Load-Settlement Analysis of Axially Loaded Piles in Unsaturated Soils
Abstract
:1. Introduction
2. Load-Settlement Relationship for Pile Embedded in Two-Layered Soil
2.1. Analysis Method
2.2. Development of the Proposed Model
2.3. Verification of Proposed Model for Two-Layered Soil with Numerical Data
3. Parametric Studies
3.1. Effect of Soil Moisture and Pile Slenderness on Pile-Soil Stiffness
3.2. Critical Slenderness Ratio for Pile Design
4. Estimation of Pile Head Settlement Corresponding to Ultimate Load in Unsaturated Soil
5. Implementation of the Proposed Method in Practice
6. Conclusions
- In general, soil desaturation has a positive effect on soil-pile system stiffness, leading to improved pile performance;
- The effect of soil desaturation on pile-soil stiffness is significant over a wide range of saturation degrees for fine-grained soils, while for coarse-grained soils, the effective range is limited to saturation degrees close to 100%;
- The pile slenderness ratio has a small or no effect on the soil-pile stiffness at lower saturation degrees after a certain slenderness ratio, here called the critical slenderness ratio, which can be calculated using Equation (19). Thus, in unsaturated soils, increasing the pile length with a constant radius may not achieve better load-carrying characteristics above the critical L/r0 value;
- The variation of wt/r0 with G/τ0 for various L/r0 values shows that in unsaturated soils for constant values of G/τ0 and pile radius, shorter piles experience less settlement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Arid Zone Forestry: A Guide for Field Technicians; Food and Agriculture Organization of the United Nations: Rome, Italy, 1989. [Google Scholar]
- Vanapalli, S.; Taylan, Z.N. Design of Single Pile Foundations Using the Mechanics of Unsaturated. Geomate J. 2012, 2, 197–204. [Google Scholar] [CrossRef]
- Chung, S.-H.; Yang, S.-R. Numerical Analysis of Small-Scale Model Pile in Unsaturated Clayey Soil. Int. J. Civ. Eng. 2017, 15, 877–886. [Google Scholar] [CrossRef]
- Al-Khazaali, M.; Vanapalli, S. Numerical Modelling Technique to Predict the Load versus Settlement Behavior of Single Piles in Unsaturated Coarse-Grained Soils. In Proceedings of the Geo-Quebec 2015, Quebec City, QC, Canada, 20–23 September 2015. [Google Scholar] [CrossRef]
- al-Omari, R.R.; Fattah, M.Y.; Kallawi, A.M. Stress Transfer from Pile Group in Saturated and Unsaturated Soil Using Theoretical and Experimental Approaches. MATEC Web Conf. 2017, 120, 06005. [Google Scholar] [CrossRef]
- Al-Khazaali, M.; Vanapalli, S.K. Experimental Investigation of Single Model Pile and Pile Group Behavior in Saturated and Unsaturated Sand. J. Geotech. Geoenviron. Eng. 2019, 145, 04019112. [Google Scholar] [CrossRef]
- Fadhil, S.H.; Al-Omari, R.R.; Fattah, M.Y. Measuring Pile Shaft and Tip Capacities of a Single Pile Embedded in Saturated and Unsaturated Expansive Clayey Soil. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012086. [Google Scholar] [CrossRef]
- Fattah, M.Y.; al-Omari, R.R.; Kallawi, A.M. Model Studies on Load Sharing for Shaft and Tip of Pile Groups in Saturated and Unsaturated Soils. Geotech. Geol. Eng. 2020, 38, 4227–4242. [Google Scholar] [CrossRef]
- Ricken Marques, V.; Belincanta, A.; Beroya-Eitner, M.-A.; Almada Augusto, J.L.; Guelssi, E.; Zachert, H. Effect of Soil Moisture Content on the Bearing Capacity of Small Bored Piles in the Unsaturated Soil of Maringá, Paraná, Brazil. MATEC Web Conf. 2021, 337, 03006. [Google Scholar] [CrossRef]
- Liu, Y.; Vanapalli, S.K.; Jiang, S. Mechanical Behavior of Piles in Typical Unsaturated Expansive and Collapsible Soils Upon Water Infiltration. Front. Built Environ. 2022, 8, 864421. [Google Scholar] [CrossRef]
- Zacarin, J.G.M.X.; Da Silva, B.O.; Tsuha, C.D.H.C.; Vilar, O.M. Seasonal Variation of the Shaft Resistance of CFA Piles in Unsaturated Soil: A Case Study. Can. Geotech. J. 2024, 61, 134–148. [Google Scholar] [CrossRef]
- Randolph, M.F.; Wroth, C.P. Analysis of Deformation of Vertically Loaded Piles. J. Geotech. Engrg. Div. 1978, 104, 1465–1488. [Google Scholar] [CrossRef]
- Coyle, H.M.; Reese, L.C. Load Transfer for Axially Loaded Piles in Clay. J. Soil. Mech. Found. Div. 1966, 92, 1–26. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z. A Simplified Nonlinear Approach for Single Pile Settlement Analysis. Can. Geotech. J. 2012, 49, 1256–1266. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Jiang, G.; Wen, M.; Wang, K.; Hesham El Naggar, M.; Ni, P.; Mei, G. A New Approach for Estimating the Vertical Elastic Settlement of a Single Pile Based on the Fictitious Soil Pile Model. Comput. Geotech. 2021, 134, 104100. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Salim, N.M.; Mohammed Mohsin, I. Behavior of Single Pile in Unsaturated Clayey Soils. Eng. Technol. J. 2014, 32, 763–787. [Google Scholar] [CrossRef]
- Abed, A.A.; Vermeer, P.A. Numerical Simulation of Unsaturated Soil Behaviour. Int. J. Comput. Appl. Technol. 2009, 34, 2–12. [Google Scholar] [CrossRef]
- Wu, X.; Vanapalli, S.K. Three-Dimensional Modeling of the Mechanical Behavior of a Single Pile in Unsaturated Expansive Soils during Infiltration. Comput. Geotech. 2022, 145, 104696. [Google Scholar] [CrossRef]
- D’Onza, F.; Wheeler, S.J.; Gallipoli, D.; Barrera Bucio, M.; Hofmann, M.; Lloret-Cabot, M.; Lloret Morancho, A.; Mancuso, C.; Pereira, J.-M.; Romero Morales, E.; et al. Benchmarking Selection of Parameter Values for the Barcelona Basic Model. Eng. Geol. 2015, 196, 99–118. [Google Scholar] [CrossRef]
- Wheeler, S.J.; Gallipoli, D.; Karstunen, M. Comments on Use of the Barcelona Basic Model for Unsaturated Soils. Int. J. Numer. Anal. Methods Geomech. 2002, 26, 1561–1571. [Google Scholar] [CrossRef]
- Schanz, T.; Vermeer, P.A.; Bonnier, P.G. The Hardening Soil Model: Formulation and Verification. In Beyond 2000 in Computational Geotechnics; Routledge: London, UK, 1999. [Google Scholar]
- Clifton, A.W. The Emergence of Unsaturated Soil Mechanics—Fredlund Volume; NRC Press: Ottawa, ON, Canada, 1999. [Google Scholar]
- Oh, W.; Vanapalli, S. Relationship between Poisson’s Ratio and Soil Suction for Unsaturated Soils. In Proceeding of the 5th Asia-Pacific Conference on Unsaturated Soils 2011, Pattaya, Thailand, 14–16 November 2011; Volume 1. [Google Scholar]
- Kumar Thota, S.; Duc Cao, T.; Vahedifard, F. Poisson’s Ratio Characteristic Curve of Unsaturated Soils. J. Geotech. Geoenviron. Eng. 2021, 147, 04020149. [Google Scholar] [CrossRef]
- Sawangsuriya, A.; Edil, T.B.; Bosscher, P.J. Modulus-Suction-Moisture Relationship for Compacted Soils in Postcompaction State. J. Geotech. Geoenviron. Eng. 2009, 135, 1390–1403. [Google Scholar] [CrossRef]
- Lu, N.; Kaya, M. Power Law for Elastic Moduli of Unsaturated Soil. J. Geotech. Geoenviron. Eng. 2014, 140, 46–56. [Google Scholar] [CrossRef]
- Ngoc, T.P.; Fatahi, B.; Khabbaz, H. Impacts of Drying-Wetting and Loading-Unloading Cycles on Small Strain Shear Modulus of Unsaturated Soils. Int. J. Geomech. 2019, 19, 04019090. [Google Scholar] [CrossRef]
- Hardin, B.O.; Black, W.L. Sand Stiffness Under Various Triaxial Stresses. J. Soil. Mech. Found. Div. 1966, 92, 27–42. [Google Scholar] [CrossRef]
- Wu, S.; Gray, D.H.; Richart, F.E. Capillary Effects on Dynamic Modulus of Sands and Silts. J. Geotech. Eng. 1984, 110, 1188–1203. [Google Scholar] [CrossRef]
- Pereira, J.H.F.; Fredlund, D.G. Volume Change Behavior of Collapsible Compacted Gneiss Soil. J. Geotech. Geoenviron. Eng. 2000, 126, 907–916. [Google Scholar] [CrossRef]
- Cho, G.C.; Santamarina, J.C. Unsaturated Particulate Materials—Particle-Level Studies. J. Geotech. Geoenviron. Eng. 2001, 127, 84–96. [Google Scholar] [CrossRef]
- Mancuso, C.; Vassallo, R.; d’Onofrio, A. Small Strain Behavior of a Silty Sand in Controlled-Suction Resonant Column Torsional Shear Tests. Can. Geotech. J. 2002, 39, 22–31. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Xu, J.; Yung, S.Y. Effects of Wetting–Drying and Stress Ratio on Anisotropic Stiffness of an Unsaturated Soil at Very Small Strains. Can. Geotech. J. 2009, 46, 1062–1076. [Google Scholar] [CrossRef]
- Biglari, M.; Mancuso, C.; d’Onofrio, A.; Jafari, M.K.; Shafiee, A. Modelling the Initial Shear Stiffness of Unsaturated Soils as a Function of the Coupled Effects of the Void Ratio and the Degree of Saturation. Comput. Geotech. 2011, 38, 709–720. [Google Scholar] [CrossRef]
- Khosravi, A.; McCartney, J.S. Impact of Hydraulic Hysteresis on the Small-Strain Shear Modulus of Low Plasticity Soils. J. Geotech. Geoenviron. Eng. 2012, 138, 1326–1333. [Google Scholar] [CrossRef]
- Oh, W.T.; Vanapalli, S.K. Semi-Empirical Model for Estimating the Small-Strain Shear Modulus of Unsaturated Non-Plastic Sandy Soils. Geotech. Geol. Eng. 2014, 32, 259–271. [Google Scholar] [CrossRef]
- Georgetti, G.B.; Vilar, O.M.; Rodrigues, R.A. Small-Strain Shear Modulus and Shear Strength of an Unsaturated Clayey Sand. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; Volume 11131116. [Google Scholar]
- Adem, H.H.; Vanapalli, S.K. Prediction of the Modulus of Elasticity of Compacted Unsaturated Expansive Soils. Int. J. Geotech. Eng. 2015, 9, 163–175. [Google Scholar] [CrossRef]
- Wong, K.S.; Mašín, D. Coupled Hydro-Mechanical Model for Partially Saturated Soils Predicting Small Strain Stiffness. Comput. Geotech. 2014, 61, 355–369. [Google Scholar] [CrossRef]
- Hoyos, L.R.; Suescún-Florez, E.A.; Puppala, A.J. Stiffness of Intermediate Unsaturated Soil from Simultaneous Suction-Controlled Resonant Column and Bender Element Testing. Eng. Geol. 2015, 188, 10–28. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, J.; Ng, C.W.W. Effects of Temperature and Suction on Secant Shear Modulus of Unsaturated Soil. Geotech. Lett. 2015, 5, 123–128. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, C. A Simple Model for the Hysteretic Elastic Shear Modulus of Unsaturated Soils. J. Zhejiang Univ. Sci. A 2016, 17, 589–596. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, N.; McCartney, J.S. Unified Model for Small-Strain Shear Modulus of Variably Saturated Soil. J. Geotech. Geoenviron. Eng. 2016, 142, 04016039. [Google Scholar] [CrossRef]
- Cao, G.; Wang, W.; Yin, G.; Wei, Z. Experimental Study of Shear Wave Velocity in Unsaturated Tailings Soil with Variant Grain Size Distribution. Constr. Build. Mater. 2019, 228, 116744. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N.; Lan, H. Effects of Sand and Water Contents on the Small-Strain Shear Modulus of Loess. Eng. Geol. 2019, 260, 105202. [Google Scholar] [CrossRef]
- Khosravi, A.; Hashemi, A.; Ghadirianniari, S.; Khosravi, M. Variation of Small-Strain Shear Modulus of Unsaturated Silt under Successive Cycles of Drying and Wetting. J. Geotech. Geoenviron. Eng. 2020, 146, 04020050. [Google Scholar] [CrossRef]
- Pham, N.T. Experimental Study on the Small Strain Shear Modulus of Unsaturated Soils; University of Technology Sydney: Sydney, Australia, 2020. [Google Scholar]
- Mahmoodabadi, M.; Bryson, L.S. Direct Application of the Soil–Water Characteristic Curve to Estimate the Shear Modulus of Unsaturated Soils. Int. J. Geomech. 2021, 21, 04020243. [Google Scholar] [CrossRef]
- Yan, K.; Wang, Y.; Yang, Z.; Lai, X.; Chen, C. Experimental Study on Small-Strain Shear Modulus of Unsaturated Silty-Fine Sand. Appl. Sci. 2022, 12, 8743. [Google Scholar] [CrossRef]
- Ghazavi, M.; Mahmoodi, E.; El Naggar, H. Load–Deflection Analysis of Laterally Loaded Piles in Unsaturated Soils. Acta Geotech. 2023, 18, 2217–2238. [Google Scholar] [CrossRef]
- Espitia, J.M.; Caicedo, B.; Vallejo, L. Behaviour of Shales under Uniaxial Compression through Suction Paths. In Proceedings of the International Symposium on Energy Geotechnics SEG, Lausanne, Swiss, 25–28 September 2018. [Google Scholar]
- Zhan, L. Field and Laboratory Study of an Unsaturated Expansive Soil Associated with Rain-Induced Slope Instability; Hong Kong University of Science and Technology: Hong Kong, China, 2003. [Google Scholar]
- Miao, L.; Liu, S.; Lai, Y. Research of Soil–Water Characteristics and Shear Strength Features of Nanyang Expansive Soil. Eng. Geol. 2002, 65, 261–267. [Google Scholar] [CrossRef]
- Miao, L.; Houston, S.L.; Cui, Y.; Yuan, J. Relationship between Soil Structure and Mechanical Behavior for an Expansive Unsaturated Clay. Can. Geotech. J. 2007, 44, 126–137. [Google Scholar] [CrossRef]
- Miller, G.A.; Muraleetharan, K.K. Interpretation of Pressuremeter Tests in Unsaturated Soil. In Advances in Unsaturated Geotechnics; American Society of Civil Engineers: Denver, CO, USA, 2000; pp. 40–53. [Google Scholar] [CrossRef]
- Khosravi, A.; Ghayoomi, M.; McCartney, J.; Ko, H.-Y. Impact of Effective Stress on the Dynamic Shear Modulus of Unsaturated Sand. In GeoFlorida 2010; American Society of Civil Engineers: Orlando, FL, USA, 2010; pp. 410–419. [Google Scholar] [CrossRef]
- Khosravi, A.; Salam, S.; McCartney, J.S.; Dadashi, A. Suction-Induced Hardening Effects on the Shear Modulus of Unsaturated Silt. Int. J. Geomech. 2016, 16, D4016007. [Google Scholar] [CrossRef]
- Takkabutr, P. Experimental Investigations on Small-Strain Stiffness Properties of Partially Saturated Soils via Resonant Column and Bender Element Testing; The University of Texas at Arlington: Arlington, TX, USA, 2006. [Google Scholar]
- Brinkgreve, R.B.; Broere, W.; Waterman, D. Plaxis 2D Software Manual, Version 8; Delft University of Technology and Plaxis Inc.: Delft, The Netherlands, 2006.
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the Prediction of Shear Strength with Respect to Soil Suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Schmüdderich, C.; Shahrabi, M.M.; Taiebat, M.; Alimardani Lavasan, A. Strategies for Numerical Simulation of Cast-in-Place Piles under Axial Loading. Comput. Geotech. 2020, 125, 103656. [Google Scholar] [CrossRef]
- Hamid, T.B.; Miller, G.A. Shear Strength of Unsaturated Soil Interfaces. Can. Geotech. J. 2009, 46, 595–606. [Google Scholar] [CrossRef]
- Wehnert, M.; Vermeer, P.A. Numerical Analyses of Load Tests on Bored Piles. In Numerical Methods in Geomechanics–NUMOG IX; Routledge: London, UK, 2004; pp. 505–511. [Google Scholar]
- Baca, M.; Rybak, J. Pile Base and Shaft Capacity under Various Types of Loading. Appl. Sci. 2021, 11, 3396. [Google Scholar] [CrossRef]
- Liu, W.; Liang, J.; Xu, T. Tunnelling-Induced Ground Deformation Subjected to the Behavior of Tail Grouting Materials. Tunn. Undergr. Space Technol. 2023, 140, 105253. [Google Scholar] [CrossRef]
- Khosravi, A.; Shahbazan, P.; Pak, A. Impact of Hydraulic Hysteresis on the Small Strain Shear Modulus of Unsaturated Sand. Soils Found. 2018, 58, 344–354. [Google Scholar] [CrossRef]
- Thota, S.K.; Vahedifard, F. A Model for Ultimate Bearing Capacity of Piles in Unsaturated Soils under Elevated Temperatures. E3S Web Conf. 2020, 205, 05003. [Google Scholar] [CrossRef]
- Han, Z.; Vanapalli, S.K.; Kutlu, Z.N. Modeling Behavior of Friction Pile in Compacted Glacial Till. Int. J. Geomech. 2016, 16, D4016009. [Google Scholar] [CrossRef]
Nomenclature | |||
---|---|---|---|
Gunsat—unsaturated small strain shear modulus | μunsat—unsaturated Poisson’s ratio | ||
Gdry—small strain shear modulus at dry condition | μsat—unsaturated Poisson’s ratio | ||
Gsat —saturated small strain shear modulus | μd—unsaturated Poisson’s ratio | ||
G0 = the shear modulus at 1 kPa confining pressure | Sr—the soil saturation degree | ||
—unsaturated Young’s modulus | Vs—shear wave velocity in the soil | ||
—saturated Young’s modulus | Gs—specific gravity | ||
OCR —over consolidation ratio | K0—coefficient of lateral earth pressure at rest | ||
e —void ratio | ρ—soil density | ||
—soil suction | Patm—atmospheric pressure | ||
—principal net stress | —the reference pressure | ||
—mean effective stress | —the void ratio function proposed by Hardin and Black [28]. | ||
—mean apparent reconsolidation stress | |||
Reference | Proposed equation | Description | |
Wu et al. [29] |
| Tested on fine-grained non-cohesive soil | |
Pereira and Fredlund [30] |
| Validated for SM-ML soil | |
Cho and Santamarina [31] |
| Validated for 4 cohesionless soil mixtures | |
Manusco et al. [32] |
| Tested on silty sand | |
Ng et al. [33] |
| Tested on ML soil | |
Sawangsuriya et al. [25] |
| Fitting parameters were evaluated for 9 cohesive and cohesionless soils. | |
Sawangsuriya et al. [25] |
| Fitting parameters were evaluated for 9 cohesive and cohesionless soils. | |
Biglari et al. [34] |
| Fitting parameters evaluated for Zenoz kaolin | |
Khosravi and McCartney [35] |
| Tested on low plasticity soil | |
Oh and Vanapalli [36] |
| Evaluated for sandy soil behavior and fitting parameters evaluated for 5 sandy soils | |
Lu and Kaya [26] |
| Fitting parameter evaluated for 16 cohesive and cohesionless soils | |
Georgetti et al. [37] |
| Fitting parameters evaluated for clayey medium to fine sand of colluvial origin | |
Adem and Vanapalli [38] |
| Evaluated for inflatable soil | |
Wong and Mašín [39] |
| Fitting parameters evaluated for completely decomposed tuff | |
Hoyos et al. [40] |
| Obtained for SM soil | |
Zhou et al. [41] |
| Fitting parameters evaluated for completely decomposed Tuff | |
XU and Zhou [42] |
| Validated for compacted clayey silt and sand | |
Dong et al. [43] |
| Fitting parameters were evaluated for 29 cohesive and cohesionless soils. | |
Cao et al. [44] |
| Fitting parameters evaluated for copper tailing | |
Liu et al. [45] |
| Fitting parameters evaluated for Yan’an loess | |
Khosravi et al. [46] |
| Validated for 4 sets of silty and SP-SM soil | |
Pham [47] |
| Fitting parameters evaluated for 4 cohesive soils | |
Mahmoodabadi and Bryson [48] |
| Validated for 13 cohesive and cohesionless soils | |
Thota et al. [24] | is the pore size distribution parameter | Validated for 5 cohesive and cohesionless soils | |
Yan et al. [49] |
| Tested on silty fine sand |
Reference | Soil Type | USCS Classification | Ip | Net Confining Stress (kPa) | m |
---|---|---|---|---|---|
Hoyos et al. [40] | Silty sand | SM | 5 | 400 | 0.790 |
200 | 1.270 | ||||
100 | 1.507 | ||||
50 | 1.529 | ||||
Espitia et al. [51] | Lower Hauterivian Barremian claystone | claystone | 10 | 0 | 0.763 |
Zhan [52] | Compacted expansive soils from Zao-Yang, China | CH | 31 | 50 | 0.925 |
200 | 0.992 | ||||
Miao et al. [53] | Compacted expansive soils from Nanyang, China | CH | 31.8 | 25 | 1.070 |
62.5 | 1.094 | ||||
112.5 | 1.838 | ||||
Miao et al. [54] | Compacted expansive soils from Guangxi, China | CH | 31.1 | 50 | 0.725 |
200 | 0.725 | ||||
Khosravi and McCartney [35] | Bonny Silt | ML | 4 | 100 | 0.624 |
150 | 0.352 | ||||
200 | 0.24 | ||||
Miller and Muraleetharan [55] | Minco Silt | CL | 8 | 39 | 2.439 |
Ng et al. [33] | Completely decomposed tuff from Hong Kong | ML | 14 | 110 | 0.893 |
300 | 0.61 | ||||
Zhou et al. [41] | Completely decomposed tuff from Hong Kong | ML | 14 | 100 | 1.566 |
Khosravi et al. [46] | Bonny Silt | ML | 4 | 40 | 1.298 |
200 | 1.055 | ||||
600 | 0.806 | ||||
Ardabil silt | ML | 8 | 40 | 0.437 | |
Ngoc et al. [27] | A mixture of 75% fine sand and 25% kaolin clay | SC | 9.8 | 20 | 1.238 |
Khosravi et al. [56] | F-75 blast furnace sand | SW | 3.50 | 0.553 | |
12 | 0.423 | ||||
20 | 0.308 | ||||
Khosravi et al. [57] | Bonny Silt | ML | 4 | 125 | 1.350 |
175 | 0.795 | ||||
225 | 0.782 | ||||
Takkabutr [58] | High plasticity clay from southeast Arlington | CH | 37 | 0 | 1.755 |
6.8 | 1.488 | ||||
17.2 | 1.350 | ||||
34.5 | 1.342 | ||||
Poorly graded sand | SP | 6.8 | 0.602 | ||
17.2 | 0.584 | ||||
34.5 | 0.565 |
No. | Suction (kPa) | ω (%) | E (kPa) | ν | C (kPa) | Φ | Estimated Settlement (mm) from Equation (21) | Measured Settlement (mm) [2] | Ultimate Elastic Load (kN) |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 31 | 2500 (U) | 0.49 | 11.5 (U) | 0 | 0.31 | 0.40 | 0.10 |
2 | 0 | 31 | 7000 (D) | 0.37 | 9 (D) | 23 | 0.28 | 0.27 | 0.16 |
3 | 55 | 18 | 7500 (U) | 0.49 | 58 (U) | 0 | 0.50 | 0.40 | 0.48 |
4 | 55 | 18 | 17,500 (D) | 0.37 | 21 (D) | 23 | 0.22 | 0.30 | 0.62 |
5 | 110 | 16 | 8000 (U) | 0.49 | 84 (U) | 0 | 0.53 | 0.24 | 0.57 |
6 | 110 | 16 | 18,500 (D) | 0.37 | 21 (D) | 23 | 0.20 | 0.32 | 0.80 |
7 | 205 | 13 | 15,000 (U) | 0.49 | 46 (U) | 0 | 0.34 | 0.30 | 0.63 |
8 | 205 | 13 | 33,000 (D) | 0.37 | 78 (D) | 23 | 0.23 | 0.25 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharibreza, Z.; Ghazavi, M.; El Naggar, M.H. Load-Settlement Analysis of Axially Loaded Piles in Unsaturated Soils. Water 2024, 16, 337. https://doi.org/10.3390/w16020337
Gharibreza Z, Ghazavi M, El Naggar MH. Load-Settlement Analysis of Axially Loaded Piles in Unsaturated Soils. Water. 2024; 16(2):337. https://doi.org/10.3390/w16020337
Chicago/Turabian StyleGharibreza, Zahra, Mahmoud Ghazavi, and M. Hesham El Naggar. 2024. "Load-Settlement Analysis of Axially Loaded Piles in Unsaturated Soils" Water 16, no. 2: 337. https://doi.org/10.3390/w16020337
APA StyleGharibreza, Z., Ghazavi, M., & El Naggar, M. H. (2024). Load-Settlement Analysis of Axially Loaded Piles in Unsaturated Soils. Water, 16(2), 337. https://doi.org/10.3390/w16020337