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Abstract: The stability of bridge foundations is affected by local scour, and the formation of ice
jams exacerbates local scour around bridge piers. These processes, particularly the evolution of ice
jams and local scour around piers, are more complex in curved sections than in straight sections.
This study, based on experiments in an S-shaped channel, investigates how various factors—the
flow Froude number, ice–water discharge rate, median particle diameter, pier spacing, and pier
diameter—affect the maximum local scour depth around double piers in tandem and the distribution
of ice jam thickness. The results indicate that under ice-jammed flow conditions, the maximum local
scour depth around double piers in tandem is positively correlated with the ice–water discharge
rate, pier spacing, and pier diameter and negatively correlated with median particle diameter. The
maximum local scour depth is positively correlated with the flow Froude number when it ranges from
0.1 to 0.114, peaking at 0.114. Above this value, the correlation becomes negative. In curved channels,
the arrangement of double piers in tandem substantially influences ice jam thickness distribution,
with increases in pier diameter and spacing directly correlating with greater ice jam thickness at each
cross-section. Furthermore, ice jam thickness is responsive to flow conditions, escalating with higher
ice–water discharge rates and decreasing flow Froude numbers.

Keywords: ice jam; S-shaped channel; tandem arrangement; double piers; local scour

1. Introduction

Piers in rivers alter flow conditions and boundary conditions, impacting ice jam
transport and increasing the likelihood of ice jam formation [1]. Furthermore, ice jam
formation exacerbates local scour around piers and can induce additional turbulence,
compromising pier stability. Thus, the interaction between ice jams and piers can potentially
damage or destroy piers [2]. Local scour around piers is a critical factor in pier safety [3].
Research on local scour around piers is categorized into four conditions: open flow, debris
jam flow, ice-covered flow, and ice-jammed flow.

Extensive studies have examined local scour around a single pier in straight channels
under open flow conditions [4–7]. Raudkivi and Ettema [8] concluded that the maximum
local scour depth around a pier correlates with the median particle diameter, pier diameter,
flow depth, and other factors, based on experimental studies. Melville and Chiew [9]
discovered that both the maximum local scour depth and the time to reach this depth
around a pier depend on flow conditions, pier diameter, and median particle diameter.
They also derived an equation for the time required to reach the maximum local scour depth
around a pier. Oliveto and Hager [10] identified pier diameter, density Froude number,
and scouring time as primary factors influencing the maximum local scour depth and
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derived the empirical equation of the maximum local scour depth around a pier changing
with time. The issue of local scour around multiple piers in straight channels has been
widely studied. Kim et al. [11] conducted numerical simulations of local scour around
double piers in tandem and side-by-side arrangements. They observed that for tandem
piers, increasing the pier spacing-to-diameter ratio initially elevates the maximum local
scour depth, which subsequently declines and stabilizes. In contrast, this depth decreases
monotonically for side-by-side piers as the ratio increases. Amini et al. [12] explored
local scour around pier groups experimentally, noting that the maximum depth correlates
with pier diameter, spacing, and submerged flow depth. They proposed an equation to
calculate the maximum depth under both submerged and non-submerged conditions.
Bozkus et al. [13] investigated how different inclination angles of piers affect local scour in
tandem arrangements. Their experiments demonstrated that inclining the most upstream
and downstream piers diminishes vortex intensity and scour depth. They also proposed an
empirical equation for the maximum scour depth at varying pier angles. Wang et al. [14]
investigated local scour around three piers configured in tandem under varying conditions
of pier spacing, flow velocity, and flow depth. The results indicated that the critical velocity
for piers in the middle and downstream—from the synchronous-scouring to the transition
region—remains consistent and is directly correlated with pier spacing. When the ratio
of pier spacing to pier diameter exceeds 11, the maximum local scour depth around three
tandem piers mirrors that of a single pier. Liu et al. [15] explored how variations in pier
spacing and flow velocity affect local scour around double piers in a tandem arrangement.
They derived the critical velocity equations for the flat-bedform, synchronous-scouring,
transition, and radial-deviation regions of a downstream pier, along with equations for
calculating local scour depth in the radial-deviation areas.

Many scholars have studied the local scour around piers under the condition of
debris jam flow [16–18]. By changing the size and shape of accumulated debris, Hamidifar
et al. [19] experimentally researched the impact of debris on local scour around a pier under
the condition of static debris jam. The results show that using a collar can reduce the scour
depth by up to 39% when compared to that without the collar in the absence of debris
accumulation under the same flow conditions. Under the condition of debris jam, the
efficiency of the collar to reduce the local scour around the pier is reduced. The parameter
debris protrusion ratio (DPR) is proposed to quantify the effect of debris size on the local
scour depth around the pier. Zhang et al. [20] researched the local scour around a pier
under dynamic debris jam by releasing tree seedlings from upstream. They observed that
the maximum local scour depth around the pier under dynamic debris jam can be twice as
much as that under no debris jam. The scour hole can be up to eight times the volume of
the no debris jam condition.

The local scour process at piers under ice-covered flow conditions differs from that
under open flow conditions. Ice cover increases the flow’s wetted perimeter and shifts the
maximum flow velocity point downward. Ackermann et al. [21] explored local scour at a
cylindrical pier under both open and ice-covered flow conditions, finding that the maximum
local scour depth was 25% to 35% greater under ice-covered conditions. Wu et al. [22]
examined local scour at a cylindrical pier by altering flow depths. They observed that at
low flow depths, ice cover significantly affects the maximum local scour depth. Meanwhile,
as bed coarseness increases, the dimensionless scour depth decreases. Empirical equations
for dimensionless scour depth and radius under both open and ice-covered conditions
were also derived. Namaee and Sui [23] researched local scour at a side-by-side double pier
under both open and ice-covered flow conditions. Their results indicated that the maximum
local scour depth at the upstream pier exceeded that at the downstream pier. Increasing
the pier spacing-to-diameter ratio reduced both the horseshoe vortex intensity and the
maximum local scour depth. They proposed an equation to calculate the maximum local
scour depth under these conditions. Wang et al. [24] conducted experiments on local scour
at a single pier, comparing scour under ice-covered and open flow conditions by varying
flow parameters, median particle size, and pier diameter. The results indicated that the
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maximum local scour depth is 12% greater under ice-covered conditions compared to open
flow. The equilibrium scour time is 10% longer under ice-covered conditions. Equations to
calculate the maximum local scour depth were also derived. Dario et al. [25] researched
the influence of different upstream ice cover lengths on the maximum local scour depth
around the pier. The results showed that the maximum local scour depth around the pier
did not increase with the increase in the upstream ice cover length when the upstream
ice cover length was 2.66 m (half of the maximum ice cover length within the experiment
range). The maximum local scour depth and scour hole volume reached the maximum.
Sang et al. [26] investigated local scour around double piers in a tandem arrangement. By
altering hydraulic conditions, the relative pier spacing (L/D), and median particle size,
they discovered that at L/D = 9, the rear pier experiences the least maximum local scour
depth. As L/D increases, the influence of the front pier on the rear pier diminishes. When
L/D exceeds 17, the deposition influence around the front pier on the rear pier’s maximum
local scour depth becomes negligible. Local scour around piers in curved channels has
also been explored. Li et al. [27] analyzed local scour around double piers in tandem in an
S-shaped channel. Under consistent hydraulic conditions, the pattern of scour depth near
tandem piers in curved channels mirrors that in straight channels: the deepest scour holes
occur at the upstream curve apex, with diminishing inter-pier interaction as pier spacing
increases. When L/D exceeds 15, the rear pier’s maximum scour depth approximates 90%
of the front pier’s, with minimal rear-to-front pier influence.

Compared with ice-covered flow conditions, the local scour around piers and the thick-
ness distribution under ice-jammed conditions are significantly more complex. Hu et al. [28]
examined how variations in pier shape affected local scour in a straight channel as ice jams
evolved. Their findings indicated faster scour formation around the pier when initial ice
jams were primarily due to mechanical thickening. Conversely, when hydraulic thickening
dominated initial ice jam formation, the scouring process resembled that under ice-covered
conditions, with the maximum local scour depth increasing with the flow Froude num-
ber, ice discharge rate, and pier shape coefficient. Wang et al. [29] compared the critical
conditions for ice jam formation in S-shaped and straight channels. They determined
that the critical flow Froude number for ice jam formation in curved channels exceeds
that in straight channels, with a thicker ice jam on the convex bank and thinner ice jam
on the concave bank. The equilibrium ice jam thickness decreases with increasing initial
flow velocity and increases with a greater initial flow depth and ice discharge rate. Wang
et al. [30] investigated how the presence and positioning of a pier in an S-shaped channel
affect ice jam thickness. Their results showed that positioning the pier at the curve’s apex
enhanced the ice transport capacity around the pier and reduced ice jam thickness.

This study advances the understanding of local scour by focusing on double piers
in tandem within S-shaped channels under ice-jammed conditions—a less explored area
compared to the well-documented single pier scour under open and ice-covered flows.
Considering that rivers often meander and feature complex ice jam distributions, the
thickness distribution of an ice jam on the left and right banks of a river is different. But it
has been found that the thickness of an ice jam on the left and right banks is symmetrically
distributed in straight-channel experiments. Experiments in an S-shaped curved channel
can better simulate the pier scour and ice jam thickness in a natural river, which fills in
the blank of the research on the local scour and ice-jam thickness distribution of tandem
double piers in an S-shaped curved channel under the condition of an ice jam. The results
are analyzed in contrast to ice-covered conditions, providing critical insights for bridge
construction in cold climates.

2. Materials and Methods
2.1. Dimensional Analysis

Time (Ti) does not affect the maximum local scour depth around a pier and is therefore
ignored. Ice particle length (Lx), the ice particle shape factor (S), and channel sinousity
(R/B) were not taken into account since they had little effect on the experiment. R and B
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are the radius of curvature and width of a bend. The relationship between the maximum
local scour depth at front and rear tandem piers and the key influencing variables under
ice-jammed conditions was analyzed, considering all relevant experimental variables:

F(ds, D, L, d50, V0, H0, g, t, Qi, Qw) = 0 (1)

where dS is the maximum local scour depth around piers, D is the diameter of the pier, L is
the distance between piers, d50 is the median particle diameter, V0 is the initial velocity, H0
is the initial flow depth, G is the acceleration of gravity, t is the thickness of the ice jam at
the section where the piers are located, Qi is the ice discharge rate, and Qw is the flow rate.

A dimensional analysis, using D, V0, G, and H0 as the fundamental quantities, yields
the following equations:

f
(

ds

H0
, Fr,

L
D

,
t

H0
,

d50

D
,

Qi
Qw

)
= 0 (2)

where dS/H0 is the relative equilibrium scour depth, Fr is the flow Froude number, L/D is
the relative pier spacing, t/H0 is the ratio of ice jam thickness to initial flow depth, d50/D
is the ratio of sediment median diameter to pier diameter, and Qi/Qw is the ice–water
discharge ratio. Equation (2) can be expressed as Equation (3):
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where k1, a1, b1, c1, e1, and j1 are coefficients.

2.2. Experimental Setup

The laboratory experiments were conducted in an S-shaped channel measuring
25.17 m in length and 0.60 m in width. The channel is divided into 27 cross-sections
(CS) from upstream to downstream. From CS-2 to CS-27, the bed is paved with natural
sand, and the thickness of bed is 15 cm. The sandy sediments had a median particle
diameter of d50 = 0.714 mm, a mass density of ρs = 1.432 g/cm3, and a non-uniformity
coefficient of η = 1.61. The distribution curve of the sediment particles is shown in Figure 1.
A 1.8 cm thick Styrofoam panel (manufactured by Jiujiang Boling Trading Co. Ltd., Jiangxi,
China) simulated the ice cover between CS-25 and CS-26, where ice particles accumulated
to form an ice jam, depicted in Figure 2a. The mass density of the Styrofoam panel ρ was
0.012 g/cm3. Oblate ellipsoid particles made from polyethylene plastic (manufactured by
PetroChina, Fushun, China), measuring 3.5 mm in length and with a mass density ρi of
0.918 g/cm3, identical to river ice’s density of 0.92 g/cm3 [31], were used to simulate ice
particles (see Figure 2b). Qi is the volume of ice added per second (unit: m3/s). To maintain
a stable ice discharge rate (Qi), adjustments were made using an ice hopper located between
CS-2 and CS-3 (if Qi = 2.9 × 10−5 m3/s, then m = 15.97 kg of simulated ice particles is
added to the ice hopper every ten minutes to achieve the Qi required for the experiment).
Qi under realistic conditions can be measured by the method in [32]. Cylindrical acrylic
tubes of 2 cm, 3 cm, and 4 cm diameters were used to simulate piers. (Manufactured by
Shushan Ruifuxiang building materials business department, Hefei, China).

According to Chiew [33], sidewall effects are negligible when the ratio of flume width
to pier diameter (B/D) is over 10. In this experiment, the minimum B/D was 15 (60/4),
thus confirming the minimal influence of sidewall effects on the results. The experiments
focused on the third curved top section (CS-18). The front pier was positioned at the center
of this section, while the rear pier’s placement varied along the centerline according to
different pier spacings L. The layout of the S-shaped channel and model piers is illustrated
in Figure 3.
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The simulated ice cover and ice jam materials used in this experiment are standard in
current ice hydraulics research [34–38]. Tatinclaux et al. [39] and Wang et al. [40] observed
that differences between real and model ice mainly lie in friction coefficients, which impact
mechanical behavior but have minimal effects on qualitative hydraulic studies. Typically,
experimental river ice hydraulics involve pumping water from an underground reservoir
to a flume, with water recycled back into the reservoir. Although this process increases
water temperature compared to natural river conditions, non-frozen water flow has little
effect on qualitative hydraulic studies. For example, Mohammad and Sui [41] conducted
their experiments under non-freezing water flow conditions.

2.3. Experiment Procedure

The experiments were conducted in a stepwise manner:

(1) At the beginning of each experiment, the sand bed in the flume was leveled using a
sand scraper to maintain an even surface. Flow stability was achieved by controlling
the weir head at the upstream rectangular weir through precise adjustments to the
pipe valve.

(2) The flow depth in the flume was gradually increased by slow rotation of the pipe valve
to avoid rapid rises that could result in riverbed scour. Once the flow depth stabilized,
the valve was adjusted to reach desired experimental conditions, as monitored in the
upstream CS-3 piezometer tube. The experiment proceeded only when the flow depth
remained constant for 10 min.

(3) A simulated ice cover was installed between CS-25 and CS-26, and the piers were
placed in designated positions in the flume. The ice hopper was simultaneously
opened to initiate ice flow around the pier. The mass of model ice corresponding to
the experiment condition Qi was added to the ice hopper every 10 min.

(4) Upon commencement of the experiment, the local scour depths around the tandem
double piers were recorded by a point gauge accurate to 0.1 mm initially every 5 min
for 30 min, then every 10 min for the next 30 min, and subsequently every 30 min.
Similar time intervals were used for recording the leading-edge development of the
initial ice jams and their thickness at each cross-section.

(5) An Acoustic Doppler Velocimeter (ADV) was positioned 2 cm in front of the tandem
piers to measure velocity fields. The vertical distribution of flow velocity in front of
the piers was measured by moving the probe up and down, with flow velocity data
recorded at each location. Chiew [33] showed that the maximum local scour depth
around a pier is related to the flow intensity. Under the ice-jammed flow condition,
the flow intensity is enhanced because the ice jam of the cross-section where the pier
is located narrows the flow section area, so the upstream flow velocity of the pier is
measured. It is observed that the effect of the probe at this location on the scour hole
is negligible. Subsequently, the point gauge was utilized to measure scour hole data
near the pier, which included information on the local scour depth and range as well
as the height and range of accumulation.

When the ice jam attains dynamic equilibrium, its thickness across each cross-section
in the curved channel stabilizes. As the ice wave crest progresses downstream past the pier,
the sand particles within the scour hole oscillate with the flow but do not exit the scour
hole. Consequently, the scour hole’s depth, dimensions, and morphology, along with the
deposition characteristics around the double piers, remain constant. These observations
indicate that the experiment has reached its equilibrium state. A total of 33 experiments
were conducted in the S-shaped channel under various conditions, detailed in Table 1. The
section where the ice wave crest and trough pass through the pier is shown in Figure 4.
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Table 1. Experiment settings under open flow, ice-covered flow, and ice-jammed flow conditions.

Serial
Number

Ice Discharge
Rate Qi (L/s)

Approach
Flow Depth

H0 (m)

Approach
Flow Velocity

V0 (m/s)

Pier
Spacing

L (m)

Pier
Diameter

D (m)

Median Particle
Diameter
d50 (mm)

Flow
Condition

1 2.9 × 10−5 0.20 0.15 0.30 0.02 0.609 Ice-jammed
2 2.9 × 10−5 0.20 0.15 0.30 0.02 0.438 Ice-jammed
3 2.9 × 10−5 0.20 0.15 0.30 0.03 0.714 Ice-jammed
4 2.9 × 10−5 0.20 0.15 0.30 0.04 0.714 Ice-jammed
5 2.9 × 10−5 0.20 0.15 0.30 0.02 0.714 Ice-jammed
6 4.1 × 10−5 0.20 0.15 0.30 0.02 0.714 Ice-jammed
7 3.6 × 10−5 0.20 0.15 0.30 0.02 0.714 Ice-jammed
8 2.6 × 10−5 0.20 0.15 0.30 0.02 0.714 Ice-jammed
9 2.9 × 10−5 0.20 0.15 0.10 0.02 0.714 Ice-jammed
10 2.9 × 10−5 0.20 0.15 0.20 0.02 0.714 Ice-jammed
11 2.9 × 10−5 0.20 0.15 0.25 0.02 0.714 Ice-jammed
12 2.7 × 10−5 0.20 0.14 0.30 0.02 0.714 Ice-jammed
13 2.9 × 10−5 0.20 0.15 0.30 0.02 0.714 Ice-jammed
14 3.0 ×10−5 0.20 0.16 0.30 0.02 0.714 Ice-jammed
15 3.2 × 10−5 0.20 0.167 0.30 0.02 0.714 Ice-jammed
16 3.3 × 10−5 0.20 0.17 0.30 0.02 0.714 Ice-jammed
17 2.9 × 10−5 0.20 0.20 - 0.02 0.714 Ice-jammed
18 - 0.20 0.15 0.30 0.02 0.438 Ice-covered
19 - 0.20 0.15 0.30 0.02 0.609 Ice-covered
20 - 0.20 0.15 0.30 0.02 0.714 Ice-covered
21 - 0.20 0.17 0.30 0.02 0.714 Ice-covered
22 - 0.25 0.20 0.30 0.02 0.714 Ice-covered
23 - 0.20 0.15 0.30 0.02 0.438 Open
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3. Results
3.1. Variation in Scour Depth and Average Ice Jam Thickness with Time

Under the open, ice-covered, and ice-jammed flow conditions, Figure 5 illustrates
the scour depth around the tandem double piers and the average ice jam thickness at
sections near these piers. The vertical velocity in front of the pier under the conditions of
open flow, ice-covered flow, and ice-jammed flow is shown in Figure 6. The distance from
the sand surface takes the initial height of the bed as the elevation. Figure 6 shows that
compared to open flow conditions, the maximum flow velocity position under ice-covered
conditions shifts downward, and the near-bottom flow velocity at the pier increases. This
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finding aligns with Hains et al. [42]. As can be seen from Figure 4, for ice-covered flows,
the scouring depth initially decreases quickly and then stabilizes over time, akin to open
flow conditions. Under ice-jammed flow conditions, the variation in the local scour depth
around the pier with time is complex. The local scour rate around the pier is not only
related to the flow conditions but is also affected by the thickness of the ice jam. The scour
hole develops slowly until the leading edge of the initial ice jam reaches the pier. As the ice
jam thickens, its constrictive effect on the flume’s cross-section intensifies scouring. Scour
depth rapidly increases as the crest of the ice wave passes the pier due to the thickening of
the ice jam. Conversely, when the ice wave’s trough passes, the scour depth increases more
slowly as the ice jam thins. The experiment reaches a critical point when the ice jam is in
dynamic equilibrium and the ice wave crest passes the pier when the sand particles in the
scour hole oscillate with the flow without exiting, marking the maximum scour depth.
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Figure 5. Variation in scour depth and average ice jam thickness with time (Serial Numbers: 2, 18,
and 23): (a) open flow condition; (b) ice-covered flow condition; (c) ice-jammed flow condition. (Qi

is the ice-water discharge rate, H0 is the approach flow depth, L is the pier spacing, D is the pier
diameter, d50 is the median particle diameter).
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Figure 6. Vertical velocity distribution in the upstream side of the double piers in tandem arrangement:
(a) front pier; (b) rear pier. (V0 is the approach flow velocity).

3.2. Influence of Flow Froude Number on Maximum Local Scour Depth and Ice Jam
Thickness Distribution

The flow Froude number of natural rivers varies greatly. The differences in flow
Froude numbers will affect the local scour depth around piers, and the local scour around
piers under the condition of ice-jammed flow becomes more complex due to the influence
of ice jam thickness. Figure 7 illustrates how various flow Froude numbers affect the maxi-
mum local scour depth around piers and the equilibrium ice jam thickness distribution.
The flow Froude number ranges from 0.107 to 0.127 corresponding to an approach flow
velocity of 0.15–0.2 m/s under ice-covered flow conditions and from 0.1 to 0.121 corre-
sponding to approach flow velocity of 0.14–0.17 m/s under ice-jammed flow conditions.
Wang et al. [43] researched the local scour around double piers in a tandem arrangement
under the condition of open flow in a straight channel, and the data are shown in Figure 7a.
It can be seen from the figure that the flow Froude number is positively correlated with the
maximum local scour depth. Within the experimental range, under the same Froude num-
ber, the maximum local scour depth under ice-jammed flow conditions is greater than that
under ice-covered flow conditions. There is a positive correlation between the flow Froude
number and the maximum local scour depth under ice-covered conditions, as depicted in
Figure 7. This is because with the increase in the flow Froude number, the flow intensity
increases, and the scouring intensifies. Under ice-jammed flow conditions, the relationship
between the flow Froude number and maximum local scour depth is more complex. With
a constant ice–water discharge rate, the maximum local scour depth is positively correlated
with a flow Froude number between 0.1 and 0.114. At a flow Froude number of 0.114, the
maximum local scour depth reaches its peak. When the flow Froude number exceeds 0.114,
the maximum local scour depth inversely correlates with the flow Froude number. This
trend occurs because higher flow Froude numbers enhance ice transport capacity, reduce
ice jam thickness at each section, and diminish the constriction effect of ice jams at the pier
cross-sections, thus reducing local scour intensity. Consequently, within the experimental
scope, the relationship between the maximum local scour depth and flow Froude number
varies between the ice-covered and ice-jammed flow conditions. A critical value exists in
the relationship between the flow Froude number and maximum local scour depth under
ice-jammed conditions. When the flow Froude number exceeds this critical value, the
relationship with the maximum local scour depth around piers shifts. It is observed in
the experiment that when the flow Froude number exceeds 0.125, the leading edge of the
initial ice jam cannot reach the front pier. The front pier experiences scouring similar to
that under open flow conditions.
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12–16 and 20–22): (a) open flow condition [43]; (b) ice-covered flow condition; (c) ice-jammed flow
condition; (d) ice jam thickness distribution.

3.3. Influence of Ice–Water Discharge Rate on Maximum Local Scour Depth and Ice Jam
Thickness Distribution

Under natural river conditions, the upstream ice–water discharge rates may vary with
the temperature and flow conditions, which may affect the maximum local scour depth
and ice jam thickness distribution. The effects of varying ice–water discharge rates on
the maximum local scour depth around the piers and ice jam thickness are depicted in
Figure 8. The ice–water discharge rate is between 0.00147 and 0.00231. As demonstrated in
Figure 8, within the experimental parameters, the maximum local scour depth around the
piers escalates with higher ice–water discharge rates. This increase is attributed to a higher
ice–water discharge ratio, which augments the ice jam thickness at the pier’s location and
constricts the cross-section, consequently elevating the maximum local scour depth around
the piers.
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Figure 8. The maximum local scour depth and ice jam thickness under different ice–water discharge
rates (Serial Numbers: 5–8): (a) local scour depth; (b) ice jam thickness distribution.

3.4. Influence of Pier Spacing and Pier Diameter on Maximum Local Scour Depth and Ice Jam
Thickness Distribution

The different pier spacings will affect the local scour depth around the piers, and
the local scour around the piers may be aggravated by the influence of ice jam in cold
areas. The impacts of varying pier spacings on the maximum local scour depth and ice
jam thickness distribution are illustrated in Figure 9, while Figure 10 displays the vertical
velocity distribution in front of single and tandem double piers. Figure 3b shows details
of the pier layout corresponding to different pier spacings. Figure 9 indicates that within
the experimental parameters, the maximum local scour depth around the piers increases
as the pier spacing increases. Increased pier spacing enlarges the narrow water volume
between the tandem piers, reducing the ice transport capacity and enhancing the ice jam
thickness at each cross-section. This alteration elevates near-bottom velocities and shifts
the maximum velocity point downward, thereby intensifying the local scour depth around
piers. The sheltering effect of the front pier on the rear pier results in a greater maximum
local scour depth at the front pier compared to the rear pier. The maximum local scour
depth at a single pier exceeds that at the tandem double piers because the ice jam thickness
and near-bottom velocity are higher at a single pier, thus increasing local scour depth.
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Figure 9. The maximum local scour depth and ice jam thickness under different pier spacings (Serial
Numbers: 9–11): (a) local scour depth; (b) ice jam thickness distribution.
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Figure 10. Vertical velocity distribution in front of double piers in tandem arrangement (Serial
Numbers: 9–11 and 17): (a) front pier; (b) rear pier.

The effect of different pier diameters on the maximum local scour depth and ice jam
thickness distribution is shown in Figure 11. Chiew et al. [33] demonstrated that when
the flume width to pier diameter ratio (B/D) is below 10, the sidewall effect causes sand
particles to move laterally into the scour hole, reducing the local scour depth at a pier.
However, when the B/D ratio exceeds 10, the sidewall effect on local scour can be ignored.
In this experiment, the minimum B/D ratio was 15 (60/4), and thus the sidewall effect
on the results can be disregarded. It is evident from Figure 8 that increasing the pier
diameter leads to greater maximum local scour depths around the piers and increased ice
jam thickness at each section. This increase in scour depth and ice jam thickness results
from the enhanced narrowing effect of larger pier diameters on the cross-section, which
increases the near-bottom velocities at the pier base. Consequently, as the maximum local
scour depth increases, the cross-sectional area at the piers expands, reducing the average
flow velocity and thereby increasing the ice jam thickness at these sections.
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3.5. Influence of Median Particle Diameter on Maximum Local Scour Depth

As depicted in Figure 12, the effect of median particle diameter on the maximum local
scour depth is demonstrated. The median particle diameters d50 are 0.714 mm, 0.609 mm,
and 0.438 mm. Figure 12 illustrates that within the experimental scope, similar to the open
flow condition, the median particle diameter under both ice-covered and ice-jammed flow
conditions is negatively correlated with the maximum local scour depth around the piers.
This inverse relationship is due to the fact that under identical flow conditions, a larger
median particle diameter necessitates a higher flow velocity to initiate sediment transport,
resulting in a reduced maximum local scour depth around the pier.
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3.6. Regression Analysis of Maximum Local Scour Depth under Ice-Jammed Flow Condition

Based on the experimental data of Serial Numbers 1–14 in Table 1, the following
dimensionless regression equation for the maximum local scour depth at the tandem front
pier under ice-jammed flow conditions was derived:

ds

H0
= 6.208Fr1.920

(
L
D

)0.206( t
H0

)0.579(d50

D

)−0.578( Qi
Qw

)0.926
(4)

The dimensionless regression equation below represents the maximum local scour
depth at the tandem rear piers under ice-jammed flow conditions:

ds

H0
= 3.293Fr0.204

(
L
D

)0.336( t
H0

)0.139(d50

D

)−0.684( Qi
Qw

)1.309
(5)

Equations (4) and (5) demonstrate that within the experimental range, the equilibrium
scouring depth ratio (dS/H0) for the tandem front and rear piers under ice-jammed condi-
tions positively correlates with the flow Froude number (Fr), relative pier spacing (L/D), ice
jam thickness to initial flow depth ratio (t/H0), and ice–water discharge rate (Qi/Qw), while
it negatively correlates with the median particle diameter to pier diameter ratio. Using
Equations (4) and (5), the calculated maximum local scour depths for the tandem front and
rear piers under ice-jammed conditions were compared with empirical measurements, as
depicted in Figure 13. Figure 13 illustrates that the calculated maximum local scour depths
for the tandem front and rear piers align closely with the experimental findings.
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Figure 13. Relationship between regression-predicted and measured scour depth of tandem double
piers: (a) front pier; (b) rear pier.

4. Discussions

Local scour around bridge piers is influenced by various factors, including flow depth,
velocity, and a river’s bending coefficient. The presence of ice cover and ice jams in natural
rivers further complicates the problem:

(1) Natural rivers vary significantly, each with its unique flow depth and velocity. Changes
in these factors impact the local scour depth around piers and the distribution of ice
jam thickness. This paper aims to study these mechanisms and explore their patterns.
Therefore, it does not determine the flow depth and velocity for any specific river.

(2) The bending coefficients of natural rivers vary greatly. The S-shaped bend used in this
experiment has a relatively small bending coefficient, which is common in natural
rivers [44]. Keshavarzi et al. [45] researched the effect of vegetation on bed topography.
They also used the flume with a mildly curved meander bend. Different bending
coefficients impact the local scour around piers and ice jam thickness distribution.
Additionally, the shape and size of ice particles affect the local scour and ice jam
thickness distribution, warranting further study.

(3) A 1.8 cm thick Styrofoam panel simulated the ice cover between CS-25 and CS-26,
where ice particles accumulated to form an ice jam. Under natural conditions, the
thickness of the ice cover is not fixed. Different thicknesses of the ice cover will have a
certain impact on the formation and accumulation of the upstream ice jam. When the
thickness of the ice cover is relatively small, it may be difficult for the upstream ice
jam to accumulate and thicken, leading to a relatively low-thickness ice jam. But the
difference in the thickness of the ice cover is not within the scope of this study, and
further research is needed.

(4) Experimental measurements inherently contain errors. When using a piezometer to
measure flow depth, water levels fluctuate slightly (about 0–1 mm), and the average
flow depth is recorded. An ADV measures flow velocity, and water level fluctuations
affect these readings, so the average value is used. Data collected from the ADV
were filtered, analyzed, and processed using WinADV software (2.0.0024) [46]. The
local scour depth around piers was measured with a point gauge accurate to 0.1 mm,
while the ice jam thickness was measured with a ruler accurate to 0.1 cm. During
the experiment, each measuring point was measured three times, and the value with
the largest difference was removed. Finally, the average value was taken to reduce
error. Measurement errors may arise from manual readings. In the experiment, the
change range of the local scour depth and ice jam thickness under different conditions
was much greater than the instrument accuracy, so these did not impact the study of
general patterns of local scour around piers and ice jam thickness distribution under
ice-covered and ice-jammed conditions at the mechanistic level.
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(5) It was observed that the maximum local scour depth and the distribution of ice jam
thickness are affected by different pier spacings and arrangements. In the future, the
influence of more pier arrangement forms (parallel arrangement), pier shapes, and
different pier inclination angles on the maximum local scour depth around piers and
ice jam thickness can be studied. It was observed in the experiment that the increase in
the local scour depth around the pier will increase the thickness of the ice jam, which
will further aggravate the local scour depth around the pier. Adding collar plates at
the bottom of the pier can reduce the local scour depth around the pier [47,48]. This
will reduce the flow section area, which may facilitate the ice transport of the river
and reduce the thickness of the ice jam. Under the ice-jammed flow condition, the
influence of the increase in the collar plates on the scour around the pier and the ice
jam needs further study.

(6) It was observed in the experiment that the local scour depth under the ice-jammed
flow condition is greater than that under the open flow condition and ice-covered
flow condition under the same approach flow depth and approach flow velocity. This
needs to be properly considered in the planning and design of bridges affected by
river ice in cold regions. It is necessary to consider not only the ice-induced abutment
and pier local scour, but also the ice forces on piers and the ice passage [49]. However,
the experiment only considered the impact of ice on pier local scour, and further
experimental studies are needed for other factors.

5. Conclusions

Experiments were conducted in an S-shaped channel to study the local scour around
double piers in tandem and the distribution of ice jam thickness under ice-jammed condi-
tions, comparing these to ice-covered conditions. The key findings include the following:

(1) Under ice-jammed conditions, temporal changes in scour depth around piers are more
complex than under ice-covered conditions. The local scour rate increases as the ice
wave crest passes a pier and decreases as the trough passes.

(2) Under the condition of open flow and ice-covered flow, the flow Froude number is
positively correlated with the maximum local scour depth around the piers. Under
the condition of ice-jammed flow, if the ice–water discharge ratio is kept constant, the
relationship between the flow Froude number and the maximum local scour depth
around the pier is no longer single. A critical Froude number exists where the rela-
tionship changes: below this value, the correlation is positive; above it, the correlation
turns negative, affecting ice jam thickness. At the critical value, the maximum local
scour depth peaks. Increased ice–water discharge rates under ice-jammed conditions
result in thicker ice jams and greater maximum local scour depths.

(3) With constant flow conditions and ice–water discharge rates, wider pier spacing and
larger pier diameters lead to thicker ice accumulation and increased ice jam thickness
and local scour depths. For single piers, ice jam thickness and near-bottom velocity are
greater than for tandem piers, resulting in deeper local scour depths for single piers.
When designing bridge piers in cold regions, reducing pier spacing may be beneficial
to the stability of bridge piers and ice transport in rivers. However, the experiment only
considered the relationship between the pier spacing and the maximum local scour
depth around piers under a specific flow condition. Due to the complex and various
flow conditions in a natural river, the experimental results have some limitations in
practical applications.

(4) The multiple regression analysis produced Equations (4) and (5) for the relative equi-
librium scouring depth (dS/H0), aligning closely with empirical data.

This study on local scour around tandem piers in S-shaped channels under various
flow conditions informs bridge construction in cold regions and aids in predicting water
levels during ice-covered periods. Further research is needed to explore the effects of
various pier arrangements on local scour and ice jam distribution, particularly the critical
flow Froude number’s role under different configurations.
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