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Abstract: With the growing global focus on marine environmental conservation and management,
it is imperative to evaluate the ecological quality of marine ecosystems accurately. In this study,
we employed seven biotic indices, namely the AZTI marine biotic index (AMBI), BENTIX, benthic
opportunistic polychaetes amphipods index (BOPA), benthic pollution index (BPI), multivariate AZTI
marine biotic index (M-AMBI), abundance biomass comparison (W-value), and Shannon diversity
index (H’), to assess the benthic ecological quality in the intertidal zone of Cheonsu Bay, South
Korea. Except for the H’ and W-value, the indices (AMBI, BENTIX, BOPA, BPI, and M-AMBI) suggest
that the ecological quality at most stations in the intertidal zone of Cheonsu Bay was acceptable.
Furthermore, the influx of a large amount of eutrophic freshwater has impacted the intertidal zone of
Cheonsu Bay, but the applicability of the seven biotic indices requires further investigation.
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1. Introduction

The intertidal zone, the interface between terrestrial and marine environments, repre-
sents one of the most dynamic and ecologically multifaceted ecosystems globally. However,
escalating human activities have led to increasing utilisation and development of coastal
resources, consequently contributing to the degradation of this fragile ecosystem. Such
degradation is manifested in the rapid loss of biodiversity, which poses a significant threat
to the ecosystem’s products and services [1,2]. In South Korea, economic growth and
prosperity have increased its coastal development and activity, resulting in extensive envi-
ronmental damage and ecosystem degradation during the past half-century [3]. Hence, it
is urgent to accurately evaluate the ecological quality of coastal ecosystems in South Korea.

Macrobenthos stands out among the myriad organisms in marine ecosystems as one
of the most sensitive groups. Its presence and activities play a crucial role in shaping
and maintaining the structure and functioning of the intertidal zone [4]. Macrobenthos
have weak mobility and as abiotic conditions change, or humans intervene, macrobenthic
communities tend to shift in terms of species composition [5]. Consequently, macrobenthos
are widely used to assess the ecological quality of marine ecosystems [6,7].

Numerous indices based on macrobenthos have been created and used to evaluate the
ecological quality status of bays, estuaries, and coastal areas. Examples include the AZTI
marine biotic index (AMBI) [8], BENTIX [9], benthic opportunistic polychaetes amphipods
index (BOPA) [10], benthic pollution index (BPI) [11], multivariate AZTI marine biotic
index (M-AMBI) [12], and abundance biomass comparison (W-value) [13]. Traditionally,
the Shannon diversity index (H’) has been employed as a gauge for species diversity within
ecological systems [14]; however, recent studies have expanded its application to assess
ecological quality status as well [15–17]. Collectively, these indices serve as vital tools for
monitoring and evaluating marine ecosystem quality.

Although there are numerous biotic indices for assessing marine ecological environ-
ments, each has unique development and characteristics. For example, AMBI and M-AMBI
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apply to eutrophic estuaries, whereas BOPA is unsuitable [18]. Compared to AMBI, BOPA,
and W-value, the H’ and M-AMBI indices are ideal for assessing the ecological quality of
intertidal zones [19]. AMBI, M-AMBI, and BENTIX do not apply to semi-enclosed marine
environments [20]. AMBI, M-AMBI, and BOPA are all unable to respond to high-intensity
anthropogenic pressures [21]. BPI appears to be the most tolerant index compared to H′,
AMBI, and M-AMBI [22]. In sum, due to the complexity of marine ecosystems, the appli-
cability of different indices may vary within the same region [23]. Therefore, employing
multiple indices can provide a more accurate assessment of marine ecological quality than
relying on a single index [22,24].

Cheonsu Bay is a semi-closed bay in the middle of the Yellow Sea. It measures 35 km
long from north to south and 10 km wide from east to west, with an average water depth
of 10 m. This bay is an important aquaculture area and migratory bird habitat in South
Korea. However, from 1985 to 2000, four seawalls were built in its north and west to
expand its agricultural land, which reduced its area from 380 km2 to 180 km2 [25]. Since
the seawalls were constructed, its marine environment has been disturbed, which includes
a decrease in phytoplankton, demersal fish species replacing its pelagic fish species, and
benthic opportunistic species becoming dominant [26]. We understand that the research of
the intertidal zone in Cheonsu Bay is insufficient, especially concerning using the biotic
indices to assess the ecological quality of the intertidal zone in Cheonsu Bay.

This study used seven biotic indices (AMBI, M-AMBI, BENTIX, BOPA, BPI, H’, and
W-value) to assess the benthic ecological quality status of the intertidal zone in Cheonsu
Bay, South Korea. This study aims to (1) evaluate the benthic ecological quality of the
intertidal zone in Cheonsu Bay and compare its applicability to the seven biotic indices and
(2) provide references for the environmental conservation and management of the intertidal
zone in Cheonsu Bay.

2. Materials and Methods
2.1. Study Area

Cheonsu Bay, situated along the western coast of South Korea, spans from latitude
36◦23′ to 36◦37′N and longitude 126◦20′ to 126◦30′E. The mean depth is 10 m in the bay.
In the southern region of the bay, tidal current velocities range between 2 and 4 m/s.
Conversely, tidal current velocities markedly decrease in the northern part, registering
at approximately 0.5 m/s [27]. Furthermore, the influx of a substantial amount of eu-
trophic freshwater from artificial lakes in the north part of the bay has further led to the
accumulation of organic matter in the bay [28].

2.2. Sample Collection and Analysis

Survey stations were situated within the eastern and western intertidal zones of
Cheonsu Bay, as delineated in Figure 1. Field surveys were executed on a temporal scale
from 2017 to 2019. Specifically, the eastern zone was surveyed in 2017 at locations Gungri
(S1–S3), Namdang (S4–S6), and Cheobuk (S7–S9), while the western zone was assessed in
2018 at Jeongdangri (S18–S20) and Nudongri (S10–S12), followed by a survey in 2019 at
Jungjangri (S13–S17). Sampling endeavours were concentrated during the summer and
autumn (August and October).

Macrobenthos were sampled using a 1 mm mesh size sieve with a sample frame of
0.5 m × 0.5 m to a depth of 0.3 m two times (0.5 m2). Macrobenthos were fixed in 4% for-
malin and then preserved in 70% ethanol. In the lab, every macrobenthos was enumerated
and identified to the most specific taxonomic level achievable using a stereomicroscope
(Olympus SZX-10, Olympus Co., Ltd., Tokyo, Japan). All macrobenthos were enumerated
and weighed (wet weight) on a 0.1 mg analytical balance (Sartorius CP-64, Sartorius AG.,
Göttingen, Germany).
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Figure 1. Survey stations for macrobenthos and sediments in the intertidal zone of Cheonsu Bay. 
Note: green indicates the land areas; grey indicates the intertidal zone areas; white indicates the 
marine areas; blue indicates the lake areas. 
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and identified to the most specific taxonomic level achievable using a stereomicroscope 
(Olympus SZX-10, Olympus Co. Ltd., Tokyo, Japan). All macrobenthos were enumerated 
and weighed (wet weight) on a 0.1 mg analytical balance (Sartorius CP-64, Sartorius AG., 
Göttingen, Germany). 

Additionally, during each sampling event, approximately 300 g of surface sediment 
samples was collected using a plastic spoon and subsequently stored at −20 °C for analysis 
of grain size, ignition loss (IL), chemical oxygen demand (COD), and acid volatile sul-
phide (AVS). In grain size analysis, we initially analysed the particle size distribution of 
the samples using wet sieving analysis. For particles with a size greater than 4∅, we em-
ployed the X-Ray Particle Size Analyzer (SediGraph 5100, Micromeritics Instrument Co. 
Ltd., Norcross, GA, USA) for further analysis. To determine the organic matter content in 
the sediment, we heated 10 g of dried sediment samples at 550 °C for 2 h and measured 
the weight loss. Acid volatile sulphide (AVS) and chemical oxygen demand (COD) were 
evaluated according to the Marine Environmental Process Test Method [29]. 

2.3. Biotic Data Analysis 
2.3.1. Dominance Index 

A dominance index (Y) was used to determine the dominant species in the sampling 
area. When the value is greater than or equal to 0.02, the species is regarded as the domi-
nant species. This index is calculated as follows: 𝑌 = 𝑛/𝑁 × 𝑓 

Figure 1. Survey stations for macrobenthos and sediments in the intertidal zone of Cheonsu Bay.
Note: green indicates the land areas; grey indicates the intertidal zone areas; white indicates the
marine areas; blue indicates the lake areas.

Additionally, during each sampling event, approximately 300 g of surface sediment
samples was collected using a plastic spoon and subsequently stored at −20 ◦C for analysis
of grain size, ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulphide
(AVS). In grain size analysis, we initially analysed the particle size distribution of the
samples using wet sieving analysis. For particles with a size greater than 4∅, we employed
the X-Ray Particle Size Analyzer (SediGraph 5100, Micromeritics Instrument Co., Ltd.,
Norcross, GA, USA) for further analysis. To determine the organic matter content in the
sediment, we heated 10 g of dried sediment samples at 550 ◦C for 2 h and measured
the weight loss. Acid volatile sulphide (AVS) and chemical oxygen demand (COD) were
evaluated according to the Marine Environmental Process Test Method [29].

2.3. Biotic Data Analysis
2.3.1. Dominance Index

A dominance index (Y) was used to determine the dominant species in the sampling
area. When the value is greater than or equal to 0.02, the species is regarded as the dominant
species. This index is calculated as follows:

Y = ni/N × fi

where N is the number of individuals of all species, ni is the number of individuals of the
ith species, and fi is the frequency of the ith species [30].
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2.3.2. Biotic Indices

We used seven biotic indices to accurately evaluate the benthic ecological quality of the
intertidal zone in Cheonsu Bay. We selected three indices based on the relative susceptibility
of macrobenthos assemblages to organic matter enrichment, one that considers type of
feeding and life history, one index based on the relative abundance of amphipods and
opportunistic polychaetes, one index based on the relative abundance of species, and one
index based on the species abundances and biomass (Table 1). At each station, ecological
quality was assessed and classified using indices.

For the AMBI and BENTIX indices, macrobenthos are divided into different ecological
groups based on tolerance to organic matter. However, AMBI has five ecological groups,
and BENTIX has only three ecological groups (Table 1). The classification of ecological
communities was based on the reference provided by the AMBI software (version 6.0)
(https://ambi.azti.es) accessed on 1 May 2023; most of the species collected were assigned
to ecological groups, and species not recorded in the AMBI software (version 6.0) database
were referred to ecological groups of species of the same genus or expert opinions were
consulted [31].

The M-AMBI is an extension of the AMBI, which incorporates additional species
richness and Shannon diversity values [12]. It was impossible to use the Shannon–Wiener
diversity and richness of all sampling stations as a point of reference since they may be
disturbed or polluted. To calculate M-AMBI, Borja et al. (2011) established the following
condition: Increase the diversity and richness of the highest species by 15 per cent [32].

KORDI (1995) developed the BPI by modifying the Infaunal Trophic Index (ITI). This
divides macrobenthos into four ecological groups that add opportunity species or pollution
indicators (N4) compared to the Infaunal Trophic Index (ITI). The other three ecological
groups were filter feeders and carnivores (N1), surface deposit feeders (N2), and subter-
ranean deposit feeders (N3) [33] (Table 1).

For the BOPA index, we used the abundance of species of amphipods and species
of opportunistic polychaetes [10]; we used relative abundances of species to calculate the
Shannon–Wiener diversity (H’). Finally, we calculated the ABC (Abundance\Biomass)
comparison curve based on the abundances of species and biomass of species (Table 1).

Seven biotic indices can be categorised into five ecological quality states based on
their values (Table 1). In addition, to intuitively evaluate ecological quality, we divided the
seven indices (AMBI, BENTIX, BOPA, BPI, M-AMBI, W-value, and H’) into acceptable and
unacceptable levels based on their values [34] (Table 1).

https://ambi.azti.es
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Table 1. Summary of assessed benthic indices, including applied methodology, calculation formula, ecological quality status classification thresholds, and acceptable
or unacceptable for evaluating ecological quality.

Indices Algorithm Method Index Values EcoQs Acceptable or
Unacceptable Reference Note

AMBI = [(0 × %EGI) + (1.5 × % EGII) + (3 × %EGIII)
+(4.5 × % EGIV)(6 × % EGV)]/100

Relative susceptibility of
macrobenthic assemblages

to pollution

0.0–1.2
1.2–3.3
3.3–5.0
5.0–6.0

>6.0

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[8]

EGI: disturbance-sensitive
species; EGII:

disturbance-indifferent
species; EGIII:

disturbance-tolerant
species; EGIV:

second-order opportunistic
species; EGV: first-order

opportunistic species.

BENTIX = [6 × % GI + 2(% GII + % GIII)]/100
Relative susceptibility of

macrobenthic assemblages
to pollution

6–4.5
4.5–3.5
3.5–2.5
2.5–2.0

0.0

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[9] GI = EGI + EGII; GII =
EGIII + EGIV; GIII = EGV.

BOPA = log[( f P)/( f A + 1) + 1)]
Relative abundance of

amphipods and
opportunistic polychaetes

0–0.045
0.045–0.139
0.139–0.193
0.193–0.267
0.267–0.301

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[10]
fp: opportunistic

polychaetes frequency;
fa: amphipods frequency

BPI = [1 − (a × N1 + b × N2 + c × N3 + d × N4)/(N1+
N2 + N3 + N4)/d]× 100

Consider type of feeding
and life history

60–100
40–60
30–40
20–30
0–20

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[33]

N1: filter feeders or large
carnivores; N2: surface
deposit feeders or small

carnivores;
N3: subterranean deposit
feeders; N4: opportunistic

species
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Table 1. Cont.

Indices Algorithm Method Index Values EcoQs Acceptable or
Unacceptable Reference Note

M-AMBI = K + (a × AMBI) + (b × H′) + (c × S)

Relative susceptibility of
macrobenthic assemblages
to pollution; richness and

diversity(H’)

>0.77
0.53–0.77
0.38–0.53
0.20–0.38
≤0.2

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[12] H’: Shannon diversity
index; S: number of species

W-values =
S
∑

i=1
(Bi − Ai)/[50(S − 1)]

Abundances of species and
biomass of species

>0.50
0.15–0.49
−0.14–0.14
−0.49–−0.15
−1–−0.5

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[35]

S: The number of species;
Bi: the biomass of the

species i; Ai: the
abundance of the species i

H’(log2) = −∑
[( ni

N
)
log2

( ni
N
)] Relative abundances of

species

>4
4–3
3–2
2–1
<1

High
Good

Moderate
Poor
Bad

Acceptable
Acceptable

Unacceptable
Unacceptable
Unacceptable

[15]

Ni: Number of individuals
belonging to the ith

species; N: Total number of
individuals.
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2.4. Statistical Analysis

We aim to explore the interrelationships among the selected biotic indices and their
correlations with environmental variables. Spearman’s rank correlation coefficient analysis
analysed the biotic indices values and environment factors values. Additionally, a Kappa
analysis was conducted to evaluate the level of agreement among the indices, with reference
levels of agreement based on previous studies [36]. All statistical analyses were performed
using SPSS software, Version 29.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Environment Factors

The environmental factors in the intertidal zone of Cheonsu Bay are shown in Table 2.
Generally, some environmental factors showed considerable fluctuations. The sand values
ranged from 0 to 77.4%, averaging 31.88 ± 26.22. The silt values ranged from 14.5 to 88.93%,
averaging 49.47 ± 27.35.

Table 2. Environment factors in the intertidal zone of Cheonsu Bay.

Environmental Factors Max Min Mean SD

AVS, mg/g 0.11 0 0.022 0.03
COD, mg/g 17.75 3.77 9.30 3.74

IL, % 4.84 1.51 2.84 0.90
Gravel, % 2.18 0 0.22 0.53
Sand, % 77.4 0 31.88 26.22
Silt, % 14.5 88.93 49.47 27.35

Clay, % 42.23 7.66 18.42 9.28
Mean grain, ∅ 7.37 2.53 5.38 1.24

Note(s): SD, standard deviation; AVS, acid volatile sulphide; COD, chemical oxygen demand; IL, ignition loss.

3.2. Macrobenthic Structure Characteristics and Dominant Species

A total of 130 species of macrobenthos belonging to 6 phyla were identified (Figure 2).
The mean macrobenthos abundance and biomass values were 196.55 ± 270.69 ind./m2 and
50.5 ± 71.88 g./m2, respectively. There were 54 species (41.54%) of Polychaeta, which was
the most abundant taxon, followed by Arthropoda with 39 species (30%), Mollusca with
34 species (26.15%), Echinodermata with 1 species (0.77%), Brachiopoda with 1 species
(0.77%), and Nemertea with 1 species (0.77%). In summer season, there were three domi-
nant species with a dominant index greater than 0.02. In the autumn season, there were
four dominant species with a dominant index greater than 0.02. Table 3 refers to the
dominant species and dominant values.

3.3. Biotic Indices Values and Ecological Quality

The AMBI values ranged from 0.068 to 4.015. The maximum value was found at S7 in
the summer, and the minimum was at S4 in the summer. The mean AMBI value was 1.62.
In summer, the ecological quality was high for eight stations (40%), good for ten stations
(50%), and moderate for two stations (10%), and in autumn, the ecological quality was
high for six stations (30%) and good for fourteen stations (70%). The ecological quality was
recorded as acceptable at 18 stations (90%) in summer and 20 stations (100%) in autumn.
The ecological quality was recorded as unacceptable at two stations (10%) in summer.

The BENTIX values ranged from 2.45 to 5.96. The maximum value was found at S4 in
the summer, and the minimum was at S7 in the summer. The mean of the BENTIX value
was 4.67. In summer, the ecological quality was high for fourteen stations (70%), good for
two stations (10%), moderate for three stations (15%), and poor for one station (5%), and in
autumn, the ecological quality was high for eleven stations (55%), good for eight stations
(40%), and moderate for one station (5%). The ecological quality was recorded as acceptable
at 16 stations (80%) in summer and 19 stations (95%) in autumn. The ecological quality was
recorded as unacceptable at two stations (10%) in summer and one station (5%) in autumn.
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Table 3. Dominant species and dominant values of macrobenthos in summer and autumn in the
intertidal zone of Cheonsu Bay.

Season Taxa Specie Dominant Value

Summer
Eumalacostraca Upogebia major 0.185

Sedentaria Heteromastus filiformis 0.078
Eumalacostraca Macrophthalmus japonicus 0.023

Autumn

Eumalacostraca Macrophthalmus japonicus 0.096
Sedentaria Heteromastus filiformis 0.042
Nemertea Nemertea 0.032

Caenogastropoda Nassarius sp. 0.021

The BOPA values ranged from 0 to 0.266. The maximum value was found at S7 in
summer. The mean of the BOPA value was 0.051. In summer, the ecological quality was
high for twelve stations (60%), good for five stations (25%), moderate for one station (5%),
and poor for two stations (10%), and in autumn, the ecological quality was high for twelves
stations (60%) and good for eight stations (40%). The ecological quality was recorded as
acceptable at 17 stations (85%) in summer and 20 stations (100%) in autumn. The ecological
quality was recorded as unacceptable at three stations (15%) in summer.

The BPI values ranged from 38.4 to 91. The maximum value was found at S18 in
autumn, and the minimum was at S7 in summer. The mean of the BENTIX value was 67.3.
In summer, the ecological quality was high for sixteen stations (80%), good for three stations
(15%), and moderate for one station (5%), and in autumn, the ecological quality was high
for sixteen stations (80%) and good for four stations (20%). The ecological quality was
recorded as acceptable at 19 stations (95%) in summer and 20 stations (100%) in autumn.
The ecological quality was recorded as unacceptable at one station (5%) in summer.
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The M-AMBI values ranged from 0.279 to 0.796. The maximum value was found at
S9 in the summer, and the minimum was at S8 in the summer. The mean of the M-AMBI
value was 0.598. In summer, the ecological quality was high for one station (5%), good for
fifteen stations (75%), moderate for one station (5%), and poor for three stations (15%), and in
autumn, the ecological quality was high for one station (5%), good for sixteen stations (80%),
and moderate for three stations (15%). The ecological quality was recorded as acceptable at
14 stations (70%) in summer and 17 stations (85%) in autumn. The ecological quality was
recorded as unacceptable at six stations (30%) in summer and three stations (15%) in autumn.

The W-values ranged from −0.185 to 0.656. The maximum value was found at S15 in
autumn, and the minimum was at S15 in summer. The mean W value was 0.218. In summer,
the ecological quality was high for one station (5%), good for eleven stations (55%), moderate
for seven stations (35%), and poor for one station (5%), and in autumn, the ecological quality
was high for two stations (10%), good for twelves stations (60%), and moderate for six stations
(30%). The ecological quality was recorded as acceptable at 11 stations (55%) in summer and
14 stations (70%) in autumn. The ecological quality was recorded as unacceptable at nine
stations (45%) in summer and six stations (30%) in autumn.

The H’(Log2) values ranged from 0.53 to 3.97. The maximum value was found at S11
in the summer, and the minimum was found at S8 in the summer. The mean of H’(Log2)
value was 2.64. In summer, the ecological quality was good for six stations (30%), moderate
for seven stations (35%), poor for five stations (25%), and bad for two stations (10%), and in
autumn, the ecological quality was good for nine stations (45%), moderate for ten stations
(50%), and poor for one station (5%). The ecological quality was recorded as acceptable at
six stations (30%) in summer and nine stations (45%) in autumn. The ecological quality was
recorded as unacceptable at 14 stations (70%) in summer and 11 stations (55%) in autumn.

For the values of all indices, the status of ecological quality, the percentage of eco-
logical quality status, and the ecological quality for acceptable and unacceptable, refer to
Figures 3a,b and 4.
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3.4. Correlation Analysis

The correlation analysis results of all biotic index and environmental factors showed
that BOPA had a significant positive correlation with clay. BENTIX had a significant
negative correlation with COD, and BPI had a highly significant negative correlation with
AVS and clay. In this study, the other biotic indices did not have any significance with the
environmental factors (Figure 5).
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Figure 5. Correlation analysis between AMBI, BENTIX, BOPA, M-AMBI, W-value, and H’, with
environment factors in the intertidal zone of Cheonsu Bay. Note: AMBI, BENTIX, BOPA, BPI, W-
value, and H’ indicate the AZTI marine biotic index, benthic index, benthic opportunistic polychaetes
amphipods index, benthic pollution index, multivariate AZTI marine biotic index, and abundance
biomass comparison and Shannon diversity index, respectively; AVS, COD, and IL indicate the acid
volatile sulphide, chemical oxygen demand, and ignition loss, respectively.

The correlation analysis results between the seven indices showed that AMBI and H’,
M-AMBI and W-value had a significant positive correlation; AMBI and BOPA, M-AMBI
and H’, and W-value and H’ had a highly significant positive correlation. AMBI had a
highly negative correlation with BENTIX and BPI. BOPA had a highly negative correlation
with BENTIX and BPI (Figure 5). Overall, AMBI had the highest correlation with the
other indices.

3.5. Kappa Analysis

The results of the weighted kappa analysis of the seven indices are shown in Table 4.
BOPA had the worst level of agreement with the W-value, and the level of agreement was
null (60% matched); AMBI and BOPA had the highest level of agreement, which was very
good (97.5% matched). BOPA and BPI had the higher match (95% matched) but not the
higher level of agreement, indicating that high matches do not necessarily have a high level
of agreement.
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Table 4. Kappa values, levels of agreement, and percentages of match for the ecological status for all
combinations of biotic indices used in this study.

Indices Kappa Value %Match Level of Agreement

AMBI/M-AMBI 0.307 82.5 Low
AMBI/BENTIX 0.538 92.5 Moderate
AMBI/BOPA 0.787 97.5 Very good

AMBI/BPI 0.655 65.5 Good
AMBI/H’ 0.061 42.5 Very Low

AMBI/W-value 0.032 65 Null
M-AMBI/BENTIX 0.489 85 Moderate
M-AMBI/BOPA 0.437 85 Moderate

M-AMBI/BPI 0.162 80 Very Low
M-AMBI/H’ 0.297 60 Low

M-AMBI/W-value 0.304 70 Low
BENTIX/BOPA 0.734 95 Very good

BENTIX/BPI 0.304 90 Low
BENTIX/H’ 0.158 50 Very low

BENTIX/W-value 0.015 60 Null
BOPA/BPI 0.481 95 Moderate
BOPA/H’ 0.093 45 Very low

BOPA/W-value −0.016 60 Null
BPI/H’ 0.03 40 Null

BPI/W-value 0.082 65 Very low
H’/W-value 0.435 70 Moderate

4. Discussion

In this study, we used seven biotic indices (AMBI, M-AMBI, BENTIX, BOPA, BPI, H’,
and W-value) to assess the benthic ecological quality status of the intertidal zone in Cheonsu
Bay, South Korea. Except for AMBI, BPI, and W-value, the other indices were first applied
for the intertidal zone of Cheonsu Bay. Despite variations observed among the indices in
the evaluation results, the ecological quality status of Cheonsu Bay was predominantly
assessed as “high” or “good”. However, a small fraction of the ecological quality status
was assessed as “moderate”, “poor”, or “bad”. Apart from the H’ and W-value indices, the
other indices (AMBI, BENTIX, BOPA, BPI, and M-AMBI) suggest that the ecological quality
at most stations in the intertidal zone of Cheonsu Bay was acceptable.

Owing to the inherent complexity of marine ecosystems and the variability in ref-
erence benchmarks across diverse evaluation indices, it is common for different indices
to produce inconsistent results within identical geographic regions [37]. As a result, the
objectivity of assessments concerning marine ecological quality is heavily influenced by the
choice of benthic indices deployed [38]. Therefore, when undertaking an environmental
appraisal of a specific locale, it is imperative to evaluate and calibrate the suitability of
the selected indices. The aim of such calibration extends beyond merely identifying the
most appropriate index; it also enhances the comparability of assessments conducted via
disparate indices and bolsters the reliability of the generated findings [39].

At stations S9 and S15 during the summer, the seven evaluated benthic indices yielded
disparate classifications of ecological quality status. Specifically, AMBI, M-AMBI, BENTIX,
BOPA, and BPI classified the ecological quality of S9 as “high”. In contrast, the W-value
indicated it as “moderate”, and the H’ index rated it as “poor”. For station S15, AMBI, BOPA,
and BPI designated the ecological quality as “good”, BENTIX classified it as “moderate”,
while M-AMBI, W-value, and H’ rated it as “poor”. It should be noted that the number
of individuals of Upogebia major at station S9 exceeded 80%, and the count of Sternaspis
scutata at station S15 surpassed 60% during the summer. The calculation methodologies
for H’ and W-value, which incorporate species abundance and, in the latter case, biomass,
were impacted by the disproportionate presence of these specific species, resulting in an
underestimation of ecological quality at both stations. The BENTIX index, which utilises
three ecological groups for its calculation, is less reliable when few species manifest in
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high densities [40]. M-AMBI, derived from AMBI, species richness, and Shannon–Wiener
diversity, is similarly affected by a low H’ value, leading to its underestimation of ecological
quality at station S15.

The results from the seven biotic indices (AMBI, BENTIX, BOPA, BPI, M-AMBI, H’, and
W-value) showed that acceptable ecological quality was 30–90% in summer and 45–100% in
autumn. The acceptable ecological quality in autumn is higher than in summer. In summer,
a substantial amount of eutrophic freshwater flows into Cheonsu Bay from artificial lakes in
the north [41]. The influx of a large amount of eutrophic freshwater leads to the enrichment
of organic matter. This directly impacts the ecological quality of the intertidal zone in
Cheonsu Bay. Compared to other biotic indices, the H’ and W-value demonstrate a lower
acceptance of ecological quality, and the H’ and W-value showed lower kappa values in
kappa analysis. We believe that the H’ and W-value underestimated the ecological quality
status of the intertidal zone in Cheonsu Bay. In addition, when using the W-value and H’
indices in the intertidal zone, it becomes necessary to recalibrate their ecological quality
status classification thresholds if the abundance of a single species is excessively high.

The AMBI exhibited significant correlations with BENTIX, BOPA, BPI, and H’ in the
correlation analysis. In the kappa analysis, AMBI showed a very good and good level
of agreement with BOPA and BPI. This suggests that AMBI may produce results with
relatively high consistency with BOPA and BPI. However, it is perplexing that AMBI and
M-AMBI showed no correlation and a low kappa value, which may be attributed to the
inappropriate setting of reference values in M-AMBI.

In this study, the calculation of BENTIX, BOPA, and M-AMBI references the ecological
groups of AMBI. However, the AMBI software (version 6.0)was originally designed for
EU coastal waters, but the ecological group classification of the same species may vary
in different geographical regions [42]. For example, the ecological group of the dominant
species, Heteromastus filiformis, was divided into second-order opportunistic species (EGIV)
in AMBI. However, BPI divided this species into subterranean deposit feeders (N3). This
seems to have led to a poor correlation between AMBI, BENTIX, BOPA, and M-AMBI
and environmental factors. In addition, semi-enclosed ecosystems with excess organic
matter and silted sediment, such as Cheonsu Bay, AMBI, BENTIX, and M-AMBI, are not
optimal tools for ecological quality assessment [20]. BOPA values are calculated based
on the relative abundance of opportunistic polychaetes and amphipods, which makes
the interpretation problematic in their absence [18,43]. Before utilising the AMBI, we
believe adjusting certain macrobenthic ecological groups according to the local ecological
environment is necessary. This adjustment can enhance the accuracy of the assessment
results and improve the response to environmental factors.

In Korean coastal waters, AMBI and BPI are the predominant indices for assessing
ecological quality status, as evidenced by multiple studies [44–47]. However, most of
these investigations have not rigorously evaluated the applicability of AMBI and BPI for
such assessments. In contrast, using BENTIX, BOPA, W-value, and H’ indices remains
limited, particularly when compared to AMBI and BPI. Notably, BPI has seen extensive
application in evaluating the ecological status of the intertidal zones in Cheonsu Bay [48,49].
Nonetheless, BPI is not without its shortcomings. Specifically, the index faces challenges in
identifying the feeding types and life histories of benthic organisms. Additionally, when
only a few species exist and belong to either NI or NII categories, this can artificially inflate
the BPI value. Finally, the ecological interpretation of BPI values remains problematic [50].
The survival strategies of benthic organisms can differ substantially across ecosystems,
which introduces uncertainty when employing various biotic indices for environmental
assessment. Accordingly, a comprehensive understanding of the local ecosystem and the
attributes of indigenous species is imperative for accurate evaluations of ecological quality.

In the past four decades, constructing artificial lakes in the northern and eastern
regions has led to a drastic reduction in the area of Cheonsu Bay. In summer, the influx of
large volumes of eutrophic freshwater constitutes a significant environmental pressure for
Cheonsu Bay. Existing research has demonstrated that the influx of substantial amounts of
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eutrophic freshwater adversely affects the ecological conditions of the subtidal zone in the
bay [26,28]. In this study, the average density of Heteromastus filiformis is 25.7 ind./m2 in
summer, which decreases to 7.4 ind./m2 in autumn. At the same time, the average density
of Upogebia major in summer reaches up to 147 ind./m2. Therefore, compared to autumn,
the overall ecological quality of the intertidal zone in summer is lower. As a subterranean
deposit feeder, the abundance of Heteromastus filiformis increases with organic matter
accumulation. Concurrently, the abundance of Upogebia major is significantly correlated
with the concentration of dissolved inorganic nitrogen (DIN) [51]. The abundance of these
two species indicates that the influx of eutrophic freshwater has impacted the ecological
environment of the intertidal zone in Cheonsu Bay. Still, due to the differing principles
underlying various biotic indices, different indices exhibit distinct performances in response
to various human pressures [42,52]. In this study, the absence of critical human pressure
data (DIN and DIP) precluded a definitive assessment of the applicability of seven indices
in the intertidal zone of Cheonsu Bay. Furthermore, utilising data on human pressures can
aid in determining the appropriateness of the boundaries set by the indices. We recommend
that a comprehensive understanding of the human pressures in a region is essential when
using biotic indices to evaluate the benthic ecological quality of that area. In subsequent
research, it is necessary to explore the response of seven indices to human pressures in
Cheonsu Bay further.

5. Conclusions

On 5 July 2022, the South Korean government formally enacted the Framework Act on
Sustainable Development, which stipulates that national and local governmental entities
must address maritime pollution and protect marine ecosystems. In this context, the
demand for the precise evaluation of marine habitat quality is increasing, as ecological
quality is intricately linked to the development and execution of marine environmental
policies. In this study, we used seven biotic indices, AMBI, BENTIX, BOPA, BPI, M-AMBI,
H’, and W-value, to assess the benthic ecological quality in the intertidal zone of Cheonsu
Bay. In this study, apart from the H’ and W-value indices, the other indices (AMBI, BENTIX,
BOPA, BPI, and M-AMBI) suggest that the ecological quality was acceptable at most stations
in the intertidal zone of Cheonsu Bay. The influx of a large amount of eutrophic freshwater
has impacted the intertidal zone of the bay, but the applicability of the seven indices
requires further investigation. Overall, this study investigated the ecological quality in
the intertidal zone of Cheonsu Bay and provided valuable information for conserving the
benthic macrofauna in the intertidal zone of Cheonsu Bay.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16020272/s1, Table S1: the ecological group categorisation of
macrobenthos; Table S2: gravel, sand, silt, clay, and mean grain size of surface sediments at each
station of Cheonsu Bay in the study; Table S3: acid volatile sulphide (AVS), chemical oxygen demand
(COD), and ignition loss (IL) of surface sediments at each station of Cheonsu Bay in the study;
Table S4: the composition and number of macrobenthos species at each station of Cheonsu Bay in
the study.
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