A Scientometric Review for Uncertainties in Integrated Simulation–Optimization Modeling System
Abstract
:Highlights
- Conducted a comprehensive review analysis of over 2000 articles in integrated simulation–optimization modeling systems, revealing significant advancements in hydrologic modeling and water resource management.
- Unveiled the knowledge structure, frontiers, influential regions, scholars, and publications in the field using advanced visualization techniques.
- Integrated GIS, environmental science, and data science to present a multidimensional perspective on water resource management.
- Highlighted the impact of climate change on water resource management, offering adaptive management methods and contributing to policy making, guiding future research directions and practical applications.
Abstract
1. Introduction
2. Methodology and Materials
2.1. Data Sources
2.2. Statistical Methods
3. Results
3.1. Characteristics of Publications
3.2. Journal Co–Citation Analysis
3.3. Country/Territory and Institution Cooperation Analysis
3.4. Author Co–Citation Analysis
3.5. Reference Citation Bursts Analysis
3.6. Subject Categories Co–Occurrence Analysis
3.7. Keywords Co–Word Analysis
3.8. Document Co-Citation Analysis
3.8.1. Research Cluster Analysis
3.8.2. Timeline View of Typical Clusters
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akter, A.; Babel, M.S. Hydrological modeling of the Mun River basin in Thailand. J. Hydrol. 2012, 452, 232–246. [Google Scholar] [CrossRef]
- Cho, K.H.; Pachepsky, Y.A.; Kim, M.; Pyo, J.; Park, M.H.; Kim, Y.M.; Kim, J.W.; Kim, J.H. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT. J. Hydrol. 2016, 535, 377–385. [Google Scholar] [CrossRef]
- Pereira, D.D.; Martinez, M.A.; Pruski, F.F.; da Silva, D.D. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. J. Hydrol. 2016, 7, 14–37. [Google Scholar] [CrossRef]
- Wang, W.K.; Dai, Z.X.; Zhao, Y.Q.; Li, J.T.; Duan, L.; Wang, Z.F.; Zhu, L. A quantitative analysis of hydraulic interaction processes in stream aquifer systems. Sci. Rep. 2016, 6, 19876. [Google Scholar] [CrossRef]
- Xue, L.Q.; Yang, F.; Yang, C.B.; Wei, G.H.; Li, W.Q.; He, X.L. Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China. Sci. Rep. 2018, 8, 452. [Google Scholar] [CrossRef]
- Fonseca, A.; Botelho, C.; Boaventura, R.A.R.; Vilar, V.J.P. Integrated hydrological and water quality model for river management: A case study on Lena River. Sci. Total Environ. 2014, 485, 474–489. [Google Scholar] [CrossRef]
- Ma, Y.D.; Zhao, J.B.; Luo, X.Q.; Shao, T.J.; Dong, Z.B.; Zhou, Q. Hydrological cycle and water balance estimates for the megadune-lake region of the Badain Jaran Desert, China. Hydrol. Process. 2017, 31, 3255–3268. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.Y.; Zhan, C.S.; Ye, A.Z. Water Quality Management in China: The Case of the Huai River Basin. Int. J. Water Res. Dev. 2011, 27, 167–180. [Google Scholar] [CrossRef]
- Montanari, A.; Brath, A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour. Res. 2004, 40, W01106. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wu, X.L.; Chen, X.Y.; Zhan, F.B.; Hong, S. Global research trends in landslides during 1991–2014: A bibliometric analysis. Landslides 2015, 12, 1215–1226. [Google Scholar] [CrossRef]
- Yin, L.C.; Kretschmer, H.; Hanneman, R.A.; Liu, Z.Y. Connection and stratification in research collaboration: An analysis of the COLLNET network. Inf. Process. Manag. 2006, 42, 1599–1613. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models—Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Krzysztofowicz, R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour. Res. 1999, 35, 2739–2750. [Google Scholar] [CrossRef]
- Blasone, R.S.; Madsen, H.; Rosbjerg, D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J. Hydrol. 2008, 353, 18–32. [Google Scholar] [CrossRef]
- Bouda, M.; Rousseau, A.N.; Konan, B.; Gagnon, P.; Gumiere, S.J. Bayesian Uncertainty Analysis of the Distributed Hydrological Model HYDROTEL. J. Hydrol. Eng. 2012, 17, 1021–1032. [Google Scholar] [CrossRef]
- Mantovan, P.; Todini, E. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. J. Hydrol. 2006, 330, 368–381. [Google Scholar] [CrossRef]
- Vazquez, R.F.; Beven, K.; Feyen, J. GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application. Water Resour. Manag. 2009, 23, 1325–1349. [Google Scholar] [CrossRef]
- Du, P.; Li, Y.P.; Huang, G.H. Inexact Chance-Constrained Waste-Load Allocation Model for Water Quality Management of Xiangxihe River. J. Environ. Eng. 2013, 139, 1178–1197. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H.; Huang, Y.F.; Zhou, H.D. A multistage fuzzy-stochastic programming model for supporting sustainable water-resources allocation and management. Environ. Model. Softw. 2009, 24, 786–797. [Google Scholar] [CrossRef]
- Huang, G.H.; Loucks, D.P. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ. Eng. Environ. Syst. 2000, 17, 95–118. [Google Scholar] [CrossRef]
- Guo, P.; Huang, G.H.; Li, Y.P. Inexact Fuzzy-Stochastic Programming for Water Resources Management Under Multiple Uncertainties. Environ. Model. Assess. 2010, 15, 111–124. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H.; Zhang, N.; Nie, S.L. An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty. Ecol. Model. 2011, 222, 370–379. [Google Scholar] [CrossRef]
- Li, Y.P.; Liu, J.; Huang, G.H. A hybrid fuzzy-stochastic programming method for water trading within an agricultural system. Agric. Sys. 2014, 123, 71–83. [Google Scholar] [CrossRef]
- Li, C.C.; Cai, Y.P.; Qian, J.P. A multi-stage fuzzy stochastic programming method for water resources management with the consideration of ecological water demand. Ecol. Indic. 2018, 95, 930–938. [Google Scholar] [CrossRef]
- Zhuang, X.W.; Li, Y.P.; Nie, S.; Fan, Y.R.; Huang, G.H. Analyzing climate change impacts on water resources under uncertainty using an integrated simulation-optimization approach. J. Hydrol. 2018, 556, 523–538. [Google Scholar] [CrossRef]
- Li, C.C.; Cai, Y.P.; Tan, Q.; Wang, X.; Li, C.H.; Liu, Q.; Chen, D.N. An integrated simulation-optimization modeling system for water resources management under coupled impacts of climate and landuse variabilities with priority in ecological protection. Adv. Water Resour. 2021, 154, 103986. [Google Scholar] [CrossRef]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- Garcia-Lillo, F.; Ubeda-Garcia, M.; Marco-Lajara, B. Organizational ambidexterity: Exploring the knowledge base. Scientometrics 2016, 107, 1021–1040. [Google Scholar] [CrossRef]
- Merigo, J.M.; Yang, J.B. A bibliometric analysis of operations research and management science. Omega 2017, 73, 37–48. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Z.S. Admissible orders of typical hesitant fuzzy elements and their application in ordered information fusion in multi-criteria decision making. Inf. Fusion 2016, 29, 98–104. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.M.; Ibekwe-SanJuan, F.; Hou, J.H. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Xie, P. Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics 2015, 105, 611–622. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netwks. 1979, 1, 215–239. [Google Scholar] [CrossRef]
- Liu, Z.G.; Yin, Y.M.; Liu, W.D.; Dunford, M. Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Chen, C.M.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef]
- Yu, D.J. A scientometrics review on aggregation operator research. Scientometrics 2015, 105, 115–133. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Klove, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. AN Overview of Cmip5 and The Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.P.; Chen, X.; Ma, Y.G. Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China. Agric. Water Manag. 2012, 107, 74–85. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellin-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef]
- Chen, C.M.; Leydesdorff, L. Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Xiang, C.Y.; Wang, Y.; Liu, H.W. A scientometrics review on nonpoint source pollution research. Ecol. Eng. 2017, 99, 400–408. [Google Scholar] [CrossRef]
- Chen, C.M. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
Journal | Frequency | Centrality | IF (2017) |
---|---|---|---|
Journal of Hydrology | 1430 | 0.18 | 3.73 |
Water Resources Research | 1368 | 0.29 | 4.36 |
Hydrological Processes | 963 | 0.10 | 3.18 |
Journal of the American Water Resources Association | 777 | 0.09 | 2.16 |
Water Resources Management | 773 | 0.05 | 2.64 |
Hydrology and Earth System Sciences | 744 | 0.03 | 4.26 |
Environmental Modelling Software | 715 | 0.01 | 4.18 |
Advances in Water Resources | 552 | 0.08 | 3.51 |
Hydrological Sciences Journal | 547 | 0.10 | 2.06 |
Journal of Environmental Management | 499 | 0.10 | 4.01 |
Rank | Country/Region | Number | Institution | Number |
---|---|---|---|---|
1 | USA | 759 | Chinese Acad Sci | 113 |
2 | China | 507 | Beijing Normal Univ | 84 |
3 | Canada | 220 | Univ Regina | 80 |
4 | Australia | 139 | North China Elect Power Univ | 68 |
5 | Germany | 123 | Texas A&M Univ | 50 |
6 | The Netherlands | 101 | USDA ARS | 45 |
7 | UK | 100 | China Agr Univ | 43 |
8 | Iran | 79 | Peking Univ | 40 |
9 | Spain | 70 | US Geol Survey | 34 |
10 | Italy | 66 | Delft Univ Technol | 33 |
References | Strength | Begin | End | 1991–2018 |
---|---|---|---|---|
Moriasi et al., 2007 [10] | 24.61 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
Arnold et al., 2012 [40] | 18.60 | 2015 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Abbaspour et al., 2015 [41] | 14.80 | 2016 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Abbaspour et al., 2007 [42] | 13.88 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
Yang et al., 2008 [43] | 12.72 | 2013 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂ |
Gassman et al., 2007 [44] | 12.64 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂ |
Taylor et al., 2012 [45] | 11.29 | 2015 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Beven et al., 2001 [14] | 8.61 | 2004 | 2009 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
Huang et al., 2012 [46] | 7.98 | 2016 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Harou et al., 2009 [47] | 7.94 | 2015 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; He, L.; Liu, D.; Feng, Z. A Scientometric Review for Uncertainties in Integrated Simulation–Optimization Modeling System. Water 2024, 16, 285. https://doi.org/10.3390/w16020285
Li C, He L, Liu D, Feng Z. A Scientometric Review for Uncertainties in Integrated Simulation–Optimization Modeling System. Water. 2024; 16(2):285. https://doi.org/10.3390/w16020285
Chicago/Turabian StyleLi, Congcong, Lulu He, Dan Liu, and Zhiyong Feng. 2024. "A Scientometric Review for Uncertainties in Integrated Simulation–Optimization Modeling System" Water 16, no. 2: 285. https://doi.org/10.3390/w16020285
APA StyleLi, C., He, L., Liu, D., & Feng, Z. (2024). A Scientometric Review for Uncertainties in Integrated Simulation–Optimization Modeling System. Water, 16(2), 285. https://doi.org/10.3390/w16020285