A Numerical Investigation of the Nonlinear Flow and Heat Transfer Mechanism in Rough Fractured Rock Accounting for Fluid Phase Transition Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Interface Tracking in Multiphase Flows
2.1.2. Heat–Flow Coupling Control Equation
2.1.3. Convective Heat Transfer Coefficient
2.2. Methods
2.2.1. Construction of Single-Phase and Multiphase Heat–Flow Coupling Models
2.2.2. Verification of the Single-Phase Heat–Flow Coupling Model
3. Results and Discussion
3.1. Flow Characteristics under Single-Phase and Multiphase Flow–Thermal Coupling
3.2. Heat Transfer Characteristics under Single-Phase and Multiphase Heat–Flow Coupling
4. Conclusions
- In the absence of phase transition effects, the inlet velocity, inlet temperature, and wall temperature only affect the magnitude of the local heat transfer coefficient, of which the distribution characteristics are controlled by the local roughness of the fracture surface. However, when considering phase transition, the distribution characteristics of the local heat transfer coefficient are dominated by the gas phase volume percentage. As the gas content increases, the local heat transfer coefficient decreases.
- When phase transition of the fluid is not considered, the fluid flow with low flow velocity and no heat transfer effect within the rock wall conforms to Darcy’s law. However, when there is heat exchange between the fluid and the rock wall, the nonlinear effects become more significant, and the nonlinear characteristics caused by heat transfer can be described by the Forchheimer equation. After considering phase transition effects, the two-phase fluid exhibits characteristics similar to shear-thinning fluids. Especially under the same pressure gradient, the increment of seepage flow rate is higher than that when linearly increasing. When described using the Forchheimer equation, the nonlinear coefficient is negative.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olasolo, P.; Juárez, M.; Morales, M.; D’amico, S.; Liarte, I. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Wong, K.V.; Tan, N. Feasibility of Using More Geothermal Energy to Generate Electricity. J. Energy Resour. Technol. 2015, 137, 41201. [Google Scholar] [CrossRef]
- Gallup, D.L. Production engineering in geothermal technology: A review. Geothermics 2009, 38, 326–334. [Google Scholar] [CrossRef]
- Liu, J.; Ju, Y.; Zhang, Y.; Gong, W.; Chang, W. Thermal-hydro coupling model of immiscible two-phase flow in heterogeneous porous structures at high temperatures. Int. J. Therm. Sci. 2020, 156, 106465. [Google Scholar] [CrossRef]
- Tan, J.; Rong, G.; He, R.; Yang, J.; Peng, J. Numerical investigation of heat transfer effect on flow behavior in a single fracture. Arab. J. Geosci. 2020, 13, 851. [Google Scholar] [CrossRef]
- Mohais, R.; Xu, C.; Dowd, P. Fluid Flow and Heat Transfer Within a Single Horizontal Fracture in an Enhanced Geothermal System. J. Heat Transf. 2011, 133, 112603. [Google Scholar] [CrossRef]
- Brown, S.R. Fluid flow through rock joints: The effect of surface roughness. J. Geophys. Res. 1987, 92, 1337–1347. [Google Scholar] [CrossRef]
- Tsang, Y.W. The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 1984, 20, 1209–1215. [Google Scholar] [CrossRef]
- Li, Z.-W.; Feng, X.-T.; Zhang, Y.-J.; Zhang, C.; Xu, T.-F.; Wang, Y.-S. Experimental research on the convection heat transfer characteristics of distilled water in manmade smooth and rough rock fractures. Energy 2017, 133, 206–218. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Yu, Z.; Ma, Y.; Zhang, C. Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems. Renew. Energy 2019, 135, 846–855. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals: Form, Chance, and Dimension; W.H. Freeman: San Francisco, CA, USA, 1977. [Google Scholar]
- Wang, M.; Chen, Y.-F.; Ma, G.-W.; Zhou, J.-Q.; Zhou, C.-B. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv. Water Resour. 2016, 96, 373–388. [Google Scholar] [CrossRef]
- Tian, X.; Ye, Z.Y.; Luo, W. Effect of rock fracture geometry on its seepage and heat transfer characteristics. Rock Soil Mech. 2023, 44, 1–10. [Google Scholar]
- Zhu, Y.; Huang, Y.; Lin, S.; Li, C.; Jiang, P. Experimental study of convection heat transfer characteristics in single rough rock fracture considering multi-level flow rates. Chin. J. Rock Mech. Eng. 2019, 38, 2654–2667. [Google Scholar]
- Tatone BS, A.; Grasselli, G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials. Rev. Sci. Instrum. 2009, 80, 125110. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Rong, G.; Tan, J.; Cheng, L. Numerical investigation of fracture morphology effect on heat transfer characteristics of water flow through a single fracture. Geothermics 2019, 82, 51–62. [Google Scholar] [CrossRef]
- He, Y.; Bai, B.; Hu, S.; Li, X. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture. Comput. Geotech. 2016, 80, 312–321. [Google Scholar] [CrossRef]
- Luo, F.; Xu, R.-N.; Jiang, P.-X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2–EGS). Energy 2014, 64, 307–322. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Liu, J.; Pu, H.; Tao, J.; Hao, Y.; Teng, Y.; Hao, G. Effects of injection parameters on heat extraction performance of supercritical CO2 in enhanced geothermal systems. Energy Sci. Eng. 2019, 7, 3076–3094. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yu, Z.; Huang, Y.; Zhang, C. Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction. Int. J. Heat Mass Transf. 2018, 119, 139–147. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Li, J.; Bai, B.; Zhang, G. Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int. Commun. Heat Mass Transf. 2016, 75, 78–85. [Google Scholar] [CrossRef]
- Zhou, G.H.; Wang, J.S. The mechanism by which temperature affects the relative permeability of oil and water. Acta Pet. Sin. 1992, 13, 62–70. [Google Scholar]
- Chen, Y.-F.; Wu, D.-S.; Fang, S.; Hu, R. Experimental study on two-phase flow in rough fracture: Phase diagram and localized flow channel. Int. J. Heat Mass Transf. 2018, 122, 1298–1307. [Google Scholar] [CrossRef]
- Xu, D.; Chen, T.; Xuan, Y. Thermo-hydrodynamics analysis of vapor–liquid two-phase flow in the flat-plate pulsating heat pipe. Int. Commun. Heat Mass Transf. 2012, 39, 504–508. [Google Scholar] [CrossRef]
- Xu, D.; Chen, T.; Liu, X.; Zhang, C.; Hao, Y. Analysis of two-phase flow patterns transition and heat transfer in flat plate loop pulsating heat pipe. Dong Nan Da Xue Xue Bao J. Southeast Univ. 2011, 41, 558–562. [Google Scholar]
- Kiani, K. Nonlocal timoshenko beam for vibrations of magnetically affected inclined single-walled carbon nanotubes as nanofluidic conveyors. Acta Phys. Pol. A 2017, 131, 1439–1444. [Google Scholar] [CrossRef]
- Kiani, K. Nanofluidic flow-induced longitudinal and transverse vibrations of inclined stocky single-walled carbon nanotubes. Comput. Methods Appl. Mech. Eng. 2014, 276, 691–723. [Google Scholar] [CrossRef]
- Kiani, K. Vibrations of fluid-conveying inclined single-walled carbon nanotubes acted upon by a longitudinal magnetic field. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1038. [Google Scholar] [CrossRef]
- Yao, C.; Shao, Y.-L.; Yang, J.-H.; Chen, H.E.; Huang, F.; Zhou, C.-B. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks. Yantu Gongcheng Xuebao=Chin. J. Geotech. Eng. 2020, 42, 1050–1058. [Google Scholar]
- Li, W.L.; Zhou, J.Q.; He, X.L.; Chen, Y.-F.; Zhou, C.-B. Nonlinear flow characteristics of broken granite subjected to confining pressures. Rock Soil Mech. 2017, 38, 140–150. [Google Scholar]
- Liu, R.C.; Jiang, Y.J.; Li, B.; Yu, L.Y.; Du, Y. Nonlinear seepage behaviors of fluid in fracture networks. Rock Soil Mech. 2016, 37, 2817–2824. [Google Scholar]
- Liu, X.; Li, M.; Zeng, N.; Li, T. Investigation on Nonlinear Flow Behavior through Rock Rough Fractures Based on Experiments and Proposed 3-Dimensional Numerical Simulation. Geofluids 2020, 2020, 8818749. [Google Scholar] [CrossRef]
- Xiong, F.; Sun, H.; Jiang, Q.H.; Ye, Z.; Xue, R.; Liu, R. Theoretical model and experimental verification on non-linear flow at low velocity through rough-walled rock fracture. Rock Soil Mech. 2018, 39, 3294–3302+3312. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- van Dijk, N.P.; Maute, K.; Langelaar, M.; van Keulen, F. Level-set methods for structural topology optimization: A review. Struct. Multidiscip. Optim. 2013, 48, 437–472. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, X.F.; Ye, P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int. J. Heat Mass Transf. 2008, 51, 1003–1016. [Google Scholar] [CrossRef]
- Lee, W.H. Pressure iteration scheme for two-phase flow modeling. AIChE Symp. Ser. 1979, 1, 499–501. [Google Scholar]
- Gao, X.F.; Zhang, Y.J.; Huang, Y.B. Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite. Rock Soil Mech. 2020, 41, 1761–1769. [Google Scholar]
- Bai, B.; He, Y.; Li, X.; Li, J.; Huang, X.; Zhu, J. Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core. Appl. Therm. Eng. 2017, 116, 79–90. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Z. Heat transfer in a 3D rough rock fracture with heterogeneous apertures. Int. J. Rock Mech. Min. Sci. 2020, 134, 104445. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; Chen, Y.; Ma, F.; Wang, G. Comparison between typical numerical models for fluid flow and heat transfer through single rock fractures. Comput. Geotech. 2021, 138, 104341. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Zhao, Z.; Liu, Y.; Pu, H. A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model. Renew. Energy 2019, 139, 873–894. [Google Scholar] [CrossRef]
- Sun, Z.X.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.X.; Lv, S.; Sun, Z.L.; Huang, Y.; Cai, M.Y.; Huang, X. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy 2017, 120, 20–33. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Zhou, Q.; Yu, L. Density-pressure and density-temperature regression equations of saturated vapour. J. HVAC 2001, 4, 100–101. [Google Scholar]
Maximum Size of Grid (mm) | Number of Grids (×104) | Outlet Temperature (K) | |
---|---|---|---|
Single-Phase | Multiphase | ||
2.5 | 33 | 373.870 | 374.165 |
2.2 | 58 | 368.974 | 369.014 |
1.9 | 90 | 370.042 | 370.634 |
1.5 | 148 | 369.843 | 370.455 |
1.2 | 170 | 369.851 | 370.435 |
1 | 230 | 369.850 | 370.437 |
Group | Num | Boundary Condition | Group | Num | Boundary Condition | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vin (m/s) | Tin (K) | Twall (K) | Phase Transition | Vin (m/s) | Tin (K) | Twall (K) | Phase Transition | ||||
V1 | V1–1 | 0.01 | 333.15 | 463.15 | NO | V2 | V2–1 | 0.05 | 333.15 | 463.15 | YES |
V1–2 | 0.03 | 333.15 | 463.15 | NO | V2–2 | 0.05 | 333.15 | 463.15 | YES | ||
V1–3 | 0.05 | 333.15 | 463.15 | NO | V2–3 | 0.05 | 333.15 | 463.15 | YES | ||
V1–4 | 0.065 | 333.15 | 463.15 | NO | V2–4 | 0.05 | 333.15 | 463.15 | YES | ||
V1–5 | 0.08 | 333.15 | 463.15 | NO | V2–5 | 0.05 | 333.15 | 463.15 | YES | ||
Ti1 | Ti1–1 | 0.05 | 313.15 | 463.15 | NO | Ti2 | Ti2–1 | 0.05 | 323.15 | 463.15 | YES |
Ti1–2 | 0.05 | 323.15 | 463.15 | NO | Ti2–2 | 0.05 | 333.15 | 463.15 | YES | ||
Ti1–3 | 0.05 | 333.15 | 463.15 | NO | Ti2–3 | 0.05 | 343.15 | 463.15 | YES | ||
Ti1–4 | 0.05 | 343.15 | 463.15 | NO | Ti2–4 | 0.05 | 353.15 | 463.15 | YES | ||
Ti1–5 | 0.05 | 353.15 | 463.15 | NO | Ti2–5 | 0.05 | 333.15 | 383.15 | YES | ||
Tw1 | Tw1–1 | 0.05 | 333.15 | 383.15 | NO | Tw2 | Tw2–1 | 0.05 | 333.15 | 383.15 | YES |
Tw1–2 | 0.05 | 333.15 | 403.15 | NO | Tw2–2 | 0.05 | 333.15 | 403.15 | YES | ||
Tw1–3 | 0.05 | 333.15 | 423.15 | NO | Tw2–3 | 0.05 | 333.15 | 423.15 | YES | ||
Tw1–4 | 0.05 | 333.15 | 443.15 | NO | Tw2–4 | 0.05 | 333.15 | 443.15 | YES | ||
Tw1–5 | 0.05 | 333.15 | 463.15 | NO | Tw2–5 | 0.05 | 333.15 | 463.15 | YES | ||
Φ | Φ–1 | 0.01 | 313.15 | 313.15 | NO | Φ | Φ–4 | 0.065 | 313.15 | 313.15 | NO |
Φ–2 | 0.03 | 313.15 | 313.15 | NO | Φ–5 | 0.08 | 313.15 | 313.15 | NO | ||
Φ–3 | 0.05 | 313.15 | 313.15 | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Luo, X.; Liu, S.; Zhang, P.; Li, M.; Pan, Y. A Numerical Investigation of the Nonlinear Flow and Heat Transfer Mechanism in Rough Fractured Rock Accounting for Fluid Phase Transition Effects. Water 2024, 16, 342. https://doi.org/10.3390/w16020342
Liu X, Luo X, Liu S, Zhang P, Li M, Pan Y. A Numerical Investigation of the Nonlinear Flow and Heat Transfer Mechanism in Rough Fractured Rock Accounting for Fluid Phase Transition Effects. Water. 2024; 16(2):342. https://doi.org/10.3390/w16020342
Chicago/Turabian StyleLiu, Xianshan, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li, and Yuhua Pan. 2024. "A Numerical Investigation of the Nonlinear Flow and Heat Transfer Mechanism in Rough Fractured Rock Accounting for Fluid Phase Transition Effects" Water 16, no. 2: 342. https://doi.org/10.3390/w16020342
APA StyleLiu, X., Luo, X., Liu, S., Zhang, P., Li, M., & Pan, Y. (2024). A Numerical Investigation of the Nonlinear Flow and Heat Transfer Mechanism in Rough Fractured Rock Accounting for Fluid Phase Transition Effects. Water, 16(2), 342. https://doi.org/10.3390/w16020342