharge from that of precipitation; Table S1: Mean isotopic content of
precipitation at the sampling sites. Such isotope averages are obtained by excluding water samples
from precipitation events of less than 20 mm; Table S2: Vertical isotopic gradient of precipitation
obtained by other authors. References from [5,11,27,32,48–54] are mentioned in the Supplementary
Materials document.
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