A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall
Abstract
:1. Introduction
2. Theoretical Background
2.1. GA Model
2.2. Distribution of Water Content Based on the SGA Model
2.3. One-Dimensional Richards’ Equation
3. Methodology
3.1. MSGA Model for a Finite Slope
3.2. Stability Analysis for Various Sliding Surfaces
3.3. Variation in Fs for a Natural Slope during a Rainfall Event
4. Case Study and Results
4.1. Background
4.2. Application of the MSGA Model
5. Discussion
5.1. The Applicability of the MSGA Model
5.2. Effects of the Factors for Infiltration
5.3. Stability for Different Sliding Surfaces
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Code Availability
References
- Chinkulkijniwat, A.; Yubonchit, S.; Horpibulsuk, S.; Jothityangkoon, C.; Jeeptaku, C.; Arulrajah, A. Hydrological responses and stability analysis of shallow slopes with cohesionless soil subjected to continuous rainfall. Can. Geotech. J. 2016, 53, 2001–2013. [Google Scholar] [CrossRef]
- Dou, H.Q.; Han, T.C.; Gong, X.N.; Zhang, J. Probabilistic slope stability analysis considering the variability of hydraulic conductivity under rainfall infiltration-redistribution conditions. Eng. Geol. 2014, 183, 1–13. [Google Scholar] [CrossRef]
- Wang, G.H.; Sassa, K. Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content. Eng. Geol. 2003, 69, 109–125. [Google Scholar] [CrossRef]
- Rahardjo, H.; Ong, T.H.; Rezaur, R.B.; Leong, E.C. Factors controlling instability of homogeneous soil slopes under rainfall. J. Geotech. Geoenviron. 2007, 133, 1532–1543. [Google Scholar] [CrossRef]
- Tozato, K.; Dolojan, N.L.J.; Touge, Y.; Kure, S.; Moriguchi, S.; Kawagoe, S.; Kazama, S.; Terada, K. Limit equilibrium method-based 3D slope stability analysis for wide area considering influence of rainfall. Eng. Geol. 2022, 308, 106808. [Google Scholar] [CrossRef]
- Xu, J.S.; Du, X.L.; Zhao, X.; Li, L.Y. Analytical Stability Analysis of Rainfall-Infiltrated Slopes Based on the Green-Ampt Model. Int. J. Geomech. 2023, 23, 04022277. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on soil physics Part I—The flow of air and water through soils. J. Agr. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Phys.-J. Gen. Appl. P 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Barontini, S.; Ranzi, R.; Bacchi, B. Water dynamics in a gradually nonhomogeneous soil described by the linearized Richards equation. Water Resour. Res. 2007, 43, W08411. [Google Scholar] [CrossRef]
- Elmaloglou, S.; Diamantopoulos, E. The effect of intermittent water application by surface point sources on the soil moisture dynamics and on deep percolation under the root zone. Comput. Electron. Agr. 2008, 62, 266–275. [Google Scholar] [CrossRef]
- Rahimi, A.; Rahardjo, H.; Leong, E.C. Effect of hydraulic properties of soil on rainfall-induced slope failure. Eng. Geol. 2010, 114, 135–143. [Google Scholar] [CrossRef]
- Montrasio, L.; Valentino, R. A model for triggering mechanisms of shallow landslides. Nat. Hazard. Earth Sys. 2008, 8, 1149–1159. [Google Scholar] [CrossRef]
- Ogden, F.L.; Saghafian, B. Green and Ampt infiltration with redistribution. J. Irrig. Drain. Eng. 1997, 123, 386–393. [Google Scholar] [CrossRef]
- Dolojan, N.L.J.; Moriguchi, S.; Hashimoto, M.; Terada, K. Mapping method of rainfall-induced landslide hazards by infiltration and slope stability analysis A case study in Marumori, Miyagi, Japan, during the October 2019 Typhoon Hagibis. Landslides 2021, 18, 2039–2057. [Google Scholar] [CrossRef]
- Li, C.J.; Guo, C.X.; Yang, X.G.; Li, H.B.; Zhou, J.W. A GIS-based probabilistic analysis model for rainfall-induced shallow landslides in mountainous areas. Environ. Earth Sci. 2022, 81, 432. [Google Scholar] [CrossRef]
- Loáiciga, H.A.; Huang, A. Ponding analysis with Green-and-Ampt infiltration. J. Hydrol. Eng. 2007, 12, 109–112. [Google Scholar] [CrossRef]
- Wei, X.Y.; Liu, Y.B.; Ren, W.Z.; Cai, S.M.; Xu, W.H. Fully analytical method for probabilistic stability analysis of the rainfall-induced landslide considering variability of saturated hydraulic conductivity and rainfall uncertainty. Bull. Eng. Geol. Environ. 2024, 83, 374. [Google Scholar] [CrossRef]
- Chen, L.; Young, M.H. Green-Ampt infiltration model for sloping surfaces. Water Resour. Res. 2006, 42, W07420. [Google Scholar] [CrossRef]
- Wang, D.J.; Tang, H.M.; Zhang, Y.H.; Li, C.D.; Huang, L. An improved approach for evaluating the time-dependent stability of colluvial landslides during intense rainfall. Environ. Earth Sci. 2017, 76, 321. [Google Scholar] [CrossRef]
- Yao, W.M.; Li, C.D.; Zhan, H.B.; Zeng, J.B. Time-dependent slope stability during intense rainfall with stratified soil water content. Bull. Eng. Geol. Env. 2019, 78, 4805–4819. [Google Scholar] [CrossRef]
- Jiang, S.H.; Liu, X.; Ma, G.T.; Rezania, M. Stability analysis of heterogeneous infinite slopes under rainfall-infiltration by means of an improved Green-Ampt model. Can. Geotech. J. 2024, 61, 1560–1573. [Google Scholar] [CrossRef]
- Chu, S.T. Infiltration during an Unsteady Rain. Water Resour. Res. 1978, 14, 461–466. [Google Scholar] [CrossRef]
- Xiong, S.; Yao, W.M.; Li, C.D. Stability evaluation of multilayer slopes considering runoff in the saturated zone under rainfall. Eur. J. Environ. Civ. Eng. 2019, 25, 1718–1732. [Google Scholar] [CrossRef]
- Colman, E.A.; Bodman, G.B. Moisture and energy conditions during downward entry of water into moist and layered Soils. Soil. Sci. Soc. Am. J. 1945, 9, 3–11. [Google Scholar] [CrossRef]
- Wang, W.Y.; Wang, Z.R.; Wang, Q.J.; Zhang, J.F. Improvement and evaluation of the Green-Ampt model in loess soil. J. Hydraul. Eng. 2003, 34, 30–34. (In Chinese) [Google Scholar]
- Zhang, J.; Han, T.; Dou, H.; Ma, S. Stability of loess slope considering infiltration zonation. J. Cent. South Univ. (Sci. Technol.) 2014, 45, 4355–4361. (In Chinese) [Google Scholar]
- Peng, Z.; Huang, J.; Wu, J.; Guo, H. Modification of Green-Ampt model based on the stratification hypothesis. Adv. Water Sci. 2012, 23, 59–66. (In Chinese) [Google Scholar]
- Cheng, P.; Liu, Y.; Li, Y.P.; Yi, J.T. A large deformation finite element analysis of uplift behaviour for helical anchor in spatially variable clay. Comput. Geotech. 2022, 141, 104542. [Google Scholar] [CrossRef]
- Chen, X.J.; Fang, P.P.; Chen, Q.N.; Hu, J.; Yao, K.; Liu, Y. Influence of cutterhead opening ratio on soil arching effect and face stability during tunnelling through non-uniform soils. Undergr. Space 2024, 17, 45–59. [Google Scholar] [CrossRef]
- Cho, S.E. Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics. Eng. Geol. 2009, 105, 32–43. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Wang, H.L.; Xu, W.Y. Stability of Liangshuijing landslide under variation water levels of Three Gorges Reservoir. Eur. J. Environ. Civ. Eng. 2013, 17, S158–S173. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, J.J. Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation. Neurocomputing 2016, 198, 40–47. [Google Scholar] [CrossRef]
- Lin, H.-C. The Study on Mechanism and Numerical Analysis of Rainfall-Induced Soil Slope Failure; Tsinghua University: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Ma, Y.; Feng, S.Y.; Su, D.Y.; Gao, G.Y.; Huo, Z.L. Modeling water infiltration in a large layered soil column with a modified Green-Ampt model and HYDRUS-1D. Comput. Electron. Agr. 2010, 71, S40–S47. [Google Scholar] [CrossRef]
- Vangenuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil. Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Vangenuchten, M.T.; Leij, F.J.; Yates, S.R. RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; U.S Salinity Laboratory, U.S. Department of Agriculture, Agricultural Research Service: Riverside, CA, USA, 1991.
Parameter | Value |
---|---|
Saturated hydraulic conductivity Ks | 0.011 m/h |
Saturated water content θs | 0.330 |
Natural water content θi | 0.285 |
Suction at the wetting front Sf | 6 m |
Natural unit weight of the soil γi | 23 kN/m3 |
Saturated unit weight of the soil γs | 23.8 kN/m3 |
Effective cohesion c′ | 19.17 kPa |
Effective friction angle φ′ | 25.03° |
Number of the Slice | α (°) | β (°) | L (m) | Zfc (m) | tc (h) |
---|---|---|---|---|---|
1st | 35 | 20 | 61 | 2.63 | 2.64 |
2nd | 40 | 32 | 43 | 3.23 | 3.24 |
3rd | 34 | 31 | 77 | 3.16 | 3.17 |
4th | 26 | 15 | 27 | 2.49 | 2.50 |
5th | 23 | 9 | 31 | 2.38 | 2.39 |
6th | 18 | 22 | 56 | 2.71 | 2.71 |
7th | 14 | 26 | 81 | 2.87 | 2.89 |
8th | 10 | 38 | 50 | 3.74 | 3.76 |
ks (m/h) | θs | θr | θi | Sf (m) | a (1/m) | n | m |
---|---|---|---|---|---|---|---|
0.016 | 0.405 | 0.1 | 0.1 | 0.09 | 2.020 | 1.587 | 0.3699 |
Method | Arriving Time at a Certain Depth (h) | ||
---|---|---|---|
0.1 m | 0.167 m | 0.4 m | |
Tensiometer | 0.68 | 1.26 | 4.06 |
GA | 0.77 | 1.40 | 4.41 |
SGA | 0.68 | 1.26 | 3.94 |
MSGA | 0.68 | 1.26 | 4.04 |
Richards’ equation | 0.80 | 1.95 | 7.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Ren, W.; Xu, W.; Cai, S.; Li, L. A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall. Water 2024, 16, 2877. https://doi.org/10.3390/w16202877
Wei X, Ren W, Xu W, Cai S, Li L. A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall. Water. 2024; 16(20):2877. https://doi.org/10.3390/w16202877
Chicago/Turabian StyleWei, Xiaoyang, Weizhong Ren, Wenhui Xu, Simin Cai, and Longwei Li. 2024. "A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall" Water 16, no. 20: 2877. https://doi.org/10.3390/w16202877
APA StyleWei, X., Ren, W., Xu, W., Cai, S., & Li, L. (2024). A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall. Water, 16(20), 2877. https://doi.org/10.3390/w16202877