Numerical Investigation of the Sediment Load Exchange between a Coastal Mud Bank and Its Neighbouring Estuary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Measurements
2.3. Satellite Data
2.3.1. Coastline Extraction and Intertidal Areas
2.3.2. Amazon Influence
2.4. Numerical Model Setup
2.4.1. Model Forcing Settings
2.4.2. Model Domain
2.4.3. Hydrodynamic Model—TELEMAC2D
2.4.4. Sediment Model—SISHYPE
2.4.5. Wave Model—TOMAWAC
2.4.6. Model Run
3. Results
3.1. SPM Patterns
3.2. Hydrodynamic Forcing
3.2.1. Wave Influence
Rainy Season
Dry Season
3.2.2. Tidal Influence
3.2.3. Preliminary Insights into Daily (Ebb–Flood) Circulation and Sediment Transport Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, E.J. The muddy tropical coast of West Africa from Sierra Leone to Guinea- Bissau: Geological heritage, geomorphology and sediment dynamics. Afr. Geosci. Rev. 2006, 13, 227–237. [Google Scholar]
- Chapman, V.J. Salt Marshes and Salt Deserts of the World; Academic Press: Cambridge, MA, USA, 1974; pp. 3–19. [Google Scholar]
- Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Wong, Y.S.; Tam, N.F. Asia-Pacific Symposium on Mangrove Ecosystems. In Proceedings of the International Conference held at the Hong Kong University of Science & Technology, Hong Kong, China, 1–3 September 1993; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995; Volume 106, p. 1993. [Google Scholar]
- Dyer, K.R.; Evans, E.M. Dynamics of Turbidity Maximum in a Homogeneous Tidal Channel. J. Coast. Res. 1989, 23–30. [Google Scholar]
- Dalrymple, R.W.; Choi, K. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence stratigraphic interpretation. Earth-Sci. Rev. 2007, 81, 135–174. [Google Scholar] [CrossRef]
- Wolanski, E.; Spagnol, S. Dynamics of the turbidity maximum in King Sound, tropical Western Australia. Estuar. Coast. Shelf Sci. 2003, 56, 877–890. [Google Scholar] [CrossRef]
- Flemming, B.W.; Delafontaine, M.T.; Liebezeit, G. (Eds.) Muddy Coast Dynamics and Resource Management; Elsevier: Edinburgh, UK, 2000; Volume 2. [Google Scholar]
- Healy, T. Muddy Coasts of Mid-Latitude Oceanic Islands on an Active Plate Margin—New Zealand; Elsevier: Edinburgh, UK, 2002. [Google Scholar]
- Anthony, E.J.; Gardel, A.; Zainescu, F.B.G. Fine sediment systems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Edinburgh, UK, 2021. [Google Scholar]
- Wells, J.T.; Coleman, J.M. Longshore Transport of Mud by Waves: Northeastern Coast of South America; Coastal Studies Institute, Center for Wetland Resources, Louisiana State University: Baton Rouge, LA, USA, 1978. [Google Scholar]
- Allison, M.A.; Lee, M.T.; Ogston, A.S.; Aller, R.C. Origin of Amazon mudbanks along the northeastern coast of South America. Mar. Geol. 2000, 163, 241–256. [Google Scholar] [CrossRef]
- Warne, A.G.; Meade, R.H.; White, W.A.; Guevara, E.H.; Gibeaut, J.; Smyth, R.C.; Aslan, A.; Tremblay, T. Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela. Geomorphology 2002, 44, 273–307. [Google Scholar] [CrossRef]
- Eisma, D.; Augustinus, P.G.E.F.; Alexander, C. Recent and subrecent changes in the dispersal of Amazon mud. Neth. J. Sea Res. 1991, 28, 181–192. [Google Scholar] [CrossRef]
- Augustinus, P.G.E.F. The Changing Shoreline of Surinam (South America). Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 1978. [Google Scholar]
- Anthony, E.J.; Gardel, A.; Gratiot, N.; Proisy, C.; Allison, M.A.; Dolique, F.; Fromard, F. The Amazon-influenced muddy coast of South America: A review of mud-bank-shoreline interactions. Earth-Sci. Rev. 2010, 103, 99–121. [Google Scholar] [CrossRef]
- Gardel, A.; Gratiot, N. A Satellite Image–Based Method for Estimating Rates of Mud Bank Migration, French Guiana, South America. J. Coast. Res. 2005, 214, 720–728. [Google Scholar] [CrossRef]
- Abascal Zorrilla, N.; Vantrepotte, V.; Gensac, E.; Huybrechts, N.; Gardel, A. The Advantages of Landsat 8-OLI-Derived Suspended Particulate Matter Maps for Monitoring the Subtidal Extension of Amazonian Coastal Mud. Remote Sens. 2018, 10, 1733. [Google Scholar] [CrossRef]
- Froidefond, J.M.; Pujos, M.; Andre, X. Migration of mud banks and changing coastline in French Guiana. Mar. Geol. 1988, 84, 19–30. [Google Scholar] [CrossRef]
- Gratiot, N.; Gardel, A.; Anthony, E.J. Trade-wind waves and mud dynamics on the French Guiana coast, South America: Input from ERA-40 wave data and field investigations. Mar. Geol. 2007, 236, 15–26. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; de Graaff, R.F.; Groeneweg, J.; Luijendijk, A.P. Modelling of wave damping at Guyana mud coast. Coast. Eng. 2007, 54, 249–261. [Google Scholar] [CrossRef]
- Zhu, S.; Wei, W.; Zhu, Q.; Wan, K.; Xing, F.; Yan, W.; Gao, J.; Wang, Y. Wave attenuation and transformation across a highly turbid muddy tidal flat-salt marsh system. Appl. Ocean Res. 2024, 147, 103980. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Y.; Yu, H.; Ma, L.; Li, X.; Li, W.; Zhang, H.; Bian, C. In-Situ Observation of Storm-Induced Wave-Supported Fluid Mud Occurrence in the Subaqueous Yellow River Delta. J. Geophys. Res. Ocean. 2022, 127, 1–19. [Google Scholar] [CrossRef]
- Safak, I.; Sheremet, A.; Davis, J.; Kaihatu, J.M. Nonlinear wave dynamics in the presence of mud-induced dissipation on Atchafalaya Shelf, Louisiana, USA. Coast. Eng. 2017, 130, 52–64. [Google Scholar] [CrossRef]
- Toorman, E.A.; Anthony, E.; Augustinus, P.G.E.F.; Gardel, A.; Gratiot, N.; Homenauth, O.; Huybrechts, N.; Monbaliu, J. Interaction of Mangroves, Coastal Hydrodynamics, and Morphodynamics Along the Coastal Fringes of the Guianas. In Threats to Mangrove Forests; Springer: Berlin/Heidelberg, Germany, 2018; Volume 20, ISBN 9783319730165. [Google Scholar]
- Anthony, E.J.; Gardel, A.; Gratiot, N. Fluvial Sediment Supply, Mud Banks, Cheniers and the Morphodynamics of the Coast of South America between the Amazon and Orinoco River Mouths; Geological Society London Special Publications: London, UK, 2013. [Google Scholar] [CrossRef]
- Gardel, A.; Anthony, E.J.; Ferreira dos Santos, V.; Huybrechts, N.; Lesourd, S.; Sottolichio, A.; Maury, T. A remote sensing-based classification approach for river mouths of the Amazon-influenced Guianas coast. Reg. Environ. Chang. 2022, 22, 65. [Google Scholar] [CrossRef]
- Orseau, S.; Lesourd, S.; Huybrechts, N.; Gardel, A. Hydro-sedimentary processes of a shallow tropical estuary under Amazon influence. The Mahury Estuary, French Guiana. Estuar. Coast. Shelf Sci. 2017, 189, 252–266. [Google Scholar] [CrossRef]
- Orseau, S.; Abascal Zorrilla, N.; Huybrechts, N.; Lesourd, S.; Gardel, A. Decadal-scale morphological evolution of a muddy open coast. Mar. Geol. 2020, 420, 106048. [Google Scholar] [CrossRef]
- Walcker, R.; Gratiot, N.; Anthony, E.J. Remote Sensing-based Monitoring of the Muddy Mangrove Coastline of French Guiana. In Land Surface Remote Sensing in Urban and Coastal Areas; Elsevier: Edinburgh, UK, 2016; pp. 297–320. [Google Scholar] [CrossRef]
- Chevalier, C.; Baklouti, M.; Ramamonjiarisoa, A. Modeling the influence of wind and rivers on current, salinity and temperature over the French Guiana continental shelf during the rainy season. J. Coast. Res. 2004, 20, 1183–1197. [Google Scholar] [CrossRef]
- Bourret, A.; Devenon, J.L.; Chevalier, C. Tidal influence on the hydrodynamics of the French Guiana continental shelf. Cont. Shelf Res. 2008, 28, 951–961. [Google Scholar] [CrossRef]
- Chevalier, C.; Froidefond, J.M.; Devenon, J.L. Numerical analysis of the combined action of littoral current, tide and waves on the suspended mud transport and on turbid plumes around French Guiana mudbanks. Cont. Shelf Res. 2008, 28, 545–560. [Google Scholar] [CrossRef]
- Rodriguez, H.N.; Mehta, A.J. Modelling muddy coast response to waves. J. Coast. Res. 2001, 27, 137–148. [Google Scholar]
- Kranenburg, W.M.; Winterwerp, J.C.; de Boer, G.J.; Cornelisse, J.M.; Zijlema, M. SWAN-Mud, an engineering model for mud-induced wave-damping. J. Hydraul. Eng. 2011, 137, 959–975. [Google Scholar] [CrossRef]
- Rogers, W.E.; Holland, K.T. A study of dissipation of wind-waves by mud at Cassino Beach, Brazil: Prediction and inversion. Cont. Shelf Res. 2009, 29, 676–690. [Google Scholar] [CrossRef]
- Adesina, R.B.; He, Z.; Oladejo, H.O.; Dada, O.A.; Ajibade, H.J. High-resolution wave modeling of the Southwestern Nigerian coastal shelf: Implications on geomorphic contrasts between barrier-lagoon and mud coasts. Mar. Geol. 2024, 470, 107253. [Google Scholar] [CrossRef]
- Ng, C.-O. Water waves over a muddy bed: A two layer Stokes’ boundary layer model. Coast. Eng. 2000, 40, 221–242. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; Liu, P.L.F. Waves over soft muds: A two-layer fluid model. J. Phys. Oceanogr. 1978, 8, 1121–1131. [Google Scholar] [CrossRef]
- Do, A.T.; Sottolichio, A.; Huybrechts, N.; Gardel, A. Circulation pattern and implication for fine sediment transport in a preserved tropical estuary: The case of the Maroni (French Guiana). Reg. Stud. Mar. Sci. 2020, 40, 101493. [Google Scholar] [CrossRef]
- Lisboa, P.V.; Fernandes, E.H.; Sottolichio, A.; Huybrechts, N.; Bendô, A.R.R.; Costi, J. Bottom evolution patterns driven by hydrodynamic forcing in the Southwest Atlantic Inner Continental Shelf, off Río de la Plata and Patos Lagoon. Cont. Shelf Res. 2023, 255, 104934. [Google Scholar] [CrossRef]
- Parvathy, K.G.; Bhaskaran, P.K. Nearshore modelling of wind-waves and its attenuation characteristics over a mud dominated shelf in the Head Bay of Bengal. Reg. Stud. Mar. Sci. 2019, 19, 100665. [Google Scholar] [CrossRef]
- Anthony, E.J.; Gardel, A.; Proisy, C.; Fromard, F.; Gensac, E.; Peron, C.; Walcker, R.; Lesourd, S. The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapá-Guianas coast, South America: A three-point research agenda. J. S. Am. Earth Sci. 2013, 44, 18–24. [Google Scholar] [CrossRef]
- Abascal, N. Dynamics of the Amazonian Mud Bank System through Spatial Observation and Hydro-Sedimentary Modeling: Application to the Coastal Domain of French Guiana. Ph.D. Thesis, Université de Guyane, Cayenne, France, 2019. [Google Scholar]
- Pujos, M.; Latouche, C.; Maillet, N. Late Quaternary paleoceanography of the French Guiana continental shelf: Clay-mineral evidence. Oceanol. Acta 1996, 19, 477–489. [Google Scholar]
- Augustinus, P.G.E.F. The influence of the trade winds on the coastal development of the Guianas at various scale levels: A synthesis. Mar. Geol. 2004, 208, 145–151. [Google Scholar] [CrossRef]
- Lasserre, J.; Collinet, M. Base Navale de Degrad des Cannes (Cayenne)—Etude Hydrodynamique et Sedimentologique; Phase i. Technical Report RP-52541-FR; BRGM: Orléans, France, 2003.
- Baklouti, M.; Devenon, J.L.; Bourret, A.; Froidefond, J.M.; Ternon, J.F.; Fuda, J.L. New insights in the French Guiana continental shelf circulation and its relation to the North Brazil Current retroflection. J. Geophys. Res. Ocean. 2007, 112, 1–18. [Google Scholar] [CrossRef]
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef]
- Abascal Zorrilla, N.; Vantrepotte, V.; Ngoc, D.D.; Huybrechts, N.; Gardel, A. Automated SWIR based empirical sun glint correction of Landsat 8-OLI data over coastal turbid water. Opt. Express 2019, 27, 294–318. [Google Scholar] [CrossRef]
- Han, B.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Bryère, P.; Ouillon, S.; Dessailly, D.; Xing, Q.; Zhu, J. Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters. Remote Sens. 2016, 8, 211. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wu, G.; Wang, K.; Liang, B.; Wu, X.; Wang, H.; Li, H.; Shi, B. Modeling the morphological responses of the Yellow River Delta to the water-sediment regulation scheme: The role of impulsive river floods and density-driven flows. Water Resour. Res. 2023, 59, e2022WR033003. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Roche, M.; Dubreuil, P.; Hoepffner, M. Dynamique des eaux, des Sels et des Sediments en Suspension dans les Estuaires du Mahury et de l’Approuague:etude en vue de L’alimentation D’une Usine de Pate de Bois (Guyane française). 1974. Available online: https://www.paralia.fr/jngcgc/15_33_sottolichio.pdf (accessed on 29 September 2024).
- Orseau, S. Dynamique Sédimentaire d’un Estuaire Tropical Sous Influence Amazonienne: Le cas de l’estuaire du Mahury. Ph.D. Thesis, University du Littoral Cote d’Opale, Dunkerque, France, 2016. [Google Scholar]
- Bi, Q.; Toorman, E.A. Mixed-sediment transport modelling in Scheldt estuary with a physics-based bottom friction law. Ocean. Dyn. 2015, 65, 555–587. [Google Scholar] [CrossRef]
- Tassi, P.; Villaret, C. Sisyphe User’s Manual; Report EDF LNHE (H-P74-2012-02004-EN); EDF: Paris, France, 2014; Volume 33, p. 74. [Google Scholar]
- Partheniades, E. A Study of Erosion and Deposition of Cohesive Soils in Salt Water. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 1962. [Google Scholar]
- Périgaud, C. Mécanique de l’érosion des vases. Houille Blanche 1983, 69, 501–512. [Google Scholar] [CrossRef]
- Gratiot, N.; Anthony, E.J. Role of flocculation and settling processes in development of the mangrove-colonized, Amazon-influenced mud-bank coast of South America. Mar. Geol. 2016, 373, 1–10. [Google Scholar] [CrossRef]
- Migniot, C.; Hamm, L. Consolidation and rheological properties of mud deposits. Coast. Eng. 1990, 2975–2983. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, B.; Wu, G.; Borsje, B.W. Modeling the formation and migration of sand waves: The role of tidal forcing, sediment size and bed slope effects. Cont. Shelf Res. 2019, 190, 103986. [Google Scholar] [CrossRef]
- van der Westhuysen, A.J.; Zijlema, M.; Battjes, J.A. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng. 2007, 54, 151–170. [Google Scholar] [CrossRef]
- Battjes, J.A.; Janssen, J.P.F.M. Energy loss and set-up due to breaking of random waves. Coast. Eng. 1978, 1978, 569–587. [Google Scholar]
- Vantrepotte, V.; Gensac, E.; Loisel, H.; Gardel, A.; Dessailly, D.; Mériaux, X. Satellite assessment of the coupling between in water suspended particulate matter and mud banks dynamics over the French Guiana coastal domain. J. S. Am. Earth Sci. 2013, 44, 25–34. [Google Scholar] [CrossRef]
- Allison, M.A.; Lee, M.T. Sediment exchange between Amazon mudbanks and shore-fringing mangroves in French Guiana. Mar. Geol. 2004, 208, 169–190. [Google Scholar] [CrossRef]
- Fiot, J.; Gratiot, N. Structural effects of tidal exposures on mudflats along the French Guiana coast. Mar. Geol. 2006, 228, 25–37. [Google Scholar] [CrossRef]
- Gensac, E.; Gardel, A.; Lesourd, S.; Brutier, L. Morphodynamic evolution of an intertidal mudflat under the influence of Amazon sediment supply—Kourou mud bank, French Guiana, South America. Estuar. Coast. Shelf Sci. 2015, 158, 53–62. [Google Scholar] [CrossRef]
- Gardel, A.A.; Gensac, E.; Anthony, E.J.; Lesourd, S.; Loisel, H.; Marin, D.; Gardel, A.; Gensac, E.; Anthony, E.J.; Lesourd, S.; et al. Wave-formed mud bars: Their morphodynamics and role in opportunistic mangrove colonization. J. Coast. Res. 2011, 64, 384–387. [Google Scholar]
- Froidefond, J.M.; Lahet, F.; Hu, C.; Doxaran, D.; Guiral, D.; Prost, M.T.; Ternon, J.F. Mudflats and mud suspension observed from satellite data in French Guiana. Mar. Geol. 2004, 208, 153–168. [Google Scholar] [CrossRef]
- Anthony, E.J.; Dolique, F.; Gardel, A.; Gratiot, N.; Proisy, C.; Polidori, L. Nearshore intertidal topography and topographic-forcing mechanisms of an Amazon-derived mud bank in French Guiana. Cont. Shelf Res. 2008, 28, 813–822. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Loisel, H.; Mériaux, X.; Neukermans, G.; Dessailly, D.; Jamet, C.; Gensac, E. Seasonal and inter-annual (2002–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensor over the French Guiana coastal waters. J. Coast. Res. 2011, 64, 1750–1754. [Google Scholar]
- Anthony, E.J.; Gardel, A.; Dolique, F.; Guiral, D. Short-term changes in the plan shape of a sandy beach in response to sheltering by a nearshore mud bank, Cayenne, French Guiana. Earth Surf. Process. Landf. 2002, 866, 857–866. [Google Scholar] [CrossRef]
- Brunier, G.; Fleury, J.; Anthony, E.J.; Gardel, A.; Dussouillez, P. Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology 2016, 261, 76–88. [Google Scholar] [CrossRef]
- Anthony, E.J.; Dolique, F. The influence of Amazon-derived mud banks on the morphology of sandy headland-bound beaches in Cayenne, French Guiana: A short- to long-term perspective. Mar. Geol. 2004, 208, 249–264. [Google Scholar] [CrossRef]
- Gao, J.; Hou, L.; Liu, Y.; Shi, H. Influences of bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Eng. 2024, 305, 117941. [Google Scholar] [CrossRef]
Date | Tide (m) | Hs (m) | Flow Rate (m3/s) | Wind Velocity (m/s) |
---|---|---|---|---|
29 July 2015 | −1.08 | 1.23 | 91.36 | 6.41 |
30 August 2015 | −1.61 | 1.25 | 47.08 | 7.60 |
15 September 2015 | −2.01 | 0.73 | 33.38 | 4.99 |
1 October 2015 | −2.41 | 0.95 | 23.20 | 6.30 |
2 November 2015 | +2.87 | 1.15 | 12.74 | 5.46 |
18 November 2015 | +2.79 | 1.31 | 22.53 | 3.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abascal-Zorrilla, N.; Huybrechts, N.; Orseau, S.; Vantrepotte, V.; Anthony, E.; Gardel, A. Numerical Investigation of the Sediment Load Exchange between a Coastal Mud Bank and Its Neighbouring Estuary. Water 2024, 16, 2885. https://doi.org/10.3390/w16202885
Abascal-Zorrilla N, Huybrechts N, Orseau S, Vantrepotte V, Anthony E, Gardel A. Numerical Investigation of the Sediment Load Exchange between a Coastal Mud Bank and Its Neighbouring Estuary. Water. 2024; 16(20):2885. https://doi.org/10.3390/w16202885
Chicago/Turabian StyleAbascal-Zorrilla, Noelia, Nicolas Huybrechts, Sylvain Orseau, Vincent Vantrepotte, Edward Anthony, and Antoine Gardel. 2024. "Numerical Investigation of the Sediment Load Exchange between a Coastal Mud Bank and Its Neighbouring Estuary" Water 16, no. 20: 2885. https://doi.org/10.3390/w16202885
APA StyleAbascal-Zorrilla, N., Huybrechts, N., Orseau, S., Vantrepotte, V., Anthony, E., & Gardel, A. (2024). Numerical Investigation of the Sediment Load Exchange between a Coastal Mud Bank and Its Neighbouring Estuary. Water, 16(20), 2885. https://doi.org/10.3390/w16202885