
 

Index S1: Theory 

S1.1. Coupled hydromechanical model 
In the following, the key elements of the hydromechanical modelling approach are 

briefly described and readers are referred to Beck et al. [32] for more details. In a 
comprehensive multi-phase flow system [e.g., 23,45], the mass balance equation for each 
phase is described by  

∂(φ Siρi)
∂t  + ∇·(ρivi) +  Wi = 0 (S1) 

where φ [-] is porosity, t [T] is time, Si [-], ρi [ML-3], vi [LT-1], and W [ML-3T-1] are the 
effective saturation, density, velocity, and possible sink/source of phase i, respectively. In 
the case of variably saturated hillslopes, a two-phase flow system consisting of water 
(wetting phase) and air (non-wetting phase) is considered. Here, bold symbols indicate 
the tensorial nature of these parameters. In the case of laminar flow behaviour for 
infiltration and subsurface flow, vi can be defined by Darcy’s law. The extended Darcy’s 
law for multiphase flow e.g., [46] is:  

vi = Ki (Si) ∇Hi (S2) 

where Hi [L] is the total hydraulic head and Ki [LT-1] is the hydraulic conductivity tensor, 
which depends on the saturation of phase i, Si [-]. In case of a two-phase flow system, the 
saturation of each phase is the fraction of the pore space occupied by that specific fluid 
phase, so that the sum of both phase saturations (air, Sa and water Sw) is equal to one, as:  ෍ Si

i

= Sw +  Sa = 1 (S3) 

In such a flow system, the pressure of the wetting phase (water), pw [ML-1T-2], and the 
non-wetting phase (air), pa [ML-1T-2], are related via the capillary pressure, pc [ML-1T-2] as: 

pc = pa − pw (S4) 

The unknowns of the balance equations (S3) and (S4) need to be reduced to two 
primary variables for two-phase flow systems. In this study, the pressure of the wetting 
phase, pw, and the saturation of the non-wetting phase, Sa, were selected. In the case of a 
simplified single-phase (water) flow system, only one primary variable is required. In this 
study, the water pressure, pw, was selected as the primary variable of the Richards’ model. 
Following van Genuchten [47] model, the water retention curve is given as 

Sw =  θ൫pc൯ − θr

θs − θr
 (S5) 

in which 

pc = ⎩⎨
⎧ρwgα  ቂSw

ି1 mൗ − 1ቃ1 nൗ          S୵ < 1
0                      S୵ = 1  (S6) 

where θs [-] and θr [-] are the saturated and residual soil water content, respectively, ρw 
[ML−3] is the density of water, g [LT−2] is the gravitational constant, and n [-], m (=1− ଵ୬) [-
], and α [L−1] are the so-called van Genuchten parameters that depend on the pore size 
distribution and the inverse of the air entry suction, respectively. The hydraulic 
conductivity for the water, Kw [LT-1], and air phase, Ka [LT-1], can be defined using the 
commonly used approach of van Genuchten [47] and Mualem [48] as:  

Kw(Sw) = Ksw S୵l ൤1 − ቀ1 −  Sw
1 mൗ ቁm൨2

 (S7) 



 

Ka(Sa) = Ksa (1 −  Sw)l ቂ1 − Sw
1 mൗ ቃ2m

 (S8) 

where Ksw [LT-1] and Ksa [LT-1], are the saturated hydraulic conductivity for the water and 
air phase, respectively and l [-] is a tortuosity parameter that is commonly set to 0.5 [48].  

In the hydromechanical model formulation used here, the soil is considered to be a 
linear-elastic medium. This implies that no plastic behaviour and deformation occurs due 
to the stress state. The stress distribution within a linear-elastic material is described by a 
momentum balance equation. After ignoring the inertia term due to the quasi-static 
conditions, the conservation of momentum can be written as e.g., [49,50]: ∇·(σ) + γ Fv = 0 (S9) 

where σ [ML−1T−2] is the total stress tensor, γ [ML−2T−2] is the wet unit weight of the soil, 
and Fv [-] is the body force vector. The generalized effective stress for variably saturated 
soils is given by Bishop [51] as: 

σ′ = (σ − pa I) + χ (pa − pw ) I (S10)

where σ′ [ML−1T−2] is the effective stress tensor, χ is the Bishop’s parameter or the effective 
stress parameter which is defined to be 1 for saturated and less than 1 for unsaturated 
soils, and I is the unit vector. The second term on the right-hand side of equation (S10) 
represents the suction stress, σs [ML−1T−2], which is described by Lu and Likos [52] as: 

σs = − Sw (pa − pw) (S11)

Accordingly, the effective stress can be described in terms of effective pressure, peff 
[ML−1T−2], as: 

σ′ = (σ – peff I) (S12)

while  

peff = Sw pw + Sa pa (S13)

Once the effective stress term is defined, the resulting elastic deformation of the 
porous media can be obtained from the elastic moduli [53]. For an isotropic linear elastic 
material, only two elastic moduli are needed to define the behaviour of the material: 
Young’s modulus, E [ML−1T−2], and Poisson’s ratio, ν [-], in which  

E = 
σx

εx
 (S14)

and  

ν = − εx

εy
 (S15)

with σx [ML−1T−2], the normal stress along the x-axis of the coordinate system, and εx [-] 
and εy [-],the strains along the x and y axis, respectively. The strain tensor, εv [-], can be 
defined based on the displacement tensor, u [L] as: 

εv =
12 (grad 𝐮 + grad୘ 𝐮) (S16)

Displacement, u, is considered to be the primary variable in the momentum balance 
equation for the mechanical problem. If it is assumed that the solid matrix is rigid, the 
changes in bulk volume due to deformation will affect the pore volume. In order to 
consider this, an effective porosity, φeff [-], is defined as: 

φeff  =  
φ0  −   εv

1 −  εv
 ≈  φ0  −   εv (S17)

where φ0  [-] is the initial porosity. Moreover, the volumetric strain can be replaced by its 
equivalent, div u [-]: 



 

φeff  = (
φ0 – div 𝐮
1 – div 𝐮 ) (S18)

The change in effective porosity will induce changes in hydraulic conductivity. 
Different empirical equations have been proposed to describe the relationship between 
the porosity and the hydraulic conductivity e.g., [54,55]. In this study, the modified 
version of the empirical relationship of Davies and Davies [56] proposed by Rutqvist and 
Tsang [57] is used: 

Keff  =  K0 exp(22.2 (
φeff

φ0
− 1)) (S19)

where K0 [LT-1] is the initial hydraulic conductivity, and Keff [LT-1] is the effective hydraulic 
conductivity for both phases as a result of a change in porosity. It is important to note that 
this empirical equation provides approximate estimate of permeability, and is initially 
developed for rock material and therefore should be used with caution. 
S1.2.  Coupling strategies 

Various strategies exist for solving the set of coupled equations defined previously 
(equations S1-S19). In a so-called fully coupled approach, the unknowns of the flow 
equation (here, pw and Sa) are solved simultaneously with those of the mechanical problem 
(here, u) in each time step [34] (Figure S1a). This approach enables a comprehensive 
interaction between variable hydraulic and mechanical parameters, offering stability and 
accuracy e.g., [37]. However, it often comes with higher computational costs, particularly 
challenging for complex model domains requiring high spatial and temporal resolution. 
A more commonly used strategy is the sequentially coupled approach, which breaks the 
coupled problem into sub-problems with varying levels of interfaces. These flexible 
coupling interfaces may result in different levels of accuracy and computational efficiency 
[27]. In this approach, sub-problems are solved sequentially. First, the hydrological 
problem is solved for each time step (Figure S1b and c). Then, the water pressure 
distribution is used to solve the mechanical problem's momentum balance equation 
[32,58], constituting one coupling step. This approach does not consider the transient 
impact of mechanical processes on hydrological properties within the same time step. To 
address this limitation, it's possible to iterate between the hydrological and mechanical 
models within a single time step. The main advantage of the sequentially coupled model 
is its flexibility in using different simulators with potentially varying spatial and temporal 
resolutions to solve the sub-problems [59]. 
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(a) Fully coupled model 
(b) Sequentially coupled model 

(without iteration) 
(c) Sequentially coupled model 

(with iteration) 
Figure S1. Illustration of different coupling strategies and the considered interactions between sub-problems: (a) a fully coupled 

model, (b) a sequentially coupled without iterations, and (c) a sequentially coupled model with iterations within each time step. 



 

 
Figure S2. Illustration of the local factor of safety (LFS) concept using the Mohr circle (adapted from Lu et al. [7]). 

 
Index S2: Hydraulic parameters 

Table S1. Hydraulic and mechanical parameters of the simulated slope (based on Lu et al. [7]). 

Symbol Parameter name Unit Value Ѳୱ Saturated water content cm3 cm-3 0.46 Ѳ୰ Residual water content cm3 cm-3 0.034 Kୱ୵ Saturated hydraulic conductivity 
of water phase m s-1 1.39E-6 Kୱୟ Saturated hydraulic conductivity 

of air phase 
m s-1 1.0E-12 α van Genuchten fitting parameter m-1 1.6 n van Genuchten fitting parameter -* 1.37 γୢ୰୷ Dry unit weight kN m-3 20 

E Young’s modulus MPa 10 
ν Poisson’s ratio -* 0.33 
ϕ' Friction angle ° 30 
c' Effective cohesion kPa 15 

*dimensionless 
 


