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Abstract: Predicting the key plume evolution features of groundwater contamination are crucial for
assessing uncertainty in contamination control and remediation, while implementing detailed com-
plex numerical models for a large number of scenario simulations is time-consuming and sometimes
even impossible. This work develops surrogate models with an effective and practicable pathway for
predicting the key plume evolution features, such as the distance of maximum plume spreading, of
groundwater contamination with natural attenuation. The representative various scenarios of the
input parameter combinations were effectively generated by the orthogonal experiment method and
the corresponding numerical simulations were performed by the reliable Groundwater Modeling Sys-
tem. The PSO-SVM surrogate models were first developed, and the accuracy was gradually enhanced
from 0.5 to 0.9 under a multi-objective condition by effectively increasing the sample data size from 54
sets to 78 sets and decreasing the input variables from 25 of all the considered parameters to a smaller
number of the key controlling factors. The statistical surrogate models were also constructed with the
fitting degree all above 0.85. The achieved findings provide effective generic surrogate models along
with a scientific basis and investigation approach reference for the environmental risk management
and remediation of groundwater contamination, particularly with limited data.

Keywords: groundwater contamination plume; natural attenuation; key plume features; surrogate
models; GMS numerical simulations; prediction uncertainty; support vector machine; multiple
regression

1. Introduction

In recent years, the intensification of national industrial evolution and urban expan-
sion has markedly exacerbated groundwater contamination, which may include various
anthropogenic sources such as mining, smelting, and industrial activities [1,2]. Organic
contaminants seep through various channels [3–5]. Particularly, some Southeast Asian
countries are affected by the deterioration of their water environment [6,7]. Risk assessment
studies has been widely applied to water environments [8]. However, the assessment
of groundwater contamination risk necessitates a thorough evaluation of contributing
factors to control the risk within tolerable limits, thereby facilitating the achievement of
site decontamination objectives [9,10]. Natural attenuation plays a vital role in environ-
mental restoration by leveraging processes like the convective dispersion of contaminants
in groundwater and the adsorptive and degradative capacities of chemical and biological
agents, thus diminishing contaminant levels [11]. Distinguished by its cost-effectiveness
and minimal environmental impact, monitored natural attenuation (MNA) emerges as the
foremost strategy in contemporary groundwater contamination risk management [12,13].
Accordingly, the research into predicting the plume evolution features of organic con-
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taminants in groundwater is crucial for assessing contamination levels, refining control
measures, and fostering the sustainable use of groundwater resources.

Early investigations into the natural attenuation of groundwater at contaminated
sites concentrated on understanding the processes and mechanisms affecting individual
contaminants. Recent studies, however, have shifted towards a quantitative analysis and
predictive modeling of natural attenuation processes. Groundwater Modeling System
(GMS), an advanced three-dimensional numerical modeling tool for groundwater analysis,
has gained widespread and long-period adoption for assessments and predictive studies
in groundwater research, providing correct simulation results with reasonable parameter
settings [14,15]. Valivand and Katibrh employed GMS to develop a 3D predictive model for
nitrate contamination in the groundwater of the Uruguay Plain, enhancing the precision
of numerical groundwater simulations and offering a reference for further research on
inorganic salt solutes in aquatic environments [16]. Similarly, Tong Xiaoxia et al. utilized
GMS to identify key contaminants from a landfill site to evaluate their impact on the
surrounding soil and groundwater. Their findings, derived from numerical simulations,
offered crucial data and a scientific framework for mitigating water and soil pollution
in landfill settings [17]. Gao Qifeng et al. applied GMS to create a model for water flow
and solute transport within an industrial park, assessing the potential effects of contami-
nants from sewage treatment facilities on the groundwater under abnormal conditions [18].
Notably, current research often focuses on simulating the transport and fate of specific
contaminants without assessing the comprehensive contamination scenarios and their
future tendency. This study leverages GMS 10.4 version software simulations to statistically
analyze the evolution of contamination plumes under natural attenuation conditions, and
three types of data can be obtained from every simulation experiment, the distance of
maximum plume spreading (DMPS), time to reach the DMPS (T-DMPS), and the mean
concentration within the DMPS (MC-DMPS), which are selected to be the key features to
represent every simulation scenario. These critical features are pivotal for understanding
the natural attenuation process, offering vital theoretical insights and scientific contribu-
tions to the decision-making process in managing groundwater contamination risks at
contaminated sites.

Surrogate models summarize uncertain or complex input–output relations through
reasonable and accurate simple functions, which make an effort to reduce computational
load for various large-scale complicated system research studies [19,20]. In the last few
years, the continuous progression in computer technology and statistical methodologies
has led to the widespread application of various statistical methods and intelligent al-
gorithms, including multiple regression, support vector machines (SVMs), and particle
swarm optimization (PSO), in environmental modeling [21–24]. For instance, Aradhi
et al. incorporated a range of influential factors such as industrial activities, land use,
and meteorological conditions, employing a multiple linear regression model to forecast
pollution levels in the groundwater of an industrial area [25]. Muhammad et al. utilized
several SVM methods for the classification and recycling application in automatic systems,
elucidating the types of dry waste on solid waste and showcasing the proficiency of SVMs
in complex classification challenges [26], while the optimization of kernel functions and
their accompanying parameters for the SVM algorithm were not given in detail. Gai Rongli,
Pang Xi, and Xu Genqi et al., by analyzing the characteristics of environmental sample data
and the shortcomings of existing optimization methods, proposed the PSO-SVM algorithm
to conduct research on water quality assessments by calculating the weight coefficient to
determine the four main parameters with 100 sets of training data and 20 sets of testing
data, air quality classification with 150 sets of training data and 215 sets of testing data after
normalization processes under only one dimension, and debris flow disaster prediction
with six primary inputs and 1000 sets of monitoring data. The reliability and effectiveness
of the PSO-SVM model in environmental research studies with a certain number of sample
data with multi-dimensional features were investigated [27–29]. However, there is still a
lack of relevant further research on PSO-SVM modelling in groundwater environments.
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Wang Bilian et al. applied GMS for simulating the transport and fate from a constant
pollution source within an aquifer, subsequently establishing a quantitative relationship
between the characteristic variables and the related controlling factors through multiple
regression analysis [30]. Nevertheless, their research did not sufficiently account for the
potential influence of contamination source degradability and the characteristics of the
aquitard and the confined aquifers on the plume evolution of the contaminated aquifer.
Consequently, this study therefore adopts the PSO-SVM approach, takes organic contami-
nants as its pollution sources, and selects a more comprehensive set of factors potentially
influencing the natural attenuation of groundwater contamination as input variables to
conduct a further investigation. The DMPS, T-DMPS, and MC-DMPS at this juncture
are employed as output variables. This methodology endeavors to develop a surrogate
model for predicting the key features of the organic contamination plume evolution in
groundwater environments with natural attenuation, incorporating a wider array of factors
to enhance the understanding of the contaminant transport and fate dynamics.

Since the surrogate models to be developed are aimed to apply to typical ground-
water systems, this paper comprehensively considers a wide range of hydrogeological
and geochemical parameters that may affect the natural attenuation of the contaminant
plumes. In addition, the representative various scenarios of groundwater contamination
plume evolution are effectively generated by the orthogonal experiment method, and the
corresponding numerical simulations are performed by the reliable Groundwater Mod-
eling System in order to achieve the reliable basic datasets for the establishment of the
surrogate models. The PSO-SVM surrogate models are first developed, and the statistical
surrogate models are also constructed by multiple regression based on the same dataset
used for the PSO-SVM model. Furthermore, this research endeavors to investigate model
precision by enlarging the sample size and changing the input factors. A comparative
evaluation between PSO-SVM models and statistical regression models is performed to
offer an observation on the difference between the two types of surrogate models as to
prediction accuracy performance.

2. Materials and Methods
2.1. Conceptual and Baseline Models for Constructing Different Representative
Simulation Scenarios

The conceptual model for constructing different simulation scenarios was established
based on a typical contaminated area which is a chemical industrial cluster in the Shandong
Yellow River alluvial plain. The average annual rainfall is approximately 700 mm, and
the average annual evaporation is around 1650 mm. The groundwater flows from west
to east, the overall topography is flat, and the annual groundwater level change does not
exceed 2 m. The region has a wide distribution and diverse types of contaminants, the
concentration of part of which exceeds the corresponding water quality standards, mainly
dominated by organic contaminants such as benzene and toluene.

By taking the site conditions as references, the conceptual model for this investigation
was established as showed in Figure 1. The groundwater system basically consisted of,
from top to bottom, the phreatic aquifer, aquitard, confined aquifer, and impermeable
bottom layer. The modeling area was 7000 m × 8000 m and had a thickness of 50 m, and
the corresponding grading was taken with meeting sufficient numerical computation accu-
racy. The hydraulic property of the groundwater system was assumed to be homogeneous
and isotropous for each layer, with the fixed head boundaries on east and west sides and
the specific head differences between the boundaries. In addition, groundwater contam-
ination plume developed with a degraded contamination source in the phreatic aquifer.
Furthermore, the contaminant was an easily degraded and dissolved organic compound
represented by the benzene series. The contaminant transport and fate processes included
advection, hydrodynamic dispersion, adsorption, and degradation. The permeability coeffi-
cient and other parameters in the baseline model were set based on the actual groundwater
system, parameters, and empirical values in the investigated area, as shown in Table 1.
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to be 40 years with a set of outputs every 180 days. In Figure 2, taking benzene as the 

Figure 1. Conceptual model diagram.

A baseline model was first established based on the investigated area for constructing
the different representative simulation scenarios used for the development of the surrogate
models. For the preliminary examination, typical numerical simulation results were obtained
from the baseline model, shown in Figure 2. The total simulation period was set to be 40 years
with a set of outputs every 180 days. In Figure 2, taking benzene as the contaminant of interest,
the concentration cut-off value was set for the plume frontier as 0.01 mg/L [31].
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Figure 2. Natural attenuation of contamination plumes at 360 d, 3600 d, 7380 d, and 14,600 d of the
investigated site.

Table 1. Baseline model parameters of GMS numerical simulations from the investigated site.

Parameters Values Parameters Values

Heads between Upstream and Downstream
Boundaries ∆Hh (m) 8

Phreatic
Aquifer

Effective Porosity P1 0.25

Heads between Phreatic Aquifer and Confined
Aquifer ∆Hv (m) 1 Average Thickness M1 (m) 20

Recharge Rate R (m/d) 0.0002 Permeability Coefficient Kw1 (m/d) 50
Concentration of Source Contamination C0 (mg/L) 500 Adsorption Coefficient Ka1 (m3/kg) 0.0005

Area of Source Contamination A (m2) 900 Degradation Coefficient Kd1 (1/d) 0.003
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Table 1. Cont.

Parameters Values Parameters Values

Ratio of Source Contamination Thickness to
Phreatic Aquifer 0.25 Dispersion D1 (m) 60

Aquitard

Effective Porosity P2 0.15

Confined
Aquifer

Effective Porosity P3 0.25
Average Thickness M2 (m) 5 Average Thickness M3 (m) 25

Permeability Coefficient Kw2 (m/d) 0.008 Permeability Coefficient Kw3 (m/d) 50
Adsorption Coefficient Ka2 (m3/kg) 0.0005 Adsorption Coefficient Ka3 (m3/kg) 0.0005
Degradation Coefficient Kd2 (1/d) 0.003 Degradation Coefficient Kd3 (1/d) 0.003

Dispersion D2 (m) 0.4 Dispersion D3 (m) 60

2.2. Orthogonal Experiment

The orthogonal experiment, as a statistical method, is frequently used to address
experimental design issues with multiple factors and levels. Its main idea is to analyze a
portion of representative experimental results in order to understand the overall experi-
mental situations [32]. By utilizing a regular orthogonal array design, representative level
combinations are selected for all factors and level combinations to feature high efficiency,
high speed, and economy [33].

A total of 25 parameters that impact the natural attenuation of groundwater con-
tamination plume were selected, including the potential degradation coefficient of the
contaminant source itself. Due to a multitude of parameters, an L54 (21, 324) orthogonal
array was adopted to design the experimental plans according to the design rules for
orthogonal experiments, with each parameter set to three levels beside the porosity of
aquitard with two levels. Values for each parameter were assigned sequentially from
low to high based on their possible ranges. The range of the degradation and adsorption
coefficients referred to the BIOSCREEN user manual for contamination plume simulation
software [34], with the maximum source concentration set above the maximum solubility of
benzene contaminants (Toluene 25 ◦C–542 mg/L). The DMPS was calculated by counting
the number of grid points with concentrations more than 0.01 mg/L in the phreatic aquifer
when the contamination plume reached the farthest distance. The T-DMPS was based on
the time required for the DMPS. The MC-DMPS represented the contaminant quantity per
unit volume of water within the contaminated range in the phreatic aquifer. The different
value levels of the 25 parameters are presented in Table 2.

Table 2. Different value levels of each parameter set.

Level ∆Hh
(m)

∆Hv
(m)

R
(m/d) Cs (1/Y) C0 (mg/L) A

(900 m2) r

1 4 1 0.0001 0.1 100 1 0.1
2 8 3 0.0002 1 300 25 0.5
3 12 5 0.0004 10 800 100 1

Phreatic Aquifer

Level P1
M1
(m)

Kw1
(m/d)

Ka1
(m3/kg)

Kd1
(1/Y) D1

1 0.15 20 10 0.0001 0.1 10
2 0.25 30 50 0.0005 1 30
3 0.35 40 100 0.001 10 60

Aquitard

Level P2
M2
(m)

Kw2
(m/d)

Ka2
(m3/kg)

Kd2
(1/Y) D2

1 0.1 2 0.005 0.0001 0.1 0.2
2 0.15 5 0.01 0.0005 1 0.4
3 0.25 8 0.03 0.001 10 0.6
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Table 2. Cont.

Confined Aquifer

Level P3
M3
(m)

Kw3
(m/d)

Ka3
(m3/kg)

Kd3
(1/Y) D3

1 0.15 10 10 0.0001 0.1 10
2 0.25 50 60 0.0005 1 30
3 0.35 120 120 0.001 10 60

Notes: A total of 25 parameters that may influence the numerical simulation experiment of groundwater contami-
nation were selected, which include hydrogeological, hydrochemical and several specific parameters associated
with the contamination source, where ∆Hh(m) is the heads between upstream and downstream boundaries; ∆Hv
(m) is the heads between phreatic aquifer and confined aquifer; R (m/d) is the recharge rate; Cs (1/Y) is the
degradation coefficient of source contamination; C0 (mg/L) is the concentration of source contamination; A (m2)
is the area of source contamination; r is the ratio of source contamination thickness to phreatic aquifer; P is the
effective porosity; M (m) is the average thickness; Kw (m/d) is the permeability coefficient; Ka (m3/kg) is the
adsorption coefficient; Kd (1/Y) is the degradation coefficient; and D (m) is the dispersion.

2.3. Support Vector Machine (SVM)

The SVM approach was established based on the VC (Vapnil Chervonenkis) dimension
theory of statistical learning and the principle of minimizing structural risk. It seeks optimal
results between the complexity of the model and its learning ability using limited sample
information [35]. Initially introduced with the goal of finding the optimal hyperplane in the
sample space, maximizing the distance between samples and the hyperplane to enhance
model generalization, SVM has evolved into a prediction method employed in various
classification models [36].

The SVM algorithm determines the hyperplane for classifying data points from differ-
ent categories, and this hyperplane serves as a decision boundary. According to the binary
classification mechanism of SVM, data points are divided into two classes defined as 0 and
1 [37]. Thus, when classifying new data points, their category can be determined based on
their position relative to the hyperplane, achieving effective predictive outcomes.

For a training set, T = {(x1, y1), (x2, y2), . . . , (xi, yi)} ∈ (X × Y)I , where the sample
size is l, and xi ∈ X ∈ Rn, yi ∈ Y ∈ R, i = 1, 2, . . . , l. Assuming f (x) = ω·x + b, there will
be errors in the prediction results inevitably represented by ξ, and taking ε as the error
insensitive function, then the SVM can be represented as follows:

min
ω,b,ξ∗

τ(ω, b, ξ∗) =
1
2
∥ω∥2 +

C
l

l

∑
i=1

(ξ i + ξ∗i )

s.t.


yi − (ω·xi + b) ≤ ε + ξi
(ω·xi + b)− yi ≤ ε + ξ∗i

ξ∗ ≥ 0
(1)

where C and ε are both positive real numbers, representing the penalty factors and fitting
accuracy of the control parameters respectively.

When dealing with linearly inseparable data, it is common to use kernel functions
to map the features of data samples into high-dimensional space. Choosing the correct
and appropriate kernel function can avoid directly computing complex calculations in
high-dimensional space, thereby reflecting the results of the classification computed in low-
dimensional space onto high-dimensional space. The selection of kernel functions in SVM
significantly affects the predictive outcomes. Currently, commonly used kernel functions
include the Sigmoid kernel function, the radial basis function (RBF), the polynomial kernel
function, and the linear kernel function. Research has shown that the RBF kernel function
possesses strong learning capabilities and is widely applied. Therefore, this paper selects
the following RBF kernel function:

k(x1, x2) = exp
(
−g

∥∥xi − xj
∥∥2

)
(2)
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where g is the kernel parameter.
By employing the Lagrangian method, the optimization problem is transformed into

its dual form:

min
[

1
2

αTQα − eTα

]
s.t.

{
yTα = 0

0 ≤ αi ≤ C, i = 1, · · · , n
(3)

where α is the lagrange multiplier, representing the importance of each support vector.
Finally, the decision function is obtained [19].

sgn

[
l

∑
i=1

yiαik(xi, x) + b∗
]

(4)

And, the optimal solution is transformed by the following:

∑
α

1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjexp
(
−g

∣∣xi − xj
∣∣2) (5)

2.4. Optimization of SVM Parameters

SVM needs to set two parameters manually before running, penalty factor C and the
kernel parameter gamma [28]. C represents the tolerance for errors, and a higher C indicates
a smaller tolerance for errors, easily overfit, while a smaller C may lead to underfitting. On
the other hand, the kernel parameter gamma determines the distribution of data mapped to
a new feature space. The larger the gamma result, the fewer the support vectors. Therefore,
the value of gamma influences the performance of training and prediction by affecting the
number of support vectors.

Under the conditions of large-scale and multi-dimensional spatial data, to mitigate the
impact of the penalty factor C and kernel parameter gamma on SVM, particle swarm opti-
mization (PSO) is employed. Compared to other commonly used optimization algorithm,
PSO has strong parallel processing capabilities in parameter optimization, a fast conver-
gence speed, and global convergence advantages, and the best parameter combination of C
and gamma can be searched globally [28].

The basic concept of PSO is to search for the optimal solution through cooperation and
information sharing among individuals in a swarm. Each particle has only two properties,
velocity and position, and each particle searches for the optimal solution in the search space
individually, recording it as its personal best. By sharing individual extrema with other
particles in the entire particle swarm, the optimal individual extremum is found as the
current global optimal solution of the total particle swarm. All particles will change their
motion speed and current position continuously based on their position relationship with
the optimal particle [23]. The velocity update formula for each particle in the swarm is
given by the following:

vi(t + 1) = ωvi(t) + c1rand1(pbesti(t)− xi(t)) + c2rand2(g(t)− xi(t)) (6)

where c1 and c2 are learning factors, ω is the inertia factor, vi(t) represents the velocity of
the i-th particle, rand1 and rand2 are random numbers uniformly distributed in the interval
[0,1], xi(t) denotes the position of the i-th particle, and t indicates the iteration number.

The update position formula for each particle in the swarm is as follows:

xi(t + 1) = vi(t + 1) + xi(t) (7)

The main algorithmic flow of PSO-SVM is illustrated in Figure 3.
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3. Results and Discussion
3.1. GMS Numerical Simulation Results of Orthogonal Experiment Scenarios

The natural attenuation process of organic contaminants in groundwater was stim-
ulated with the investigation site, and numerous parameters were involved. Therefore,
this paper employed a scenario analysis approach to explore these parameters, altering
their assigned values with each set of values consistent with a specific scenario in order to
generalize the prediction model of groundwater contamination plume evolution features.
According to the orthogonal experiment, 54 scenarios with natural attenuation were simu-
lated, with the simulation results represented by the key features of contaminant plume,
which included the DMPS, T-DMPS, and MC-DMPS of each scenario. The experiment
results of 54 sets of scenario simulation are shown in Figure 4.

Water 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

0 5 10 15 20 25 30 35 40 45 50 55
10

100

1000

10000

D
M

PS
 (m

)

Scenario No.  
(a) 

0 5 10 15 20 25 30 35 40 45 50 55
0.1

1

10

100

1000

T-
D

M
PS

 (Y
)

Scenario No.  
(b) 

0 5 10 15 20 25 30 35 40 45 50 55
0.01

0.1

1

10

100

M
C

-D
M

PS
 (m

g/
L)

Scenario No.  
(c) 

Figure 4. The numerical simulation results from 54 representative scenarios based on the orthogonal 
experiment design. (a) Simulated DMPS values for 54 representative scenarios; (b) simulated T-
DMPS values for 54 representative scenarios; (c) simulated MC-DMPS values for 54 representative 
scenarios. 

  

Figure 4. Cont.



Water 2024, 16, 2861 9 of 18

Water 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

0 5 10 15 20 25 30 35 40 45 50 55
10

100

1000

10000

D
M

PS
 (m

)

Scenario No.  
(a) 

0 5 10 15 20 25 30 35 40 45 50 55
0.1

1

10

100

1000

T-
D

M
PS

 (Y
)

Scenario No.  
(b) 

0 5 10 15 20 25 30 35 40 45 50 55
0.01

0.1

1

10

100

M
C

-D
M

PS
 (m

g/
L)

Scenario No.  
(c) 

Figure 4. The numerical simulation results from 54 representative scenarios based on the orthogonal 
experiment design. (a) Simulated DMPS values for 54 representative scenarios; (b) simulated T-
DMPS values for 54 representative scenarios; (c) simulated MC-DMPS values for 54 representative 
scenarios. 

  

Figure 4. The numerical simulation results from 54 representative scenarios based on the orthogonal
experiment design. (a) Simulated DMPS values for 54 representative scenarios; (b) simulated T-DMPS
values for 54 representative scenarios; (c) simulated MC-DMPS values for 54 representative scenarios.

3.2. Identification of Key Controlling Factors

Analysis of variance (ANOVA), a widely utilized statistical technique, is often applied
to assess the differences in mean values across two or more groups, assuming the homo-
geneity of variance. This method divides the total variance observed within an experiment
into contributions from factor effects and experimental errors, thereby offering a quantita-
tive evaluation of the relative significance of each factor variability on the overall variation.
Through F-tests conducted within the SPSS, it is possible to examine the aggregate variance
attributable to the factors versus random errors, determining the factor significance on the
outcomes via p-values [38]. The results show that the data meet the Bonferroni standard
deviation confidence interval of 0.95 and the homogeneity of variance test, proving that
all data were normally independent and with the same variance. The ANOVA findings
related to the factors affecting the DMPS, T-DMPS, and MC-DMPS are presented in Table 3.
Additionally, the data were performed by logarithmic transformation.

The ANOVA results revealed that, under the criterion of p < 0.01, there are six fac-
tors significantly associated with the T-DMPS according to the simulation outcomes: the
phreatic aquifer’s effective porosity, its permeability coefficient, its adsorption coefficient,
and its degradation coefficient, and the effective porosity and the adsorption coefficient
of the aquitard. Regarding the DMPS, eight factors exhibit significant correlations: the
head difference between the upstream and downstream boundaries, the phreatic aquifer’s
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permeability coefficient, its degradation coefficient, the adsorption coefficient and degrada-
tion coefficient of the aquitard, the thickness and permeability coefficient of the confined
aquifer, and the concentration of the contamination source. Moreover, nine factors signifi-
cantly influence the MC-DMPS: the head difference between the upstream and downstream
boundaries, the phreatic aquifer’s effective porosity, its degradation coefficient, the aquitard
thickness, the confined aquifer’s effective porosity, its dispersivity, the contamination source
concentration, its area, and the proportion of the contamination source thickness relative to
the phreatic aquifer’s thickness. With a p-value threshold set below 0.05, the count of factors
significantly associated with the DMPS, T-DMPS, and MC-DMPS of the contamination
plume increases to ten, nine, and fifteen, respectively.

The analysis of variance of all factors indicates that in the dynamics of groundwater
contaminant natural attenuation, which encompasses the transportation, dispersion, and
natural degradation of contaminants within the phreatic aquifer, there is a significant
interrelation with the hydrogeological attributes of both the aquitard and the confined
aquifer. This approach addresses and ameliorates the limitations observed in both domestic
and international groundwater contamination studies, which often focus solely on the
hydrogeological or hydrochemical parameters of phreatic aquifers.

Table 3. The total parameter analysis of variance for three different plume key features based on their
individual numerical simulation results.

ln(T-DMPS) ln(DMPS) ln(MC-DMPS)

Parameters
Mean

Square
Error

F Value p Value
Mean

Square
Error

F Value p Value
Mean

Square
Error

F Value p Value

ln∆Hh 0.199 1.02 0.316 4.589 29.69 0.000 ** 3.474 53.35 0.000 **
ln∆Hv 0.087 0.45 0.507 4.750 2.84 0.099 0.388 5.96 0.018 *
lnP1 1.483 7.63 0.008 ** 0.189 1.19 0.282 2.638 40.50 0.000 **
lnM1 0.484 2.49 0.120 0.110 0.68 0.412 0.341 5.24 0.026 *
lnKw1 1.507 7.75 0.007 ** 27.717 173.24 0.000 ** 1.621 24.89 0.000 **
lnKa1 2.963 15.25 0.000 ** 0.024 0.15 0.699 0.404 6.20 0.016 *
lnKd1 73.055 376.04 0.000 ** 41.968 262.31 0.000 ** 7.856 120.62 0.000 **
lnD1 0.002 0.01 0.917 0.007 0.05 0.833 0.014 0.21 0.648
lnP2 1.431 7.37 0.009 ** 0.858 5.36 0.025 * 0.396 6.08 0.017 *
lnM2 0.000 0.00 0.982 0.012 0.07 0.790 0.690 10.60 0.002 **
lnKw2 0.482 2.48 0.121 0.001 0.00 0.945 0.013 0.20 0.658
lnKa2 2.437 12.55 0.001 ** 1.770 11.07 0.002 ** 0.026 0.40 0.530
lnKd2 0.511 2.63 0.111 1.408 8.80 0.005 ** 0.013 0.20 0.659
lnD2 0.324 1.67 0.202 0.122 0.76 0.388 0.021 0.33 0.569
lnP3 0.003 0.02 0.897 0.037 0.23 0.634 0.493 7.57 0.008 **
lnM3 0.143 0.74 0.394 2.072 12.95 0.001 ** 0.245 3.77 0.058
lnKw3 0.437 2.25 0.140 1.772 11.07 0.002 ** 0.051 0.79 0.378
lnKa3 0.007 0.03 0.854 0.130 0.81 0.372 0.002 0.02 0.878
lnKd3 0.085 0.44 0.512 0.360 2.25 0.140 0.435 6.68 0.013 *
lnD3 0.691 3.56 0.065 0.737 4.61 0.509 0.758 11.64 0.001 **
lnR 0.521 2.68 0.108 0.597 3.73 0.044 * 0.001 0.01 0.922
lnC0 0.225 1.16 0.287 0.011 0.07 0.000 ** 61.765 948.33 0.000 **
lnA 0.842 4.33 0.042 * 3.429 21.43 0.329 13.293 204.10 0.000 **
lnCs 0.973 5.01 0.030 * 0.156 0.97 0.792 0.121 1.86 0.178
lnr 1.213 6.24 0.016 * 0.195 1.22 0.276 16.048 264.40 0.000 **

Note: ** indicates that the p-value is less than 0.01, indicating that parameter is a very significant parameter in this
model. * indicates that the p-value is less than 0.05 but greater than 0.01, indicating that parameter is a significant
parameter in this model.

3.3. PSO-SVM Surrogate Model
3.3.1. Model Development Based on the Dataset from Orthogonal Experiment Scenarios

In the study on groundwater contamination plume evolution, with the natural attenu-
ation capabilities of organic contaminants, the surrogate prediction models were developed
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by employing the PSO-SVM approach. Those models incorporated twenty-five variables in-
fluencing natural attenuation as input parameters, with the DMPS, T-DMPS, and MC-DMPS
as their output metrics. By utilizing the classification potential of SVM, the model facilitates
both single- and multi-objective predicting processes. For scenarios with a single output
metric, the classification of the output data was conducted, with values above a predefined
threshold marked as 0 and those below as 1, creating three distinct classification models.
In addressing challenges with two output metrics, the data were paired and classified,
generating three predictive models for the feature variables including the following: the
DMPS, T-DMPS, and MC-DMPS. For dual-output scenarios, a two-dimensional coordinate
system was employed, exemplified by the DMPS and MC-DMPS model, where the X-axis
represented the MC-DMPS data and the Y-axis represented the DMPS data. This approach
generated a two-dimensional dataset, marking a point as 1 when both concentration and
area criteria are met and 0 otherwise, effectively converting two disparate output metrics
into a binary classification challenge suitable for SVM. In cases involving three outputs for
multi-objective decision making, a trio of dependent variables from simulated scenarios
was plotted in a three-dimensional space, creating a dataset where the points meeting all
three criteria are labeled as 1 and all others as 0. The mapping of the GMS simulation
outcomes is depicted in Figure 5.
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In terms of machine learning, subsequent to the data processing steps described, along
with utilizing the classification mechanism inherent in support vector machines, it becomes
feasible to segregate data points within two-dimensional or three-dimensional spaces by
distinctly defining classification thresholds for each output parameter. For example, by
establishing criteria such that the time must be less than 20 years, the distance less than
20,000 m, and the concentration less than 5 mg/L for a data point to be concurrently
satisfied, such points were categorized as ‘1’, which meant class ‘1’, indicating that the
plume feature performance met the specific criteria. The other plume feature performances
not meeting these criteria were assigned as class ‘0’. The classification could have been
changed by actual remediation targets. However, at that stage, the accuracy of the surrogate
model hovered around 0.5. Consequently, efforts to improve the accuracy of the PSO-SVM
model were directed towards augmenting the volume of sample data and minimizing the
count of input variables.
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3.3.2. Model Enhancement Based on the Additional Sample Data

The further investigation incorporated more sample data, emphasizing the scenarios
primarily accounting for key controlling factors with more importance. As a result, several
specific parameters associated with the source of contamination, the degradation rate Cs,
initial concentration C0, and source area A were assigned two levels each. By employing
a complete permutation and combination approach, eight distinct combinations were
derived. These combinations, when integrated with the other parameters set at three levels
within the simulation framework for the natural attenuation of groundwater contamination,
culminated in a total of 24 unique scenarios. The training results are shown in Figure 6.
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3.3.3. Model Reliability Increasing by Dimension Deduction

By leveraging the ANOVA results to streamline the input factors of the PSO-SVM
models, the accuracy of various models was enhanced from approximately 0.5 to over 0.7.
Utilizing the ANOVA results, concurrently increasing the sample size and decreasing the
number of input factors, the prediction outcomes of each PSO-SVM model are detailed in
the subsequent Table 4.

Table 4. The comparison of training results from each PSO-SVM model with different outputs.

p < 0.01

Outputs C
(mg/L)

T
(Year)

D
(m)

T-C
(Year-mg/L)

T-D
(Year-m)

D-C
(m-mg/L)

T-D-C
(Year-m-mg/L)

Classification C < 5 T < 20 D < 2000 C < 5, T < 20 T < 20,
D < 2000

D < 2000,
C < 5

T < 20, D < 2000,
C < 5

Accuracy 0.833 0.833 0.875 0.917 0.833 0.875 0.965

p < 0.05

Outputs C
(mg/L)

T
(Year)

D
(m2)

T-C
(Year-mg/L)

T-D
(Year-m)

D-C
(m-mg/L)

T-D-C
(Year-m-mg/L)

Classification C < 5 T < 20 S < 2000 C < 5,
T < 20

T < 20,
S < 2000

S < 2000,
C < 5

T < 20, S < 2000,
C < 5

Accuracy 0.833 0.833 0.875 0.917 0.875 0.833 0.965
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From the standpoint of model training outcomes, the implementation of critical factor
selection through the application of significance values derived from the variance analysis
markedly improves model accuracy. Furthermore, in the prediction model of contamination
plume evolution features with multiple target outputs—namely, the DMPS, T-DMPS, and
MC-DMPS—the model accuracy surpasses 0.9. Comparing with other SVM prediction or
classification models, the accuracy of this surrogate model can be improved to 0.9 only
with 54 sets of training data, while similar levels of accuracy were achieved by generally
applying more than 100 training datasets in other reported SVM models [27–29].

Taking the T-D-C multi-objective PSO-SVM model as an example, when analyzing
the 24 test scenarios from 78 simulation scenarios, the maximum iteration step was 100.
The input parameters of the three-objective model were combined with the key factors
of each signal feature, so there were 20 input parameters totally. After a number of
iteration steps, the particle swarm found the global optimal fitness value, indicating that
the particle swarms were moving towards the optimal position after every iteration step.
The importance of the input factors are presented in Figure 7. The result showed that
class ‘1’ scenarios appeared 6 times, and class ‘0’ scenarios appeared 18 times. There were
22 samples of correct decisions and 2 samples of incorrect decisions, and the model accuracy
was 0.917. This demonstrates the high feasibility of employing the PSO-SVM model in the
research of groundwater contamination plume evolution feature prediction.
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3.4. Multiple Regression Statistical Surrogate Model

Multivariate statistical regression models are pivotal in statistical analysis, facilitating
not just the exploration of the effects of several independent variables on dependent
variables but also the discernment of data patterns through the examination of positive
and negative correlations and the relative importance of regression coefficients among
variables [39]. Additionally, these models enable the estimation and prediction of future
values for dependent variables using data from existing independent variables. In this
research, employing 78 simulated experimental datasets, three evolution features were
considered as dependent variables (Y). A multivariate regression analysis was executed
using SPSS to develop predictive statistical surrogate models for the DMPS, T-DMPS, and
MC-DMPS. These models were utilized to forecast the natural attenuation of groundwater
organic contamination, with the importance and significance of parameters confirmed
through standard regression coefficients. The developed multivariate regression predictive
model for the natural attenuation of the contaminant plume demonstrates significant
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predictive capability [25]. The general form of the multiple regression prediction models
for the natural attenuation of contamination plumes presents as follows:

lnY = lnρ + α1ln∆Hh + α2ln∆Hv + α3lnP1 + α4ln∆M1 + · · ·+ α25lnr (8)

Then, the multiple regression prediction models can be transformed as follow:

Y = ρ × ∆Hα1
h × ∆Hα2

v × Pα3
1 × Mα4

1 × · · · × rα25 (9)

where Y stands for the plume evolution features of groundwater contamination, including
the DMPS, T-DMPS, and MC-DMPS.

The regression formulas for the DMPS are transformed and obtained as follows:

DMPS = −2.39 × ∆H0.725
h × ∆H0.1568

v × P−0.183
1 × M−0.188

1 × Kw0.7961
1 × Ka0.0253

1
× kd−0.5124

1 × D0.0176
1 × P−0.628

2 × M0.0264
2 × Kw−0.006

2 × Ka0.204
2

× kd0.094
2 × D−0.112

2 × P0.078
3 × M0.206

3 × Kw0.202
3 × Ka0.055

3 × kd0.046
3

× D0.169
3 × R−0.221 × C0.203

0 × A0.030 × C0.001
S × r−0.066

(10)

R2 = 0.939

DMPS = 0.634 × ∆H0.741
h × Kw0.792

1 × kd−0.521
1 × P−0.403

2 ×Ka0.209
2 × kd0.079

2 × M0.182
3

× kw0.154
3 × R−0.168 × C0.251

0
R2 = 0.917

(11)

DMPS = 0.634 × ∆H0.741
h × Kw0.792

1 × kd−0.521
1 × Ka0.209

2 × kd0.079
2 × M0.182

3 × kw0.154
3

× C0.251
0

R2 = 0.909
(12)

The regression formulas for the T-DMPS are achieved as follows:

T − DMPS = 7.1 × ∆H−0.131
h × ∆H−0.059

v × P−0.466
1 × M−0.328

1 × Kw0.169
1 × Ka0.238

1
× kd−0.605

1 × D−0.008
1 × P0.705

2 × M0.002
2 × Kw−0.124

2 × Ka0.216
2

× kd−0.052
2 × D0.167

2 × P−0.022
3 × M−0.049

3 × Kw0.084
3 × Ka0.011

3
× kd0.021

3 × D−0.151
3 × R−0.17 × C−0.047

0 × A−0.062 × C−0.105
S × r0.152

(13)

R2 = 0.909

T − DMPS = 5.509 × P−0.570
1 × Kw0.127

1 × Ka0.192
1 × kd−0.626

1 × P0.442
2 × Ka0.170

2
× A−0.056 × C−0.015

S × r0.109 (14)

R2 = 0.864

T − DMPS = 5.569 × P−0.537
1 × Kw0.139

1 × Ka0.205
1 × kd−0.620

1 × P0.500
2 × Ka0.183

2
× C−0.014

S
(15)

R2 = 0.851

The regression formulas for the MC-DMPS are established as follows:

MC − DMPS = 8.043 × ∆H0.548
h × ∆H0.124

v × P−0.622
1 × M0.275

1 × Kw0.176
1 × Ka−0.088

1
× kd−0.198

1 × D−0.021
1 × P−0.371

2 × M−0.192
2 × Kw0.020

2 × Ka0.022
2

× kd0.008
2 × D0.043

2 × P−0.269
3 × M−0.064

3 × Kw0.029
3 × Ka0.006

3 × kd0.047
3

× D0.158
3 × R−0.006 × C0.782

0 × A0.247 × C−0.004
S × r0.553

(16)

R2 = 0.977

MC − DMPS = 0.123 × ∆H0.555
h × ∆H0.131

v × P−0.613
1 × M0.292

1 × Kw0.180
1 × Ka−0.083

1
× kd−0.197

1 × P−0.302
2 × M−0.184

2 × P−0.260
3 × M−0.061

3 × kd0.049
3

× D0.165
3 × C0.767

0 × A0.247 × r0.558
(17)

R2 = 0.975
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MC − DMPS = 0.164 × ∆H0.557
h × P−0.611

1 × Kw0.181
1 × kd−0.197

1 × M−0.183
2

× P−0.258
3 × D0.166

3 × C0.786
0 × A0.246 × r0.559 (18)

R2 = 0.962

Incorporating the outcomes from variance analysis, the comprehensive full-factor
regression model, and the multivariate regression models with p-values above 0.05 and
p-values above 0.01, the R2 values reach more than 0.85. This indicates a strong correlation
between the plume evolution feature variables under natural attenuation conditions and
various impact factors. The Durbin–Watson test values for the regression models are all
below 2, signifying the absence of significant autocorrelation within the data and affirming
the statistical significance of the models.

3.5. Discussion
3.5.1. Comparisons between the Two Types of the Developed Surrogate Models

By using an area–time–concentration multi-objective output model as an example case,
selecting the same test dataset, and taking the same classification criteria as the PSO-SVM
surrogate model, a comparison was performed for the model prediction accuracy between
the PSO-SVM and statistical regression models. The comparison results are shown in
Table 5.

Table 5. Comparison of prediction accuracy between two types of models.

Outputs C
(C < 5 mg/L)

T
(T < 20 Y)

D
(D < 2000 m)

C-T-D
(C < 5 mg/L

T < 20 Y
D < 2000 m)

Accuracy of total factors 0.625 0.333 0.917 0.75
Accuracy when p < 0.05 0.583 0.333 0.833 0.75
Accuracy when p < 0.01 0.417 0.333 0.734 0.672
Accuracy of PSO-SVM 0.833 0.833 0.875 0.965

Specifically, as to the plume evolution features, the DMPS, T-DMPS, and MC-DMPS,
a study case was established using the same test data and classification criteria as those
applied in both PSO-SVM and statistical regression models, followed by an accuracy com-
parison. The comparison findings indicated that with contamination plume thresholds
defined as a DMPS under 2000 m, T-DMPS below 20 years, and MC-DMPS less than
5 mg/L, the accuracy of the regression model for multiple outputs stood at 0.75. Nonethe-
less, the accuracy of the regression surrogate models experienced a notable decline with
the identified key controlling factors, rendering the performance generally inferior to or
at best comparable to that of the PSO-SVM surrogate model. This stressed the superior
performance of the PSO-SVM model when operating with a limited number of key control-
ling factors. By taking the data volume into consideration, the PSO-SVM surrogate model
also offered a good performance based on a limited dataset, which meant this surrogate
mode took a wider application in situations where the data were laborious to obtain. In
addition, it was indicated that the PSO-SVM model could achieve more accurate results
under conditions of limited parameter availability compared to the conventional statistical
approaches, while other published research studies were less focused on the comparison
between different types of prediction models based on the same test data [17–19]. Overall,
the PSO-SVM surrogate model demonstrated greater reliability of application for predicting
plume evolution features concerning groundwater contamination, particularly regarding
the natural attenuation of organic contaminants with a limited data size, than the traditional
regression models.



Water 2024, 16, 2861 16 of 18

3.5.2. Further Elucidation about the Validation on the Built Surrogate Models

The statistical surrogate models and PSO-SVM surrogate models were both built
up based on the datasets from the numerical simulation results, obtained through the
reliable Groundwater Modeling System, of many representative modeling scenarios. This
means that the numerical simulation data used in this investigation can be treated as
the “real accurate data” for establishing those surrogate models. As a result, we should
firstly validate our surrogate models using additional numerical simulation data from the
representative modeling scenarios which were not included and utilized for building the
surrogate models. In fact, in this investigation, we conducted validation tests, by using an
additional 24 datasets, on both the statistical surrogate models and PSO-SVM surrogate
models. In this sense, we would say that our surrogate models have been tested in respect
to the real prediction of experimental results. Certainly, it is reasonable and valuable to
perform further examinations and confirmations on those established surrogate models
using the specific site field data in future practical applications.

3.5.3. Practicability and Advantage of Prediction Uncertainty Assessment

Upon considering the uncertainty in obtaining the factor parameter values, there are
different degrees of uncertainty regarding the predicted results of plume evolution feature
variables. The uncertainty analyses by Monte Carlo simulations can evaluate the possible
range of variation for the prediction results obtained from the established surrogate models.
Therefore, giving the parameter error range of related impact factor variables and their
distribution types, a large number of possible different parameter combination scenarios
(such as 500 scenarios) can be generated. By using the surrogate models, the prediction
results of corresponding plume feature variables for all the scenarios can be efficiently
calculated, and the relative frequency distribution histogram of the predicted results can be
rapidly obtained. Based on the relative frequency distribution histogram, under a given
confidence probability, the possible variation range of the plume feature variables can be
offered quickly, providing a quantitative basis for the upper and lower boundaries of plume
feature variables in contamination control and risk management decision making. Com-
parably, it is time-consuming, even impossible, to implement detailed complex numerical
models since a large number of simulations of scenarios are required.

4. Conclusions

This work developed surrogate models with an effective and practicable pathway
for predicting the key plume features, including the DMPS, T-DMPS, and MC-DMPS,
of groundwater contamination with natural attenuation. The developed models were
aimed to apply to typical groundwater systems, and a wide range of the hydrogeological
and geochemical parameters were comprehensively considered that may affect the natural
attenuation of the contaminant plumes. The main conclusions drawn from this investigation
are given as follows:

(1) According to the numerical simulations and variance analysis, the key controlling
factors affecting the DMPS, T-DMPS and MC-DMPS of contaminant plumes are
different. It is indicated that the transport and fate of contaminants in the aquifer
are significantly correlated not only with hydrological parameters but also with
certain parameters of the aquitard and confined aquifer. The degradation coefficient
of the phreatic aquifer is a crucial factor determining the natural attenuation of
the contaminants.

(2) The PSO-SVM model prediction accuracy can be gradually enhanced by implementing
the measures of effectively increasing the sample data sizes and replacing all of
considered input variables with the identified key controlling factors. It is interesting
to note that the final developed PSO-SVM models still can present good reliability
with the utilization of the limited sample data.

(3) The statistical surrogate models are also constructed by multiple regression based on
the same dataset used for the PSO-SVM model. The statistical regression surrogate
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models also exhibit pretty good fitting accuracy, while in comparison, the PSO-SVM
models offer generally higher prediction accuracy than the statistical regression mod-
els, particularly by taking the key controlling factors as input variables.

(4) The findings of this study offer effective generic surrogate models along with a scien-
tific basis and investigation approach reference for environmental risk management
and remediation pertaining to the commonly existing groundwater contamination.
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