Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China
Abstract
:1. Introduction
2. Study Area
2.1. General Setting
2.2. Geological and Hydrogeological Setting
3. Materials and Methods
3.1. Sample Collection and Treatment
3.2. Analytical Methods
4. Results
4.1. Hydrochemical Characterization of Groundwater
4.2. Isotope Characterization of Groundwater
5. Discussion
5.1. Groundwater Origins Indicated by δD-H2O and δ18O-H2O
5.2. Causes of Groundwaters
5.3. Major Ion Ratios of Groundwater and Their Implications for Mineral Dissolution
5.4. Ion Exchange
5.5. Sources of Sulfate
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, X.W.; Li, X.Q.; Wang, Z.X.; Bai, Z.X.; Gui, C.L.; Zuo, X.F.; Zhang, C.C. Hydrogeological and Environment Geological Survey Report of Jindong Energy Base; Institute of Hydrogeology and Environmental Geology: Shijiazhuang, China, 2016; pp. 45–189. (In Chinese) [Google Scholar]
- Wang, Z.X.; Li, X.Q.; Hou, X.W.; Zhang, C.C.; Gui, C.L.; Zuo, X.F. Karst aquifer protection evaluation to the Sangu Spring Basin under the condition of coal mining. Carsologica Sin. 2019, 38, 28–29, (In Chinese with English abstract). [Google Scholar]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Glok-Galli, M.; Vadillo-Pérez, I.; Jiménez-Gavilán, P.; Ojeda-Rodriguez, I.; Urresti-Estala, B.; Martinez, D.E. Application of hydrochemical and multi-isotopic (87Sr/86Sr, δ13C-Dic, δ2H-H2O, δ18O-H2O) tools to determine contamination sources and processes in the Guadalhorce River Basin, southern Spain. Sci. Total Environ. 2022, 828, 154424. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology Lewis; Springer: New York, NY, USA, 1997. [Google Scholar]
- Liu, P.; Hoth, N.; Drebenstedt, C.; Sun, Y.J.; Xu, Z.M. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions—Using multivariate statistics and geochemical modeling approaches. Sci. Total Environ. 2017, 600–601, 1–14. [Google Scholar] [CrossRef]
- Fu, C.; Li, X.; Ma, J.; Liu, L.; Gao, M.; Bai, Z. A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin. Appl. Geochem. 2018, 98, 82–93. [Google Scholar] [CrossRef]
- Gao, M.; Li, X.; Qian, J.; Wang, Z.; Hou, X.; Fu, C.; Ma, J.; Zhang, C.; Li, J. Hydrogeochemical characteristics and evolution of karst groundwater in Heilongdong Spring basin, Northern China. Water 2023, 15, 726. [Google Scholar] [CrossRef]
- Olea-Olea, S.; Silva-Aguilera, R.A.; Alcocer, J.; Escolero, O.; Morales-Casique, E.; Florez-Peñaloza, J.R.; Almora-Fonseca, K.A.; Oseguera, L.A. Water-rock interaction processes in groundwater and flows in a Maar Lake in central Mexico. Water 2024, 16, 715. [Google Scholar] [CrossRef]
- Alogayell, H.M.; EL-Bana, E.M.M.; Abdelfattah, M. Groundwater quality and suitability assessment for irrigation using hydrogeochemical characteristics and pollution indices: A case study of North Al-Quwayiyah Governorate, Central Saudi Arabia. Water 2023, 15, 3321. [Google Scholar] [CrossRef]
- Keesari, T.; Roy, A.; Mohokar, H.; Pant, D.; Sinha, U.K. Characterization of mechanisms and processes controlling groundwater recharge and its quality in drought-prone region of central India (Buldhana, Maharashtra) using isotope hydrochemical and end-member mixing modeling. Nat. Resour. Res. 2020, 29, 1951–1973. [Google Scholar] [CrossRef]
- Qu, S.; Wang, G.C.; Shi, Z.M.; Xu, Q.Y.; Guo, Y.Y.; Ma, L.; Sheng, Y.Z. Using stable isotopes (D, 18O, 34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, northern China. Hydrogeol. J. 2018, 26, 1443–1453. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Tiziano, B.; Abdillahi, E.A.; Mahamoud, A.C.; Moussa, M.A.; Omar, A.D.; Youssouf, D.S.; Nima, M.E.; Ali, D.K.; Ibrahim, H.K.; et al. Origin of nitrate and sulfate sources in volcano-sedimentary aquifers of the East Africa Rift System: An example of the Ali-Sabieh groundwater. Sci. Total Environ. 2022, 804, 150072. [Google Scholar]
- Jin, M.G.; Zhang, J.; Zhang, Z.X.; Cao, M.D.; Huang, X. A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends. Bull. Geol. Sci. Technol. 2022, 41, 160–171. [Google Scholar]
- Hosono, T.; Siringan, F.; Yamanaka, T.; Umezawa, Y.; Onodera, S.i.; Nakano, T.; Taniguchi, M. Application of multiisotope ratios to study the source and quality of urban groundwater in Metro Manila, Philippines. Appl. Geochem. 2010, 25, 900–909. [Google Scholar] [CrossRef]
- Puig, R.; Soler, A.; Widory, D. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter Aquifer System (NE Spain) using a multi-isotope approach. Science. Total Environ. 2017, 580, 518–532. [Google Scholar] [CrossRef] [PubMed]
- Han, X.R.; Shi, J.; Tang, J.S.; Li, Q.S. Method of study on karst groundwater systems in north China—Case hsistory of Sangu Spring Basin. Carsologica Sinica 1990, 9, 197–210, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.X.; Li, X.Q.; Hou, X.W.; Zhang, C.C.; Gui, C.L.; Zuo, X.F. Distribution Characteristics and Subsystem Identification of Karst Groundwater in Sangu Spring Basin. Earth Environ. 2020, 48, 228–239, (In Chinese with English abstract). [Google Scholar]
- Li, X.L.; Wu, Y.Z. Study on Karstic Groundwater Boundary Dividing in Sangu Spring Area. Ground Water 2003, 25, 224–240, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.F.; Zhang, Z.X.; Liu, X.X. Water environmental quality assessment and strategy for water pollution control in Sangu spring basin. Ground Water 2012, 34, 87–90, (In Chinese with English abstract). [Google Scholar]
- Liu, X.H.; Zhang, Y.B. On the karst underwater water quality assessment of San-guquan in Jincheng of Shanxi. Shanxi Archit. 2009, 35, 173–174, (In Chinese with English abstract). [Google Scholar]
- Liu, X.H.; Zhang, Y.B. Groundwater resources evaluation on Sangu spring region of Jincheng of Shanxi Province. J. Taiyuan Univ. Sci. Technol. 2009, 30, 261–263, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.X.; Liu, X.H.; Zhang, Y.B. Research on dynamic characteristics and attenuation causes of flow Rate of Sangu Spring. Sci—Tech Inf. Dev. Econ. 2010, 20, 168–170, (In Chinese with English abstract). [Google Scholar]
- Tang, Q.F. Analysis of the decline factors in karst groundwater level of Sangu Spring Basin. Shanxi Water Resour. 2002, 50–51. (In Chinese) [Google Scholar]
- Li, H.Q. Analysis on the groundwater ecological status in the Sanguquan spring-feeding area of Jincheng City and restoration countermeasure. Shanxi Hydrotech. 2018, 2, 61–67. [Google Scholar]
- Qin, H.Z. Prediction of influence of coal mining on groundwater with numerical method—A case study of the Zhaozhuang Coal Mine in Jincheng area. Environ. Prot. Sci. 2013, 39, 53–56, (In Chinese with English abstract). [Google Scholar]
- Chen, F. Impact from Coal Winning on Spring Area Environment. Coal Geol. China 2020, 32, 34–37, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.X.; Hou, X.W.; Li, X.Q.; Zhang, C.C.; Gui, C.L.; Zuo, X.F. Study on the influence of coal mining to north karst area. Yellow River 2019, 41, 75–82, (In Chinese with English abstract). [Google Scholar]
- Zhang, C.C.; Hou, X.W.; Li, X.Q.; Wang, Z.X.; Gui, C.L.; Zuo, X.F. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring. Hydrogeol. Eng. Geol. 2021, 48, 62–71. [Google Scholar]
- Zhang, C.C.; Hou, X.W.; Li, X.Q.; Wang, Z.X.; Gui, C.L.; Zuo, X.F. Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China. J. Groundw. Sci. Eng. 2020, 8, 210–222. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1961, 16, 436–468. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variation in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Yin, L.H.; Hou, G.C.; Dou, Y.; Tao, Z.P.; Li, Y. Hydrogeochemical and isotopic study of groundwater in the habor lake basin of the Ordos plateau, NW China. Environ. Earth Sci. 2011, 64, 1575–1584. [Google Scholar] [CrossRef]
- Umarani, P.; Ramu, A.; Kumar, V. Hydrochemical and statistical evaluation of groundwater quality in coastal aquifers in Tamil Nadu, India. Environ. Earth Sci. 2019, 78, 452. [Google Scholar] [CrossRef]
- Wang, X.D.; Zheng, W.D.; Tian, W.; Gao, Y.M.; Wang, X.Z.; Tian, Y.Q.; Li, J.S.; Zhang, X.Y. Groundwater hydrogeochemical characterization and quality assessment based on integrated weight matter-element extension analysis in Ningxia, upper Yellow River, northwest China. Ecol. Indic. 2022, 135, 108525. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Liu, F.; Song, X.F.; Yang, L.H.; Han, D.M.; Zhang, Y.H.; Ma, Y.; Bu, H.M. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, northwestern China. Sci. Total Environ. 2015, 538, 327–340. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupr’e, B.; Louvat, P.; All`egre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, Z.D.; Wang, J.; Zhang, F. Hydrochemical characterisrics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Tibertan Platiau. Quat. Int. 2015, 380–381, 237–246. [Google Scholar] [CrossRef]
- Ángel, R.P.; Álvaro, P.C.; Richard, S.A.; Diana, M.C.; Jorge, L.P.; Johonathan, S.C. Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Appl. Geochem. 2019, 104, 1–9. [Google Scholar]
- Irina, T.; Aleksei, K.; Alexander, Z.K.; Igor, C. Chemical composition of groundwater in abandoned coal mines: Evidence of hydrogeochemical evolution. Appl. Geochem. 2022, 137, 105210. [Google Scholar]
- Tanushree; Kumari, R. A hydrochemical and remote sensing approach to decrypt the groundwater salinization in the coastal district of Sabarmati basin, Gujarat. Groundw. Sustain. Dev. 2021, 15, 100673. [Google Scholar] [CrossRef]
- Owen, D.D.R.; Cox, M.E. Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. Sci. Total Environ. 2015, 523, 233–252. [Google Scholar]
- Xin, Y.; Hou, S.C.; Xiang, L.; Yu, Y.-X. Adsorption and substitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT study. Appl. Surf. Sci. 2015, 357, 1552–1557. [Google Scholar] [CrossRef]
- Schoeller, H.J. Geochemistry of Groundwater. Groundwater Studies—An International Guide for Research and Practice; UNESCO: Paris, France, 1977; pp. 1–18. [Google Scholar]
- Chaouki, K.; Meriem, T.; Lassâad, D. An appraisal of Chott El Jerid brine encroachment in the Tozeur-south shallow aquifer Geoelectrical and hydrochemical approach. J. Appl. Geophys. 2021, 190, 1–16. [Google Scholar]
- Ismail, A.H.; Hassan, G.; Sarhan, A. Hydrochemistry of shallow groundwater and its assessment for drinking and irrigation purposes in Tarmiah district, Baghdad governorate, Iraq. Groundw. Sustain. Dev. 2020, 10, 100300. [Google Scholar] [CrossRef]
- Li, Z.J.; Yang, Q.C.; Yang, Y.S.; Ma, H.Y.; Wang, H.; Luo, J.N.; Bian, J.M.; Martin, J.D. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities. J. Hydrol. 2019, 576, 685–697. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Boschetti, T.; Soubaneh, Y.D.; Kim, Y.; Baudron, P.; Kawalieh, A.D.; Ahmed, M.M.; Daoud, M.A.; Dabar, O.A.; Kadieh, I.H.; et al. Geochemical, multi-isotopic studies and geothermal potential evaluation of the complex Djibouti volcanic aquifer (republic of Djibouti). Appl. Geochem. 2018, 97, 301–321. [Google Scholar] [CrossRef]
- Krouse, H.R.; Grinenko, V.A. Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment; John Wiley & Sons, Ltd.: Chichester, UK; New York, NY, USA, 1991. [Google Scholar]
- Zak, D.; Hupfer, M.; Cabezas, A.; Jurasinski, G.; Audet, J.; Kleeberg, A.; McInnes, R.; Kristiansen, S.M.; Petersen, R.J.; Liu, H.J.; et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Sci. Rev. 2020, 212, 103446. [Google Scholar] [CrossRef]
- Benadela, L.; Bekkoussa, B.; Gaidi, L. Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria. J. Groundw. Sci. Eng. 2022, 10, 233–249. [Google Scholar]
- Fernando, W.A.M.; Ilankoon, I.M.S.K.; Syed, T.H.; Yellishetty, M. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Miner. Eng. 2018, 117, 74–90. [Google Scholar] [CrossRef]
- Galhardi, J.A.; Bonotto, D.M. Hydrogeochemical features of SW and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: A case study in southern Brazil. Environ. Sci. Pollut. Res. 2016, 23, 18911–18927. [Google Scholar] [CrossRef]
- Kinnunen, P.; Kyllonen, H.; Kaartinen, T.; Mäkinen, J.; Heikkinen, J.; Miettinen, V. Sulphate removal from mine water with chemical, biological and membrane technologies. Water Sci. Technol. 2018, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, M.G.; Cao, M.D.; Huang, X.; Zhang, Z.X.; Zhang, L. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model. Appl. Geochem. 2021, 134, 105109. [Google Scholar] [CrossRef]
- Vitòria, L.; Otero, N.; Soler, A.; Canals, A. Fertilizer characterization: Isotopic data (N, S, O, C, and Sr). Environ. Sci. Technol. 2004, 38, 3254–3262. [Google Scholar] [CrossRef] [PubMed]
- Jurado, A.; Vàzquez-Suñé, E.; Soler, A.; Tubau, I.; Carrera, J.; Pujades, E.; Anson, I. Application of multi-isotope data (O, D, C and S) to quantify redox processes in urban groundwater. Appl. Geochem. 2013, 34, 114–125. [Google Scholar] [CrossRef]
- Otero, N.; Soler, A.; Canals, Á. Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain). Appl. Geochem. 2008, 23, 1166–1185. [Google Scholar] [CrossRef]
- Strawn, D.G.; Bohn, H.L.; O’Connor, G.A. Soil Chemistry, 4th ed.; John Wiley & Sons: New York, NY, USA, 2015; p. 381. [Google Scholar]
- Man, K.; Ma, Z.M.; Xu, X.J. Research on the mechanism of sulfate pollution of roundwater in Jiaozuo area. Appl. Mech. Mater. 2014, 665, 436–439. [Google Scholar] [CrossRef]
- Strebel, O.; Böttcher, J.; Fritz, P. Use of isotope fractionation of sulfate-sulfur and sulfate- oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 1990, 121, 155–172. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Mora, A.; Knappett, P.S.K.; Ornelas-Soto, N.; Mahlknecht, J. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res. 2020, 182, 115962. [Google Scholar] [CrossRef]
- Vengosh, A.; Lindberg, T.T.; Merola, B.R.; Ruhl, L.; Warner, N.R.; White, A.; Di Giulio, R.T. Isotopic imprints of mountaintop mining contaminants. Environ. Sci. Technol. 2013, 47, 10041–10048. [Google Scholar] [CrossRef]
- Stempvoort, D.R.V.; Krouse, H.R. Controls of δ18O in sulphate: Review of experimental data and application to specific environments. Environ. Asp. Mine Wastes Short Course Ser. 1994, 31, 447–479. [Google Scholar]
- Huang, Q.B. The Carbon Sequestration Effect in Semi-Arid Karst Area: A Case Study of Liulin Spring Catchment, Shanxi Province. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2019. (In Chinese with English abstract). [Google Scholar]
- Zhou, J.W.; Zhang, Y.P.; Zhou, A.G.; Liu, C.F.; Cai, H.S.; Liu, Y.D. Application of hydrochemistry and stable isotopes (δ34S, δ18O and δ37Cl) to trace natural and anthropogenic influences on the quality of groundwater in the piedmont region, Shijiazhuang, China. Appl. Geochem. 2016, 71, 63–72. [Google Scholar] [CrossRef]
K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NO3− | TDS | pH | |
---|---|---|---|---|---|---|---|---|---|---|
KGW (n = 137) | ||||||||||
Min | 0.26 | 3.54 | 49.37 | 12.59 | 0.36 | 21.86 | 159.40 | 0.00 | 218.70 | 7.20 |
Max | 20.40 | 198.00 | 487.70 | 130.00 | 232.20 | 1413.00 | 441.10 | 378.50 | 2411.00 | 8.57 |
Mean | 1.50 | 43.61 | 126.23 | 33.42 | 24.18 | 230.89 | 301.21 | 23.72 | 653.18 | 7.73 |
Std | 2.45 | 52.88 | 60.64 | 15.71 | 26.07 | 207.25 | 39.64 | 38.04 | 337.31 | 0.25 |
FGW (n = 74) | ||||||||||
Min | 0.07 | 4.62 | 54.12 | 8.43 | 4.58 | 23.6 | 10.80 | 1.98 | 245.80 | 6.71 |
Max | 7.78 | 282.60 | 307.00 | 51.40 | 230.10 | 846.00 | 465 | 286.00 | 2424.50 | 8.51 |
Mean | 0.96 | 67.49 | 136.60 | 23.32 | 30.85 | 253.30 | 293.53 | 35.75 | 776.23 | 7.79 |
Std | 1.09 | 74.44 | 56.57 | 10.33 | 35.11 | 213.34 | 85.12 | 1.56 | 408.26 | 0.33 |
PGW (n = 23) | ||||||||||
Min | 0.28 | 10.80 | 58.30 | 12.04 | 8.81 | 40.38 | 250.00 | 1.63 | 330.50 | 7.35 |
Max | 9.45 | 196.00 | 286.90 | 60.38 | 101.00 | 521.00 | 478.60 | 227.50 | 1226.00 | 8.28 |
Mean | 1.47 | 57.00 | 145.73 | 26.39 | 37.49 | 233.21 | 324.10 | 45.52 | 796.10 | 7.78 |
Std | 1.92 | 57.81 | 54.32 | 11.26 | 25.24 | 135.76 | 50.89 | 47.37 | 231.40 | 0.26 |
KGW (n = 112) | FGW (n = 32) | |||||||
Min | Max | Mean | Std | Min | Max | Mean | Std | |
δD-H2O (‰) | −83.0 | −42.0 | −70.5 | 4.03 | −83.0 | −57.0 | −67.7 | 4.68 |
δ18O-H2O (‰) | −11.2 | −4.5 | −9.6 | 0.57 | −11.57 | −8.1 | −9.2 | 0.67 |
PGW (n = 8) | SW (n = 16) | |||||||
Min | Max | Mean | Std | Min | Max | Mean | Std | |
δD-H2O (‰) | −69.0 | −48.0 | −63.0 | 6.74 | −70.0 | −42.0 | −56.3 | 8.16 |
δ18O-H2O (‰) | −9.6 | −5.8 | −8.5 | 1.17 | −9.1 | −3.9 | −7.4 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Hou, X.; Li, X.; Wang, Z.; Zhang, C.; Gui, C.; Zuo, X. Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China. Water 2024, 16, 2884. https://doi.org/10.3390/w16202884
Bai Z, Hou X, Li X, Wang Z, Zhang C, Gui C, Zuo X. Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China. Water. 2024; 16(20):2884. https://doi.org/10.3390/w16202884
Chicago/Turabian StyleBai, Zhanxue, Xinwei Hou, Xiangquan Li, Zhenxing Wang, Chunchao Zhang, Chunlei Gui, and Xuefeng Zuo. 2024. "Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China" Water 16, no. 20: 2884. https://doi.org/10.3390/w16202884
APA StyleBai, Z., Hou, X., Li, X., Wang, Z., Zhang, C., Gui, C., & Zuo, X. (2024). Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China. Water, 16(20), 2884. https://doi.org/10.3390/w16202884