Assessment of the Health Status of Whitefish (Coregonus lavaretus Linnaeus, 1758) and the Quality of Its Habitat in Lake Sevan (Armenia) Using a Multi-Biomarker Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Fish Sampling
2.2. Ichthyological Analysis
2.3. Biochemical Analysis
2.4. Hydrochemical and Hydrophysical Analysis
2.5. Statistical Analysis
3. Results
3.1. Hydrochemical and Hydrophysical Analyses
3.2. Ichthyological Data
3.3. Biochemical Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Gong, S.; Shi, Q.; Fang, Y. A review of ecosystem services based on bibliometric analysis: Progress, challenges, and future directions. Sustainability 2023, 15, 16277. [Google Scholar] [CrossRef]
- Ferreira, V.; Bini, L.M.; Gonzales Sagrario, M.A.; Kovalenko, K.E.; Naselli-Flores, L.; Padial, A.A.; Padisak, J. Aquatic ecosystem services: An overview of the Special Issue. Hydrobiologia 2023, 850, 2473–2483. [Google Scholar] [CrossRef]
- Zandebasiri, M.; Jahanbazi Goujani, H.; Iranmanesh, Y.; Azadi, H.; Vira, A.H.; Habibi, M. Ecosystem services valuation: A review of concepts, systems, new issues, and considerations about pollution in ecosystem services. Environ. Sci Pollut. Res 2023, 30, 83051–83070. [Google Scholar] [CrossRef] [PubMed]
- Rizhinashvili, A.L. An Outline of the Theory of the Functioning of Aquatic Ecosystems: Nutrient Limitation. Biol. Bull. Rev. 2022, 12, 596–608. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Vári, Á.; Podschun, S.A.; Erős, T.; Hein, T.; Pataki, B.; Ioja, I.C.; Adamescu, C.V.; Gerhardt, A.; Gruber, T.; Dedic, A.; et al. Freshwater systems and ecosystem services: Challenges and chances for cross-fertilization of disciplines. Ambio 2022, 51, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, I.P. Lake Sevan: Evolution, Biotic Variability and Ecological Degradation. In Large Asian Lakes in the Changing World; Mischke, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 35–63. [Google Scholar] [CrossRef]
- Gabrielyan, B.; Khosrovyan, A.; Schulze, M. A review of anthropogenic stressors on Lake Sevan, Armenia. J. Limnol. 2022, 81, 2061. [Google Scholar] [CrossRef]
- Gevorgyan, G.; von Tuempling, W.; Shahnazaryan, G.; Friese, K.; Schultze, M. Lake-wide assessment of trace elements in surface sediments and water of Lake Sevan. J. Limnol. 2022, 81, 2096. [Google Scholar] [CrossRef]
- Pavlov, P.I. Results of the introduction of whitefish into Lake Sevan. Proc. Sevan Hydrobiol. Stn. 1947, 8, 113–141. (In Russian) [Google Scholar]
- Mailyan, R.A. Whitefish of Lake Sevan. Proc. Sevan Hydrobiol. Stn. 1957, 15, 137–196. (In Russian) [Google Scholar]
- Simonyan, A.A. Zooplankton of Lake Sevan; National Academy of Sciences of Armenia: Yerevan, Armenia, 1991. [Google Scholar]
- Gabrielyan, B.; Vardanyan, T.; Barseghyan, N.; Khosrovyan, A. Estimation of the Potential Wild Fish Stock Biomass to be Supported by Available Food Base in a Lake. Inland Water Biol. 2022, 15, 331–340. [Google Scholar] [CrossRef]
- Khosrovyan, A.; Avalyan, R.; Atoyants, A.; Aghajanyan, E.; Hambaryan, L.; Aroutiounian, R.; Gabrielyan, B. Tradescantia-Based Test Systems Can Be Used for the Evaluation of the Toxic Potential of Harmful Algal Blooms. Water 2023, 15, 2500. [Google Scholar] [CrossRef]
- Remen, M.; Oppedal, F.; Torgersen, T.; Imsland, A.; Olsen, R. Effects of cyclic environmental hypoxia on physiology and feed intake of post-smolt Atlantic salmon: Initial responses and acclimation. Aquaculture 2012, 326–329, 148–155. [Google Scholar] [CrossRef]
- Oven, L.S.; Rudneva, I.I.; Shevchenko, N.F. Responses of Scorpaenaporcus (Scorpaenidae) to Anthropogenic Impact. Vopr. Ikhtiol. 2000, 40, 70–73. [Google Scholar]
- Fulton, M.H.; Key, P.B. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem. 2009, 20, 37–45. [Google Scholar] [CrossRef]
- Durieux, E.; Farver, T.; Fitzgerald, P.; Eder, K.; Ostrach, D. Natural factors to consider when using acetylcholinesterase activity as neurotoxicity biomarker in Young-Of-Year striped bass (Morone saxatilis). Fish Physiol. Biochem. 2011, 37, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.; Kasianchuk, N.; Siemens, E.; Henao, E.; Rzymski, P. A Review of Common Cyanotoxins and Their Effects on Fish. Toxics 2023, 11, 118. [Google Scholar] [CrossRef]
- Marsillach, J.; Costa, L.G.; Furlong, C.E. Protein adducts as biomarkers of exposure to organophosphorus compounds. Toxicology 2013, 307, 46–54. [Google Scholar] [CrossRef]
- Pavlov, D.F.; Chuiko, G.M.; Shabrova, A.G. Adrenaline induced changes of acetylcholinesterase activity in the brain of perch (Perca fluviatilis L.). Comp. Biochem. Physiol. 1994, 108C, 113–115. [Google Scholar] [CrossRef]
- Møller, P.; Wallin, H.; Knudsen, L.E. Oxidative Stress Associated with Exercise, Psychological Stress and Life Style Factors. Chem. Biol. Interact. 1996, 102, 17–36. [Google Scholar] [CrossRef]
- Nikolsky, G.V. Selected Research Works, Vol. 1: Theory of Fish Herd Dynamics; VNIRO: Moscow, Russia, 1974. [Google Scholar]
- Moiseev, P.A.; Azizova, N.A.; Kuranova, I.I. Ichthology; Legkaya I Pishchevaya Promishlennost: Moscow, Russia, 1981; 384p. (In Russian) [Google Scholar]
- Vinberg, G.G. Length and weight of animals. J. Gen. Biol. 1971, 32, 714–722. [Google Scholar]
- Morphology and Physiology of Fish. Laboratory Practice: Learning Material; Usov, M.M., Ed.; Morphology and Physiology of Fish: Gorki, Russia, 2017; 114p. [Google Scholar]
- Guide for Investigation of Fish Feeding in Natural Conditions (1961), NAS USSR ed.; USSR: Moscow, Russia, 1961; 263p.
- Guide for Investigation of Fish Feeding; USSR: Vladivostok, Russia, 1986; 32p. (In Russian)
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, I.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 70, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzym. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Chevari, S.; Chaba, I.; Sekei, I. Role of superoxide dismutase in cellular oxidative processes and the method of its determination in biological materials. Lab. Delo 1985, 11, 678–681. (In Russian) [Google Scholar]
- Moron, M.S.; Depierre, J.W.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta 1979, 582, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jacoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Chuiko, G.M.; Podgornaya, V.A. Biochemical properties of cholinesterases in blood serum and some organs of fish from Lake Sevan. In Ecology of Lake Sevan during the Period of Water Level Rise; Nauka DNC: Makhachkala, Russia, 2010; Chapter 3.4; pp. 279–284. (In Russian) [Google Scholar]
- Chuiko, G.M.; Zhelnin, Y.Y.; Podgornaya, V.A. Seasonal fluctuations in brain acetylcholinesterase activity and soluble protein content in roach (Rutilus rutilus L.): A freshwater fish from Northwest Russia. Comp. Biochem. Physiol. 1997, 117, 251–257. [Google Scholar] [CrossRef]
- Chuiko, G.M.; Golovkina, E.I.; Podgornaya, V.A. Seasonal dynamics of acetylcholinesterase activity and protein content in different parts of the brain of freshwater teleost fish Abramis brama L. from the Rybinsk Reservoir. Proc. Inst. Biol. Inland Waters Russ. Acad. Sci. 2015, 72, 117–125. (In Russian) [Google Scholar] [CrossRef]
- Tenji, D.; Micic, B.; Sipos, S.; Miljanovic, B.; Teodorovic, I.; Kaisarevic, S. Fish biomarkers from a different perspective: Evidence of adaptive strategy of Abramis brama (L.) to chemical stress. Environ. Sci. Eur. 2020, 32, 47. [Google Scholar] [CrossRef]
- Tlili, S.; Jebali, J.; Banni, M.; Haouas, Z.; Mlayah, A.; Helal, A.N.; Boussetta, H. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites. Environ. Monit. Assess. 2009, 168, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Pala, A.; Serdar, O. Seasonal Variation of Acetylcholinesterase Activity as a Biomarker in Brain Tissue of Capoeta umbla in Pülümür Stream. LimnoFish 2018, 4, 98–102. [Google Scholar] [CrossRef]
- Menéndez-Helman, R.J.; Ferreyroa, G.V.; dos Santos Afonso, M.; Salibián, A. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus. Ecotoxicol. Environ. Saf. 2015, 111, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Fasulo, S.; Marino, S.; Mauceri, A.; Maisano, M.; Giannetto, A.; D’Agata, A.; De Domenico, E. A multibiomarker approach in Coris julis living in a natural environment. Ecotoxicol. Environ. Saf. 2010, 73, 1565–1573. [Google Scholar] [CrossRef]
- Morozov, A.A.; Chuiko, G.M.; Brodskii, E.S. Functional state of the liver antioxidant system of the bream Abramis brama (L.) from Rybinsk Reservoir regions with different anthropogenic loads. Inland Water Biol. 2012, 5, 147–152. [Google Scholar] [CrossRef]
- Bayir, A.; Sirkecioğlu, A.N.; Polat, H.; Mevlüt Aras, N. Biochemical profile of blood serum of siraz Capoeta capoeta umbla. Comp. Clin. Pathol. 2007, 16, 119–126. [Google Scholar] [CrossRef]
- Nunes, B.S.; Travasso, R.; Gonçalves, F.; Castro, B.B. Biochemical and physiological modifications in tissues of Sardina pilchardus: Spatial and temporal patterns as a baseline for biomonitoring studies. Front. Environ. Sci. 2015, 3, 7. [Google Scholar] [CrossRef]
- Angelini, C.; Amaroli, A.; Falugi, C.; Di Bella, G.; Matranga, V. Acetylcholinesterase activity is affected by stress conditions in Paracentrotus lividus coelomocytes. Mar. Biol. 2003, 143, 623–628. [Google Scholar] [CrossRef]
- Kochkina, E.G.; Plesneva, S.A.; Zhuravin, I.A.; Turner, A.J.; Nalivaeva, N.N. Effect of hypoxia on cholinesterase activity in rat sensorimotor cortex. J. Evol. Biochem. Physiol. 2015, 51, 107–116. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Saikia, S.K. Oxidative Stress in Fish: A Review. J. Sci. Res. 2020, 12, 145–160. [Google Scholar] [CrossRef]
- Menon, S.V.; Kumar, A.; Middha, S.K.; Paital, B.; Mathur, S.; Johnson, R.; Kademan, A.; Usha, T.; Hemavathi, K.N.; Dayal, S.; et al. Water physicochemical factors and oxidative stress physiology in fish, a review. Front. Environ. Sci. 2023, 11, 1240813. [Google Scholar] [CrossRef]
- Gu, Y.; Sun, J.L.; Yao, F.C.; Jiang, T.; Jin, C.X.; Shi, L.P.; Sun, S.K.; Song, F.B.; Luo, J. Long-term hypoxia and reoxygenation induced oxidative stress lead to immunosuppression and apoptosis in golden pompano (Trachinotus blochii). Front. Mar. Sci. 2023, 10, 1212571. [Google Scholar] [CrossRef]
- Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 153, 175–190. [Google Scholar] [CrossRef]
Bay | Temperature (°C) | pH | Dissolved Oxygen (Mg L−1) | BOD5 (mg L−1) | Permanganate Oxidation (mg O L−1) | Ammonium Ion (mg N L−1) | Nitrate Ion (mg N L−1) | Nitrite Ion (mg N L−1) | Phosphate Ion (mg P L−1) |
---|---|---|---|---|---|---|---|---|---|
May, 2022 | |||||||||
Lchashen | 22 | 8.4 | 6.8 | 3.9 | 6 | 0.1 | 0.24 | 0.007 | 0.06 |
Lichk | 18 | 8.4 | 8.3 | 3.5 | 5.7 | 0.07 | 1.1 | 0.012 | 0.09 |
August 2022 | |||||||||
Lchashen | 20 | 8.5 | 2.4 | 4.5 | 6.8 | 0.27 | 0.18 | 0.005 | 0.09 |
Lichk | 23 | 8.4 | 6.1 | 3.9 | 6.2 | 0.1 | 0.16 | 0.004 | 0.08 |
October, 2022 | |||||||||
Lchashen | 16.7 | 8.4 | 5.1 | 4.2 | 6.2 | 0.21 | 0.23 | 0.008 | 0.07 |
Lichk | 19.7 | 8.4 | 6.9 | 3.6 | 5.9 | 0.08 | 0.19 | 0.005 | 0.09 |
May, 2023 | |||||||||
Lchashen | 21 | 8.3 | 6.5 | 3.8 | 5.9 | 0.13 | 0.2 | 0.006 | 0.08 |
Lichk | 19 | 8.4 | 8.3 | 3.2 | 5.3 | 0.08 | 1.14 | 0.01 | 0.06 |
August, 2023 | |||||||||
Lchashen | 23 | 8.5 | 3.7 | 4.6 | 6.4 | 0.18 | 0.17 | 0.004 | 0.1 |
Lichk | 22 | 8.3 | 6.4 | 3.7 | 5.8 | 0.11 | 0.16 | 0.007 | 0.07 |
October, 2023 | |||||||||
Lchashen | 17 | 8.5 | 5.8 | 4 | 6 | 0.17 | 0.19 | 0.007 | 0.09 |
Lichk | 19 | 8.4 | 6.9 | 3.3 | 5.4 | 0.1 | 0.17 | 0.006 | 0.06 |
National surface water quality criteria * | - | 6.5–8.5 | ≥6 | 3.0 | 5 | 0.39 | 9.0 | 0.02 | 3.5 |
Bay | K+ | Na+ | Ca2+ | Mg2+ | Fe Total | Cu2+ | Zn2+ | Pb2+ | Cd2+ |
---|---|---|---|---|---|---|---|---|---|
May, 2022 | |||||||||
Lchashen | 13 | 62 | 26 | 45 | 0.02 | <dL | <dL | <dL | <dL |
Lichk | 7.6 | 40 | 29 | 18 | 0.21 | <dL | <dL | <dL | <dL |
August, 2022 | |||||||||
Lchashen | 31.1 | 61 | 26.1 | 44 | 0.02 | <dL | <dL | <dL | <dL |
Lichk | 19.4 | 56 | 27 | 34 | 0.09 | <dL | <dL | <dL | <dL |
October, 2022 | |||||||||
Lchashen | 12.8 | 58 | 27 | 44.3 | 0.01 | <dL | <dL | <dL | <dL |
Lichk | 14 | 47 | 27.2 | 39 | 0.02 | <dL | <dL | <dL | <dL |
May, 2023 | |||||||||
Lchashen | 14 | 59 | 27 | 46 | 0.04 | <dL | <dL | <dL | <dL |
Lichk | 7.3 | 41 | 28 | 23 | 0.19 | <dL | <dL | <dL | <dL |
August, 2023 | |||||||||
Lchashen | 26 | 60 | 27.1 | 46 | 0.03 | <dL | <dL | <dL | <dL |
Lichk | 17 | 54 | 27 | 38 | 0.07 | <dL | <dL | <dL | <dL |
October, 2023 | |||||||||
Lchashen | 13.1 | 56 | 26.7 | 48 | 0.02 | <dL | <dL | <dL | <dL |
Lichk | 12.6 | 49 | 27 | 41 | 0.02 | <dL | <dL | <dL | <dL |
“average” quality * | 4 × B | 4 × B | 200 | 100 | 0.5 | 0.05 | 0.2 | 0.025 | B + 0.002 |
“good” quality * | 2 × B | 2 × B | 100 | 50 | 2 × B | B + 0.02 | |||
“excellent” quality * | B | B | B | B | B | B |
Age | N | Length, cm | Weight, g | Condition Factor | |
---|---|---|---|---|---|
Lichk Bay | |||||
May, 2022 | 1 + 2+ | 10 0 | 28.61 ± 0.346 a | 224.6 ± 7.45 a | 0.96 ± 0.01 a |
August, 2022 | 1 + 2+ | 4 6 | 31.52 ± 0.59 b | 318.3 ± 20.7 b | 1.01 ± 0.05 a,b |
October, 2022 | 1 + 2+ | 7 3 | 30.2 ± 0.65 b,c * | 291.7 ± 21.1 b * | 1.05 ± 0.02 a,b,c |
May, 2023 | 1 + 2+ | 9 1 | 29.05 ± 0.42 a | 255.3 ± 12.3 a * | 1.04 ± 0.03 a,b,c * |
August, 2023 | 1 + 2+ | 9 1 | 31.71 ± 0.43 b,c,d | 358.3 ± 14.3 a,b,c * | 1.12 ± 0.04 b,c * |
October, 2023 | 1 + 2+ | 0 10 | 33.18 ± 0.55 b,c,d * | 385.8 ± 11.1 b,c * | 1.06 ± 0.02 a,b,c |
Lchashen Bay | |||||
May, 2022 | 1 + 2+ | 10 0 | 28.4 ± 0.247 a | 224.9 ± 3.59 a | 0.98 ± 0.01 a |
August, 2022 | 1 + 2+ | 2 8 | 32.11 ± 0.367 b | 344.6 ± 11.7 b | 1.04 ± 0.03 a,b |
October, 2022 | 1 + 2+ | 10 0 | 28.4 ± 0.296 a * | 223.3 ± 5.37 a * | 0.98 ± 0.02 a,b |
May, 2023 | 1 + 2+ | 10 0 | 28.65 ± 0.224 a | 224.6 ± 6.32 a * | 0.95 ± 0.02 a,b,c * |
August, 2023 | 1 + 2+ | 9 1 | 30.88 ± 0.262 c | 290.5 ± 8.9 c * | 0.99 ± 0.02 a,b,c * |
October, 2023 | 1 + 2+ | 6 4 | 31.99 ± 0.38 b,c * | 329.4 ± 20.2 b,c * | 1.00 ± 0.04 a,b,c |
Month, Year | Mean Values of Parameters ± S.E. | |
---|---|---|
AChE | ||
nmol per 1 μg Protein per 1 min | ||
Lichk Bay | Lchashen Bay | |
May, 2022 | 0.2546 ± 0.010 a | 0.5117 ± 0.004 a * |
August, 2022 | 0.1692 ± 0.008 b | 0.3623 ± 0.012 b,d * |
October, 2022 | 0.1934 ± 0.009 b,c | 0.3973 ± 0.007 c * |
May, 2023 | 0.2389 ± 0.010 a,d | 0.5215 ± 0.004 a * |
August, 2023 | 0.1807 ± 0.004 b,c | 0.3543 ± 0.009 b * |
October, 2023 | 0.2081 ± 0.005 c,d | 0.3903 ± 0.0025 c,d * |
Month, Year | Mean Values of Parameters ±S.E. | ||||
---|---|---|---|---|---|
MDA | GSH | GST | Catalase | SOD | |
pmol per 1 μg Protein | nmol per 1 μg Protein per 1 min | ΔE × 10–6 per 1 μg Protein per 1 min | |||
Lichk Bay | |||||
May, 2022 | 0.5213 ± 0.026 a,c | 8.21 ± 0.27 a | 2.27 ± 0.18 a | 24.1± 0.35 a | 7.6 ± 0.18 a |
August, 2022 | 0.6140 ± 0.016 b | 12.9 ± 0.15 b | 1.15 ± 0.03 b,c | 29.7 ± 0.17 b | 16.2 ± 0.13 b |
October, 2022 | 0.5835 ± 0.017 a,b | 11.1 ± 0.16 c | 1.54 ± 0.03 c | 27.4 ± 0.13 c | 13.8 ± 0.08 c |
May, 2023 | 0.5102 ± 0.013 c | 8.27 ± 0.16 a | 2.21 ± 0.15 a | 23.7 ± 0.17 a | 8.2 ± 0.13 d |
August, 2023 | 0.6320 ± 0.009 b | 13.3 ± 0.13 b | 1.11 ± 0.02 b | 29.3 ± 0.127 b | 15.7 ± 0.13 b |
October, 2023 | 0.5792 ± 0.003 a,b | 12.8 ± 0.095 b | 1.27 ± 0.05 b,c | 28.4 ± 0.14 d | 14.9 ± 0.02 e |
Lchashen Bay | |||||
May, 2022 | 0.6147 ± 0.020 a * | 9.72 ± 0.21 a * | 3.67 ± 0.26a * | 36.3 ± 0.27 a | 14.9 ± 0.24 a |
August, 2022 | 0.7420 ± 0.012 b * | 14.8 ± 0.1 b * | 2.73 ± 0.12 b * | 41.3 ± 0.14 b | 28.3 ± 0.12 b |
October, 2022 | 0.6912 ± 0.007 c * | 13.3 ± 0.18 c * | 2.97 ± 0.103 b * | 39.7 ± 0.053 c | 26.9 ± 0.12 c,e |
May, 2023 | 0.6412 ± 0.005 a,d * | 9.77 ± 0.045 a * | 3.73 ± 0.05 a * | 34.9 ± 0.02 d | 14.2 ± 0.046 d |
August, 2023 | 0.7390 ± 0.008 b * | 14.1 ± 0.04 d * | 2.67 ± 0.096 b * | 40.7 ± 0.072 e | 27.1 ± 0.11 e |
October, 2023 | 0.6827 ± 0.007 c,d * | 13.5 ± 0.09 c * | 2.91 ± 0.13 b * | 39.1 ± 0.02 f | 26.3 ± 0.2 c |
Month, Year | Mean Values of Parameters ±S.E. | ||||
---|---|---|---|---|---|
MDA | GSH | GST | Catalase | SOD | |
pmol per 1 μg Protein | nmol per 1 μg Protein per 1 min | ΔE × 10–6 per 1 μg Protein per 1 min | |||
Lichk Bay | |||||
May, 2022 | 0.3217 ± 0.026 a | 5.26 ± 0.24 a | 1.97± 0.13 a | 17.3 ± 0.35 a | 6.9 ± 0.16 a |
August, 2022 | 0.3671 ± 0.014 a | 8.90 ± 0.15 b | 1.09± 0.04 b | 21.8 ± 0.19 b | 14.8 ± 0.11 b |
October, 2022 | 0.3583 ± 0.008 a | 7.40 ± 0.16 c | 1.37 ± 0.07 b | 19.5 ± 0.08 c | 12.9 ± 0.11 c |
May, 2023 | 0.3172 ± 0.016 a | 5.71 ± 0.10 a | 1.81 ± 0.14 a | 16.7 ± 0.13 a | 7.6 ± 0.12 d |
August, 2023 | 0.3431 ± 0.010 a | 8.31 ± 0.13 b,d | 1.16 ± 0.014 b | 23.1 ± 0.18 d | 13.9 ± 0.13 e |
October, 2023 | 0.3479 ± 0.011 a | 7.80 ± 0.095 c,d | 1.31 ± 0.04 b | 21.2 ± 0.14 b | 12.3 ± 0.12 f |
Lchashen Bay | |||||
May, 2022 | 0.5134 ± 0.017 a | 7.12 ± 0.12 a | 2.73 ± 0.08 a | 24.8 ± 0.16 a | 11.9 ± 0.24 a |
August, 2022 | 0.6052 ± 0.006 b | 13.1 ± 0.11 b | 1.89 ± 0.10 b,c | 32.3 ± 0.15 b | 26.1 ± 0.11 b |
October, 2022 | 0.5943 ± 0.006 b | 11.9 ± 0.07 c | 2.18 ± 0.10 c | 29.4 ± 0.13 c | 23.2 ± 0.11 c |
May, 2023 | 0.5371 ± 0.004 a | 7.79 ± 0.04 d | 2.87 ± 0.07 a | 25.9 ± 0.02 d | 12.8 ± 0.13 d |
August, 2023 | 0.6149 ± 0.007 b | 12.67 ± 0.16 e | 1.71 ± 0.11 b | 34.2 ± 0.33 e | 27.4 ± 0.09 e |
October, 2023 | 0.5818 ± 0.007 b | 11.43 ± 0.08 f | 2.03 ± 0.10 b,c | 30.7 ± 0.16 f | 24.9 ± 0.12 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melkonyan, H.; Chuiko, G.; Barseghyan, N.; Vardanyan, T.; Ghukasyan, E.; Kobelyan, H.; Gabrielyan, B. Assessment of the Health Status of Whitefish (Coregonus lavaretus Linnaeus, 1758) and the Quality of Its Habitat in Lake Sevan (Armenia) Using a Multi-Biomarker Approach. Water 2024, 16, 2789. https://doi.org/10.3390/w16192789
Melkonyan H, Chuiko G, Barseghyan N, Vardanyan T, Ghukasyan E, Kobelyan H, Gabrielyan B. Assessment of the Health Status of Whitefish (Coregonus lavaretus Linnaeus, 1758) and the Quality of Its Habitat in Lake Sevan (Armenia) Using a Multi-Biomarker Approach. Water. 2024; 16(19):2789. https://doi.org/10.3390/w16192789
Chicago/Turabian StyleMelkonyan, Hranush, Grigorii Chuiko, Nelli Barseghyan, Tigran Vardanyan, Evelina Ghukasyan, Hripsime Kobelyan, and Bardukh Gabrielyan. 2024. "Assessment of the Health Status of Whitefish (Coregonus lavaretus Linnaeus, 1758) and the Quality of Its Habitat in Lake Sevan (Armenia) Using a Multi-Biomarker Approach" Water 16, no. 19: 2789. https://doi.org/10.3390/w16192789
APA StyleMelkonyan, H., Chuiko, G., Barseghyan, N., Vardanyan, T., Ghukasyan, E., Kobelyan, H., & Gabrielyan, B. (2024). Assessment of the Health Status of Whitefish (Coregonus lavaretus Linnaeus, 1758) and the Quality of Its Habitat in Lake Sevan (Armenia) Using a Multi-Biomarker Approach. Water, 16(19), 2789. https://doi.org/10.3390/w16192789