Groundwater Age and Origin and Its Relation with Anthropogenic and Climatic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Climatic Data
2.2.2. Spatial Data
2.2.3. Isotopic Data
2.2.4. Groundwater Quality and Depth to the Water Table Data
2.3. Methodology
2.3.1. Groundwater Age
2.3.2. Groundwater Origin
2.3.3. Normalized Difference Vegetation Index (NDVI)
2.3.4. Mann–Kendall (MK) Test
3. Results
3.1. Land Characterization
3.2. Groundwater Age
3.3. Groundwater Origin
4. Discussion
4.1. Climate Ascription to Groundwater Age
4.2. Anthropogenic Factors Attribution with Groundwater Quality and DWT Trends
4.3. Anthropogenic Factors Attribution with Groundwater Age and Origin
5. Conclusions and Future Scope
- An identified significant amount of river flows replenishes groundwater resources and improves water quality.
- The stable isotopic composition (18O and 2H) of groundwater indicates that river flow and precipitation are the primary sources of groundwater recharge. Additionally, it demonstrates that the recharge area exhibits a higher level of depletion than the discharge area.
- Groundwater is 5–10 years old in 55% of the total area, mainly in woodland and agricultural areas; 10–50-year-old groundwater present in agricultural and urban areas comprises 40% of total areas, and 5% of the area in urban areas contains groundwater more than 50 years old, which demonstrates that urban areas are not receiving recharging water and of the groundwater situation here is unsustainable.
- The water table depth is declining, with a mean rate of 0.057 m/year. This significant decline in water is because of the over-exploitation of groundwater resources.
- The deterioration in the quality of groundwater in the study area has increased from the agricultural and domestic effluents, which makes the water unfit for drinking and irrigation purposes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Odermatt, D.; Bouffard, D.; Wüest, A.; Kohn, T. Coupling Remote Sensing and Particle Tracking to Estimate Trajectories in Large Water Bodies. Int. J. Appl. Earth Obs. Geoinf. 2022, 110–118, 102809. [Google Scholar] [CrossRef]
- Kumar, C.P. Climate Change and Its Impact on Groundwater Resources. Int. J. Eng. Sci. 2012, 1, 43–60. [Google Scholar]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of Anthropogenic and Natural Processes on the Evolution of Groundwater Chemistry in a Rapidly Urbanized Coastal Area, South China. Sci. Total Environ. 2013, 463, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Earman, S.; Dettinger, M. Potential Impacts of Climate Change on Groundwater Resources—A Global Review. J. Water Clim. Change 2011, 2, 213–229. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Groves, C.; Yuan, D.; Kambesis, P. Natural and Anthropogenic Factors Affecting the Groundwater Quality in the Nandong Karst Underground River System in Yunan, China. J. Contam. Hydrol. 2009, 109, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Bahir, M.; El Mountassir, O.; Dhiba, D.; Chehbouni, A.; Carreira, P.M.; Elbiar, H. Combining Stable Isotope and WQI Methods to Study the Groundwater Quality: A Case Study in Essaouira City, Morocco. SN Appl. Sci. 2022, 4, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zuo, R.; Meng, L.; Wang, J.; Teng, Y.; Liu, X.; Chen, M. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment. Int. J. Environ. Res. Public Health 2018, 15, 279. [Google Scholar] [CrossRef]
- Bretzler, A.; Osenbrück, K.; Gloaguen, R.; Ruprecht, J.S.; Kebede, S.; Stadler, S. Groundwater Origin and Flow Dynamics in Active Rift Systems—A Multi-Isotope Approach in the Main Ethiopian Rift. J. Hydrol. 2011, 402, 274–289. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Asrat, A.; Alemayehu, T.; Ayenew, T.; Tessema, Z. Groundwater Origin and Flow along Selected Transects in Ethiopian Rift Volcanic Aquifers. Hydrogeol. J. 2008, 16, 55–73. [Google Scholar] [CrossRef]
- Smerdon, B.D.; Gardner, W.P. Characterizing Groundwater Flow Paths in an Undeveloped Region through Synoptic River Sampling for Environmental Tracers. Hydrol. Process. 2022, 36, 130–145. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The Global Volume and Distribution of Modern Groundwater. Nat. Geosci. 2016, 9, 161–164. [Google Scholar] [CrossRef]
- Adomako, D.; Maloszewski, P.; Stumpp, C.; Osae, S.; Akiti, T.T. Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 2010, 55, 1405–1416. [Google Scholar] [CrossRef]
- Abbott, M.D.; Lini, A.; Bierman, P.R. δ18O, δD and 3H Measurements Constrain Groundwater Recharge Patterns in an Upland Fractured Bedrock Aquifer, Vermont, USA. J. Hydrol. 2000, 228, 101–112. [Google Scholar] [CrossRef]
- Bedaso, Z.K.; Wu, S.Y.; Johnson, A.N.; McTighe, C. Assessing Groundwater Sustainability under Changing Climate Using Isotopic Tracers and Climate Modelling, Southwest Ohio, USA. Hydrol. Sci. J. 2019, 64, 798–807. [Google Scholar] [CrossRef]
- Jasechko, S.; Birks, S.J.; Gleeson, T.; Wada, Y.; Fawcett, P.J.; Sharp, Z.D.; McDonnell, J.J.; Welker, J.M. The Pronounced Seasonality of Global Groundwater Recharge. Water Resour. Res. 2014, 50, 8845–8867. [Google Scholar] [CrossRef]
- Abiye, T.A.; Mengistu, H.; Masindi, K.; Demlie, M. Surface Water and Groundwater Interaction in the Upper Crocodile River Basin Johannesburg, South Africa: Environmental Isotope Approach. S. Afr. J. Geol. 2015, 118, 109–118. [Google Scholar] [CrossRef]
- Castro, M.C.; Goblet, P. Calculation of Ground Water Ages—A Comparative Analysis. Ground Water 2005, 43, 368–380. [Google Scholar] [CrossRef]
- Stefánsson, A.; Arnórsson, S.; Sveinbjörnsdóttir, Á.E.; Heinemaier, J.; Kristmannsdóttir, H. Isotope (ΔD, Δ18O, 3H, Δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water-Rock Interaction and Age of Low-Temperature Geothermal Water. Appl. Geochem. 2019, 108–119, 104380. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Ren, X.Z.; Rioual, P. Geological Control on the Origin of Fresh Groundwater in the Otindag Desert, China. Appl. Geochem. 2019, 103, 131–142. [Google Scholar] [CrossRef]
- Jin, K.; Rao, W.; Tan, H.; Song, Y.; Yong, B.; Zheng, F.; Chen, T.; Han, L. H-O Isotopic and Chemical Characteristics of a Precipitation-Lake Water-Groundwater System in a Desert Area. J. Hydrol. 2018, 559, 848–860. [Google Scholar] [CrossRef]
- Zhao, J.B.; Ma, Y.D.; Luo, X.Q.; Yue, D.P.; Shao, T.J.; Dong, Z.B. The Discovery of Surface Runoff in the Megadunes of Badain Jaran Desert, China, and Its Significance. Sci. China Earth Sci. 2017, 60, 707–719. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.S.; Wang, Y.; Hu, B.X. Origin of Water in the Badain Jaran Desert, China: New Insight from Isotopes. Hydrol. Earth Syst. Sci. 2017, 21, 4419–4431. [Google Scholar] [CrossRef]
- Rahul, P.; Prasanna, K.; Ghosh, P.; Anilkumar, N.; Yoshimura, K. Stable Isotopes in Water Vapor and Rainwater over Indian Sector of Southern Ocean and Estimation of Fraction of Recycled Moisture. Sci. Rep. 2018, 8, 7552–7562. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Friesen, J.; Weise, S.M.; Al Abri, O.; Bait Said, A.B.A.; Michelsen, N. Stable Isotope Composition of Cyclone Mekunu Rainfall, Southern Oman. Water Resour. Res. 2020, 56, 1944–1957. [Google Scholar] [CrossRef]
- Nicholson, S.L.; Pike, A.W.G.; Hosfield, R.; Roberts, N.; Sahy, D.; Woodhead, J.; Cheng, H.; Edwards, R.L.; Affolter, S.; Leuenberger, M.; et al. Pluvial Periods in Southern Arabia over the Last 1.1 Million-Years. Quat. Sci. Rev. 2020, 229–246, 106112. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann-Kendall and Innovative Trend Method for Water Quality Parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Farid, H.U.; Ayub, H.U.; Khan, Z.M.; Ahmad, I.; Anjum, M.N.; Kanwar, R.M.A.; Mubeen, M.; Sakinder, P. Groundwater Quality Risk Assessment Using Hydro-Chemical and Geospatial Analysis. Environ. Dev. Sustain. 2023, 25, 8343–8365. [Google Scholar] [CrossRef]
- Douglas, A.A.; Osiensky, J.L.; Keller, C.K. Carbon-14 Dating of Ground Water in the Palouse Basin of the Columbia River Basalts. J. Hydrol. 2007, 334, 502–512. [Google Scholar] [CrossRef]
- McMahon, P.B.; Galloway, J.M.; Hunt, A.G.; Belitz, K.; Jurgens, B.C.; Johnson, T.D. Geochemistry and Age of Groundwater in the Williston Basin, USA: Assessing Potential Effects of Shale-Oil Production on Groundwater Quality. Appl. Geochem. 2021, 125–141, 104833. [Google Scholar] [CrossRef]
- Jasmin, I.; Mallikarjuna, P. Review: Satellite-Based Remote Sensing and Geographic Information Systems and Their Application in the Assessment of Groundwater Potential, with Particular Reference to India. Hydrogeol. J. 2011, 19, 729–740. [Google Scholar] [CrossRef]
- Eraifej, N.; Abu-Jaber, N. Geochemistry and Pollution of Shallow Aquier in the Mofraq Area, Northan Jordan. Environ. Geol. 1999, 37, 162–170. [Google Scholar] [CrossRef]
- Abu-Jaber, N. Geochemical Evolution and Recharge of the Shallow Aquifers at Tulul al Ashaqif, NE Jordan. Environ. Geol. 2001, 41, 372–383. [Google Scholar] [CrossRef]
- Hussain, S.; Xianfang, S.; Hussain, I.; Jianrong, L.; Dong Mei, H.; Li Hu, Y.; Huang, W. Controlling Factors of the Stable Isotope Composition in the Precipitation of Islamabad, Pakistan. Adv. Meteorol. 2015, 2015, 817513. [Google Scholar] [CrossRef]
- Ahmad, M.; Rafiq, M.; Akram, W.; Tasneem, M.A.; Ahmad, N.; Iqbal, N.; Sajjad, M.I. Assessment of Aquifer System in the City of Lahore, Pakistan Using Isotopic Techniques; International Atomic Energy Agency: Vienna, Austria, 2002; pp. 109–133. [Google Scholar]
- Fahad, S.; Li, W.; Lashari, A.H.; Islam, A.; Khattak, L.H.; Rasool, U. Evaluation of Land Use and Land Cover Spatio-Temporal Change during Rapid Urban Sprawl from Lahore, Pakistan. Urban. Clim. 2021, 39, 501–518. [Google Scholar] [CrossRef]
- Leghari, S.J.; Hu, K.; Wei, Y.; Wang, T.; Bhutto, T.A.; Buriro, M. Modelling Water Consumption, N Fates and Maize Yield under Different Water-Saving Management Practices in China and Pakistan. Agric. Water Manag. 2021, 255–265, 107033. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Gill, M.A.; Sarwar, A. Sustainable Groundwater Management in Pakistan: Challenges and Opportunities. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Geophysical Assessment of Groundwater Potential: A Case Study from Mian Channu Area, Pakistan. Groundwater 2018, 56, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Birdi, P.K.; Kale, K.V. Accuracy Assessment of Classification on Landsat-8 Data for Land Cover and Land Use of an Urban Area by Applying Different Image Fusion Techniques and Varying Training Samples. In Microelectronics, Electromagnetics and Telecommunications; Springer: Singapore, 2019; Volume 521, pp. 189–198. [Google Scholar] [CrossRef]
- IAEA. Sampling and Isotope Analysis of Agricultural Pollutant in Water; IAEA: Vienna, Austria, 2018; pp. 8–9. [Google Scholar]
- Broers, H.P. The Spatial Distribution of Groundwater Age for Different Geohydrological Situations in the Netherlands: Implications for Groundwater Quality Monitoring at the Regional Scale. J. Hydrol. 2004, 299, 84–106. [Google Scholar] [CrossRef]
- Gusyev, M.A.; Abrams, D.; Toews, M.W.; Morgenstern, U.; Stewart, M.K.; Hutt, L.; Zealand, N.; Survey, S.W.; Dynamics, A.; Hutt, L.; et al. A Comparison of Particle-Tracking and Solute Transport Methods for Simulation of Tritium Concentrations and Groundwater Transit Times in River Water. Hydrol. Earth Syst. Sci. 2014, 18, 3109–3119. [Google Scholar] [CrossRef]
- Franck, D.; Asselineau, B.; Carlan, L.D.E.; Clairand, I.; Huet, C.; Lacoste, V.; Trompier, F. La Dosimétrie à l ’ IRSN. Radioprotection 2007, 41, 227–252. [Google Scholar] [CrossRef]
- Beyerle, U.; Aeschbach-Hertig, W.; Imboden, D.M.; Baur, H.; Graf, T.; Kipfer, R. A Mass, Spectrometric System for the Analysis of Noble Gases and Tritium from Water Samples. Environ. Sci. Technol. 2000, 34, 2042–2050. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, N.; Singh, S.; Mukherjee, S. Normalized Difference Vegetation Index (NDVI) Based Classification to Assess the Change in Land Use/Land Cover (LULC) in Lower Assam, India. Int. J. Adv. Remote Sens. GIS 2016, 5, 1963–1970. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 1982 to 2020: A Case Study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 229–243. [Google Scholar] [CrossRef]
- Roznik, M.; Boyd, M.; Porth, L. Improving Crop Yield Estimation by Applying Higher Resolution Satellite NDVI Imagery and High-Resolution Cropland Masks. Remote Sens. Appl. 2022, 25, 713–726. [Google Scholar] [CrossRef]
- Taufik, A.; Sakinah, S.; Ahmad, S.; Ahmad, A. Classification of Landsat 8 Satellite Data Using NDVI Thresholds. J. Telecommun. Electron. Comput. Eng. 2016, 8, 401–405. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H. Trend Detection in Hydrologic Data: The Mann-Kendall Trend Test under the Scaling Hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Sutton, C.; Kumar, S.; Lee, M.K.; Davis, E. Human Imprint of Water Withdrawals in the Wet Environment: A Case Study of Declining Groundwater in Georgia, USA. J. Hydrol. Reg. Stud. 2021, 35, 401–417. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; pp. 119–129. [Google Scholar]
- Jasechko, S. Global Isotope Hydrogeology―Review. Reviews of Geophysics; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2019; pp. 835–965. [Google Scholar] [CrossRef]
- Varikoden, H.; Revadekar, J.V. On the Extreme Rainfall Events during the Southwest Monsoon Season in Northeast Regions of the Indian Subcontinent. Meteorol. Appl. 2020, 27, 227–240. [Google Scholar] [CrossRef]
- Jiang, X.; Ting, M. A Dipole Pattern of Summertime Rainfall across the Indian Subcontinent and the Tibetan Plateau. J. Clim. 2017, 30, 9607–9620. [Google Scholar] [CrossRef]
- Tanachaichoksirikun, P.; Seeboonruang, U. Distributions of Groundwater Age under Climate Change of Thailand’s Lower Chao Phraya Basin. Water 2020, 12, 3474. [Google Scholar] [CrossRef]
- Qadir, A.; Malik, R.N.; Husain, S.Z. Spatio-Temporal Variations in Water Quality of Nullah Aik-Tributary of the River Chenab, Pakistan. Environ. Monit. Assess. 2008, 140, 43–59. [Google Scholar] [CrossRef] [PubMed]
- James, M.; Ren, Z.; Peterson, T.J.; Chen, D. Water Table Depth Data for Use in Modelling Residential Building Ground-Coupled Heat Transfer. Clean. Eng. Technol. 2021, 3, 221–229. [Google Scholar] [CrossRef]
- Brkić, Ž.; Larva, O.; Kuhta, M. Groundwater Age as an Indicator of Nitrate Concentration Evolution in Aquifers Affected by Agricultural Activities. J. Hydrol. 2021, 602–620, 126799. [Google Scholar] [CrossRef]
- Mehmood, Z.; Khan, N.M.; Sadiq, S.; Mandokhail, S.; Ullah, J.; Ashiq, S.Z. Assessment of Subsurface Lithology, Groundwater Depth, and Quality of UET Lahore, Pakistan, Using Electrical Resistivity Method. Arab. J. Geosci. 2020, 13, 281–288. [Google Scholar] [CrossRef]
- Awais, M.; Arshad, M.; Ahmad, S.R.; Nazeer, A.; Waqas, M.M.; Aziz, R.; Shakoor, A.; Rizwan, M.; Chauhdary, J.N.; Mehmood, Q.; et al. Simulation of Groundwater Flow Dynamics under Different Stresses Using MODFLOW in Rechna Doab, Pakistan. Sustainability 2023, 15, 661. [Google Scholar] [CrossRef]
- Zia, S.; Shirazi, S.A.; Nasar-U-Minallah, M. Vulnerability Assessment of Urban Floods in Lahore, Pakistan Using GIS Based Integrated Analytical Hierarchy Approach. Proc. Pak. Acad. Sci. USA 2021, 58, 85–96. [Google Scholar] [CrossRef]
- Ahmad, I.; Saleem, S. Lahore, Pakistan—Urbanization Challenges and Opportunities. Cities 2017, 72, 348–355. [Google Scholar] [CrossRef]
- Zakir-hassan, G.; Shabir, G.; Hassn, F.R.; Akhtar, S. Groundwater-Food Security Nexus under Changing Climate-Historical Prospective of Indus Basin Irrigation System In Pakistan. Int. J. Soc. Sci. Humanit. Res. 2022, 5, 28–38. [Google Scholar]
- Shah, Z.; Gabriel, H.; Haider, S.; Jafri, T. Analysis of Seepage Loss from Concrete Lined Irrigation Canals in Punjab, Pakistan. Irrig. Drain. 2020, 69, 668–681. [Google Scholar] [CrossRef]
- Okuhata, B.K.; Thomas, D.M.; Dulai, H.; Popp, B.N.; Lee, J.; El-Kadi, A.I. Inference of Young Groundwater Ages and Modern Groundwater Proportions Using Chlorofluorocarbon and Tritium/Helium-3 Tracers from West Hawai‘i Island. J. Hydrol. 2022, 609, 277–291. [Google Scholar] [CrossRef]
- Casillas-Trasvina, A.; Rogiers, B.; Beerten, K.; Pärn, J.; Wouters, L.; Walraevens, K. Using Helium-4, Tritium, Carbon-14 and Other Hydrogeochemical Evidence to Evaluate the Groundwater Age Distribution: The Case of the Neogene Aquifer, Belgium. J. Hydrol. X 2022, 17–36, 100132. [Google Scholar] [CrossRef]
- Thomas, J.M.; Hershey, R.L.; Fereday, W.; Burr, G. Using Carbon-14 of Dissolved Organic Carbon to Determine Groundwater Ages and Travel Times in Aquifers with Low Organic Carbon. Appl. Geochem. 2021, 124–141, 104842. [Google Scholar] [CrossRef]
TU | Groundwater Age |
---|---|
<5 | >50 years |
5–8 | 10–50 years |
8–12 | 5–10 years |
12–30 | Fusion explosion Tritium |
>30 | Recharge in 1960–1970 |
Groundwater Origin | 18O (%) | 2H (%) |
---|---|---|
Rain water | >−5.2 | >−31 |
Major rainwater and some terraces of river water | −5.2 to −6.2 | −31 to −39 |
Major river water and some terraces of rainwater | −6.2 to −7.2 | −39 to −48 |
river water | <−7.2 | <−48 |
Sample ID | Latitude (DMS) | Longitude (DMS) | Depth (m) | Oxygen-18 18O (%) | Deuterium 2H (%) | Tritium 3H (TU) |
---|---|---|---|---|---|---|
1 | 31°23′15″ | 74°34′34″ | 91.44 | −6.87 | −44.71 | 8.23 |
2 | 31°24′43″ | 74°35′04″ | 25.91 | −6.06 | −41.89 | 9.01 |
3 | 31°32′11″ | 74°35′54″ | 137.16 | −7.35 | −51.85 | 8.55 |
4 | 31°35′35″ | 74°33′18″ | 25.91 | −8.59 | −55.34 | 10.49 |
5 | 31°42′11″ | 74°28′7.47″ | 18.29 | −9.62 | −60.4 | - |
6 | 31°20′57″ | 74°22′31″ | 27.43 | −5.28 | −35.05 | - |
7 | 31°45′02″ | 74°42′15″ | 27.43 | −5.31 | −36.5 | - |
8 | 31°29′29″ | 74°35′08″ | 121.92 | −7.1 | −45.79 | 4.73 |
9 | 31°37′45″ | 74°32′35″ | 106.68 | −8.17 | −52.94 | 10.29 |
10 | 31°40′09″ | 74°31′16″ | 30.48 | −7.95 | −48.87 | - |
11 | 31°35′20″ | 74°25′27″ | 152.40 | −8.2 | −50.247 | 10.54 |
12 | 31°34′19″ | 74°18′18″ | 167.64 | −8.73 | −53.25 | 10.14 |
13 | 31°30′34″ | 74°18′34″ | 15.24 | −8.06 | −53.12 | 10.81 |
14 | 31°28′26″ | 74°13′04″ | 18.29 | −9.65 | −59.73 | 11.77 |
15 | 31°17′39.33″ | 74°30′39.52″ | 9.14 | −8.2 | −55.07 | 10.16 |
16 | 31°13′40″ | 74°30′45.6″ | 45.72 | −8.07 | −53.63 | 10.57 |
17 | 31°03′40″ | 74°31′47″ | 42.67 | −6.57 | −41.42 | 7.69 |
18 | 31°00′32″ | 74°25′06″ | 44.20 | −9.49 | −60.62 | 8.27 |
19 | 30°55′03″ | 74°19′33″ | 30.48 | −8.98 | −59.51 | 8.15 |
20 | 30°48′13″ | 74°12′09″ | 73.15 | −9.6 | −64.51 | 9.52 |
21 | 30°52′12″ | 74°02′59″ | 30.48 | −8.82 | −57.68 | 10.51 |
22 | 30°58′26″ | 73°58′21″ | 30.48 | −7.59 | −48.36 | 8.93 |
23 | 31°05′11″ | 73°58′03″ | 21.34 | −7.19 | −49.9 | - |
24 | 31°09′37″ | 74°06′02″ | 22.86 | −7.77 | −53.15 | - |
25 | 31°17′58″ | 74°13′20″ | 24.38 | −6.4 | −42.69 | - |
26 | 31°24′03″ | 74°09′24″ | 106.68 | −8.42 | −53.24 | 9.35 |
27 | 31°17′39″ | 74°04′01″ | 36.58 | −9.03 | −57.31 | - |
28 | 31°13′35″ | 73°58′24″ | 19.81 | −8.78 | −56.13 | - |
29 | 31°07′48″ | 73°55′07″ | 45.72 | −7.88 | −52.95 | - |
30 | 31°08′0.19″ | 74°26′29.18″ | 28.96 | −8.92 | −57.29 | - |
31 | 31°11′27.74″ | 74°19′46.12″ | 24.38 | −5.23 | −36.17 | - |
Parameters | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
EC (μS/cm) | 400 | 3000 | 1392 | 527.79 |
SAR (%) | 1.10 | 35.10 | 10.17 | 5.58 |
RSC (mEq/L) | 0.40 | 15.90 | 4.25 | 2.73 |
DWT (meter) | 2.8 | 27.7 | 13.1 | 7.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, U.; Nabi, G.; Iqbal, M.; Masood, M.; Arshed, A.B.; Saifullah, M.; Shahid, M. Groundwater Age and Origin and Its Relation with Anthropogenic and Climatic Factors. Water 2024, 16, 287. https://doi.org/10.3390/w16020287
Iqbal U, Nabi G, Iqbal M, Masood M, Arshed AB, Saifullah M, Shahid M. Groundwater Age and Origin and Its Relation with Anthropogenic and Climatic Factors. Water. 2024; 16(2):287. https://doi.org/10.3390/w16020287
Chicago/Turabian StyleIqbal, Usman, Ghulam Nabi, Mudassar Iqbal, Muhammad Masood, Abu Bakar Arshed, Muhammad Saifullah, and Muhammad Shahid. 2024. "Groundwater Age and Origin and Its Relation with Anthropogenic and Climatic Factors" Water 16, no. 2: 287. https://doi.org/10.3390/w16020287
APA StyleIqbal, U., Nabi, G., Iqbal, M., Masood, M., Arshed, A. B., Saifullah, M., & Shahid, M. (2024). Groundwater Age and Origin and Its Relation with Anthropogenic and Climatic Factors. Water, 16(2), 287. https://doi.org/10.3390/w16020287