Influence of Vertical Force on Shields’ Curve and Its Extension in Rapidly Varied Flow
Abstract
:1. Introduction
2. Theoretical Consideration
Critical Shear Stress Subject to
3. Experimental Setup and Method
4. Experimental Results
4.1. Instantaneous Velocity and Free Surface Measurements
4.2. Sediment Motion and Forces on Target Particle
- (1)
- Rotation in which the particle only changed its initial orientation without dislodgement mostly occurred in the undular and immediate before the arrival of the breaking bore, in both the upstream and downstream directions.
- (2)
- Rolling where the particle dislodged from its initial position as it continuously rolled over adjacent pebbles for a few particles in breaking and dam-break bores.
- (3)
- Saltating particle movement upstream along the breaking bore and downstream along the dam-break bore without touching the other pebbles.
4.2.1. Stages of Particle Motion Beneath Tidal Bore
4.2.2. Stages of Particle Motion Beneath Dam-Break Bore
4.3. Observational Verification of Vertical Force Effect on Incipient Motion
5. Discussion on Forces Induced by Unsteadiness and Its Effects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Yu, G. Critical conditions of incipient motion of cohesive sediments. Water Resour. Res. 2017, 53, 7798–7815. [Google Scholar] [CrossRef]
- Ribberink, J.S.; Al-Salem, A.A. Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow. J. Geophys. Res. Ocean. 1994, 99, 12707–12727. [Google Scholar] [CrossRef]
- Voropayev, S.; Roney, J.; Boyer, D.; Fernando, H.; Houston, W. The motion of large bottom particles (cobbles) in a wave-induced oscillatory flow. Coast. Eng. 1998, 34, 197–219. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Sekiguchi, H. Effect of velocity hiatuses in oscillatory flow on migration and geometry of ripples: Wave-flume experiments. Sedimentology 2010, 57, 720–733. [Google Scholar] [CrossRef]
- Moulton, M.; Elgar, S.; Raubenheimer, B. A surfzone morphological diffusivity estimated from the evolution of excavated holes. Geophys. Res. Lett. 2014, 41, 4628–4636. [Google Scholar] [CrossRef]
- Riaz, M.Z.B.; Ly, K.L. The investigation of Nature-based Solutions (NbSs) as local scour countermeasures around bridge piers: A numerical study. In HWRS2023: Hydrology & Water Resources Symposium; Engineers Australia: Sydney, Australia, 2023; pp. 881–891. [Google Scholar]
- Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement; California Insititue of Technology: Pasadeza, CA, USA, 1936. [Google Scholar]
- Grant, W.D.; Madsen, O.S. Combined wave and current interaction with a rough bottom. J. Geophys. Res. Ocean. 1979, 84, 1797–1808. [Google Scholar] [CrossRef]
- Madsen, O.S.; Wikramanayake, P.N. Simple Models for Turbulent Wave-Current Bottom Boundary Layer Flow; Massachusetts Inst of Tech Cambridge Ralph M Parsons Lab for Water Resources. 1991. Available online: https://ui.adsabs.harvard.edu/abs/1991STIN...9232630M (accessed on 5 October 2024).
- Styles, R.; Glenn, S.M. Modeling stratified wave and current bottom boundary layers on the continental shelf. J. Geophys. Res. Ocean. 2000, 105, 24119–24139. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.L.F. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res. Ocean. 1998, 103, 15677–15694. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.L.-F. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 1998, 359, 239–264. [Google Scholar] [CrossRef]
- Afzalimhr, H.; Dey, S.; Rasoulianfar, P. Influence of decelerating flow on incipient motion of a gravel-bed stream. Sadhana 2007, 32, 545–559. [Google Scholar] [CrossRef]
- Frank, D.; Foster, D.; Sou, I.M.; Calantoni, J.; Chou, P. Lagrangian measurements of incipient motion in oscillatory flows. J. Geophys. Res. Ocean. 2015, 120, 244–256. [Google Scholar] [CrossRef]
- Riaz, M.Z.B.; Yang, S.-Q.; Sivakumar, M. Laboratory measurements of velocity and hydrodynamic force over coarse fixed rough bed. In ICHWR; CEWRE: Lahore, Pakistan, 2021. [Google Scholar]
- Riaz, M.Z.B.; Yang, S.-Q.; Sivakumar, M. Hydrodynamic Forces Generated on a Coarse Spherical Particle Beneath a Tidal Bore. In Webinar on Experimental Methods and Laboratory Instrumentation in Hydraulics; InstGeoph_PAS_Publs: Warszawa, Poland, 2021; Available online: https://pub.igf.edu.pl/book-of-extended-abstracts-webinar-on-experimental-methods-and-laboratory-instrumentation-in-hydraulics-13-15-april-2021,4,en,pubs,4,0,5,152.html (accessed on 5 October 2024).
- Riaz, M.Z.B. Role of Hydrodynamic Forces on Incipient Motion of Sediment in Unsteady Flows. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2022. [Google Scholar]
- Foster, D.; Bowen, A.; Holman, R.A.; Natoo, P. Field evidence of pressure gradient induced incipient motion. J. Geophys. Res. Ocean. 2006, 111, C05004. [Google Scholar] [CrossRef]
- Buffington, J.M.; Montgomery, D.R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 1997, 33, 1993–2029. [Google Scholar] [CrossRef]
- Lamb, M.P.; Dietrich, W.E.; Venditti, J.G. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? J. Geophys. Res. Earth Surf. 2008, 113, F02008. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Droppo, I.G.; Wharton, G. Erodibility of cohesive sediment: The importance of sediment properties. Earth-Sci. Rev. 2011, 105, 101–120. [Google Scholar] [CrossRef]
- Aksoy, H.; Mohammadi, M. Artificial neural network and regression models for flow velocity at sediment incipient deposition. J. Hydrol. 2016, 541, 1420–1429. [Google Scholar]
- Calantoni, J.; Puleo, J.A. Role of pressure gradients in sheet flow of coarse sediments under sawtooth waves. J. Geophys. Res. Ocean. 2006, 111, C01010. [Google Scholar] [CrossRef]
- Madsen, O.S. Stability of a sand bed under breaking waves. In Coastal Engineering 1974; American Society of Civil Engineers: Reston, VA, USA, 1975; pp. 776–794. [Google Scholar]
- Sleath, J.F. Conditions for plug formation in oscillatory flow. Cont. Shelf Res. 1999, 19, 1643–1664. [Google Scholar] [CrossRef]
- Nielsen, P. Shear stress and sediment transport calculations for swash zone modelling. Coast. Eng. 2002, 45, 53–60. [Google Scholar] [CrossRef]
- Terrile, E.; Reniers, A.J.; Stive, M.J.; Tromp, M.; Verhagen, H.J. Incipient motion of coarse particles under regular shoaling waves. Coast. Eng. 2006, 53, 81–92. [Google Scholar] [CrossRef]
- Myrhaug, D.; Slaattelid, O.; Soulsby, R.; Lambrakos, K. Measurements and analysis of flow velocity and sediment concentration at the seabed. Appl. Mech. Rev. 1995, 48, 570–588. [Google Scholar] [CrossRef]
- Riaz, M.Z.B.; Yang, S.Q.; Sivakumar, M.; Enever, K.; Miguntanna, N.S.; Khalil, U. Direct measurements of hydrodynamic forces induced by tidal bores. Water Resour. Res. 2021, 57, e2020WR028970. [Google Scholar] [CrossRef]
- Francalanci, S.; Parker, G.; Solari, L. Effect of seepage-induced nonhydrostatic pressure distribution on bed-load transport and bed morphodynamics. J. Hydraul. Eng. 2008, 134, 378–389. [Google Scholar] [CrossRef]
- Berni, C.; Michallet, H.; Barthélemy, E. Effects of horizontal pressure gradients on bed destabilization under waves. J. Fluid Mech. 2017, 812, 721–751. [Google Scholar] [CrossRef]
- Yang, S.-Q. Formula for Sediment Transport Subject to Vertical Flows. J. Hydraul. Eng. 2019, 145, 04019013. [Google Scholar] [CrossRef]
- Riaz, M.; Yang, S.; Sivakumar, M. Simultaneous Measurement of Horizontal and Vertical Velocities and Forces Beneath a Tidal Bore, Coastlab20; IAHR: Zhoushan, China, 2020; p. 8. [Google Scholar]
- Papanicolaou, A.; Diplas, P.; Evaggelopoulos, N.; Fotopoulos, S. Stochastic incipient motion criterion for spheres under various bed packing conditions. J. Hydraul. Eng. 2002, 128, 369–380. [Google Scholar] [CrossRef]
- Liu, P.L.; Park, Y.S.; Lara, J.L. Long-wave-induced flows in an unsaturated permeable seabed. J. Fluid Mech. 2007, 586, 323–345. [Google Scholar] [CrossRef]
- Scholtès, L.; Chareyre, B.; Michallet, H.; Catalano, E.; Marzougui, D. Modeling wave-induced pore pressure and effective stress in a granular seabed. Contin. Mech. Thermodyn. 2015, 27, 305–323. [Google Scholar] [CrossRef]
- Lamb, M.P.; Brun, F.; Fuller, B.M. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport. Water Resour. Res. 2017, 53, 7607–7629. [Google Scholar] [CrossRef]
- Guo, J. Empirical Model for Shields Diagram and Its Applications. J. Hydraul. Eng. 2020, 146, 04020038. [Google Scholar] [CrossRef]
- Khezri, N.; Chanson, H. Turbulent velocity, sediment motion and particle trajectories under breaking tidal bores: Simultaneous physical measurements. Environ. Fluid Mech. 2015, 15, 633–650. [Google Scholar] [CrossRef]
- Einstein, H.A.; El-Samni, E.-S.A. Hydrodynamic forces on a rough wall. Rev. Mod. Phys. 1949, 21, 520. [Google Scholar] [CrossRef]
- Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L. Forces on stationary particles in near-bed turbulent flows. J. Geophys. Res. Part F Earth Surf. 2007, 112, 1–21. [Google Scholar] [CrossRef]
- Dwivedi, A.; Melville, B.; Raudkivi, A.J.; Shamseldin, A.Y.; Chiew, Y.-M. Role of turbulence and particle exposure on entrainment of large spherical particles in flows with low relative submergence. J. Hydraul. Eng. 2012, 138, 1022–1030. [Google Scholar] [CrossRef]
- Wei, Z.; Dalrymple, R.A.; Hérault, A.; Bilotta, G.; Rustico, E.; Yeh, H. SPH modeling of dynamic impact of tsunami bore on bridge piers. Coast. Eng. 2015, 104, 26–42. [Google Scholar] [CrossRef]
- Xu, Z.; Melville, B.; Whittaker, C.; Nandasena, N.; Shamseldin, A. Mitigation of tsunami bore impact on a vertical wall behind a barrier. Coast. Eng. 2021, 164, 103833. [Google Scholar] [CrossRef]
- Shafiei, S.; Melville, B.W.; Shamseldin, A.Y. Experimental investigation of tsunami bore impact force and pressure on a square prism. Coast. Eng. 2016, 110, 1–16. [Google Scholar] [CrossRef]
- Chuang, W.-L.; Chang, K.-A.; Kaihatu, J.; Cienfuegos, R.; Mokrani, C. Experimental study of force, pressure, and fluid velocity on a simplified coastal building under tsunami bore impact. Nat. Hazards 2020, 103, 1093–1120. [Google Scholar] [CrossRef]
- Kikkert, G.A.; O’Donoghue, T.; Pokrajac, D.; Dodd, N. Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes. Coast. Eng. 2012, 60, 149–166. [Google Scholar] [CrossRef]
- Alexander, J.; Cooker, M.J. Moving boulders in flash floods and estimating flow conditions using boulders in ancient deposits. Sedimentology 2016, 63, 1582–1595. [Google Scholar] [CrossRef]
- Liu, X.; Infante Sedano, J.Á.; Mohammadian, A. A coupled two-dimensional numerical model for rapidly varying flow, sediment transport and bed morphology. J. Hydraul. Res. 2015, 53, 609–621. [Google Scholar] [CrossRef]
- Amicarelli, A.; Kocak, B.; Sibilla, S.; Grabe, J. A 3D smoothed particle hydrodynamics model for erosional dam-break floods. Int. J. Comput. Fluid Dyn. 2017, 31, 413–434. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, S.; Nielsen, P.; Wüthrich, D. Measurements of bed shear stresses near the tip of dam-break waves on a rough bed. Exp. Fluids 2021, 62, 49. [Google Scholar] [CrossRef]
- Yang, S. Influence of Vertical Velocity on Sediment Transport; IAHR-APD: Jeju Island, Republic of Korea, 2012. [Google Scholar]
- Cheng, N.-S.; Chiew, Y.-M. Incipient sediment motion with upward seepage. J. Hydraul. Res. 1999, 37, 665–681. [Google Scholar] [CrossRef]
- Schlichting, H.; Kestin, J.; Street, R.L. Boundary-Layer Theory (Seventh Edition). J. Fluids Eng. 1980, 102, 125. [Google Scholar] [CrossRef]
- Julien, P.Y. Erosion and Sedimentation; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Farvizi, F.; Melville, B.W.; Shamseldin, A.Y.; Shafiei, S.; Hendi, E. Experimental investigation of tsunami bore-induced forces and pressures on skewed box section bridges. Ocean Eng. 2021, 224, 108730. [Google Scholar] [CrossRef]
- Chanson, H.; Toi, Y.-H. Physical modelling of breaking tidal bores: Comparison with prototype data. J. Hydraul. Res. 2015, 53, 264–273. [Google Scholar] [CrossRef]
- Livermore, S.N. Evaluation of Tsunami Design Codes and Recommendations for Bridges Susceptible to Tsunami Inundation. Master’s Thesis, University of Washington, Seattle, WA, USA, 2014. [Google Scholar]
- Graf, W.H. Sediment transport in steep channel. J. Hydrosci. Hydr. Eng. JSCE 1987, 5, 11–26. [Google Scholar]
- Bagnold, R.A. Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1946, 187, 1–18. [Google Scholar]
- Manohar, M. Mechanics of Bottom Sediment Movement Due to Wave Action; Tech. Memo. 75. Beach Erosion Board; U.S. Army Corps of Engineers: Washington, DC, USA, 1955. [Google Scholar]
- Rance, P.; Warren, N. The threshold of movement of coarse material in oscillatory flow. In Coastal Engineering 1968; American Society of Civil Engineers: Reston, VA, USA, 1969; pp. 487–491. [Google Scholar]
- Zhou, Y.; Chen, Y.; Ma, Q. Threshold of sediment movement in different wave boundary layers. China Ocean Eng. 2001, 15, 509–520. [Google Scholar]
- Zuo, L.; Roelvink, D.; Lu, Y.; Li, S. On incipient motion of silt-sand under combined action of waves and currents. Appl. Ocean. Res. 2017, 69, 116–125. [Google Scholar] [CrossRef]
- Cao, Z.; Kong, L.; Jiao, G. Sediment incipient motion under co-action of waves and currents. Acta Oceanol. Sin. 2003, 25, 113–119. [Google Scholar]
- Hassan, M.A.; Egozi, R.; Parker, G. Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resour. Res. 2006, 42, W09408. [Google Scholar] [CrossRef]
- Emadzadeh, A.; Chiew, Y.M.; Afzalimehr, H. Effect of accelerating and decelerating flows on incipient motion in sand bed streams. Adv. Water Resour. 2010, 33, 1094–1104. [Google Scholar] [CrossRef]
Q (m3/s) | Gate Opening (mm) | h0 (m) | Fr |
---|---|---|---|
0.04 | 0, 10, 20, 40 & 60 | 0.155 | 1.17–1.45 |
0.033 | 0, 10, 20, 40 & 60 | 0.140 | 1.17–1.45 |
0.026 | 0, 10, 20, 40 & 60 | 0.125 | 1.17–1.45 |
Case | WL (mm) | GO (mm) | Ux (m/s) | Frd |
---|---|---|---|---|
1 | 250 | 400 | 1.32 | 1.40 |
2 | 300 | 400 | 1.49 | 1.51 |
3 | 350 | 200 | 1.65 | 1.57 |
4 | 350 | 400 | 1.78 | 1.62 |
5 | 400 | 200 | 1.94 | 1.67 |
6 | 400 | 400 | 2.06 | 1.71 |
Bore Type | Froude No. | Particle Movement Direction | |||
---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 1 | Stage 2 | ||
Breaking | 1.45 | 0.5 to 0.85 | 0.85 to -3.25 | ↑ & ↓ | ↑ |
Breaking | 1.38 | 0.5 to 0.7 | 0.7 to -3.1 | ↑ & ↓ | ↑ |
Breaking | 1.30 | 0.25 to 0.55 | 0.125 | ↑ | ↑ |
Undular | 1.21 | 0 to −0.25 | −0.25 to −2.9 | - | - |
Undular | 1.17 | 0 to −0.15 | −0.15 to −0.28 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, M.Z.B.; Iqbal, U.; Zain, H.; Yang, S.-Q.; Sivakumar, M.; Ji, R.; Anjum, M.N. Influence of Vertical Force on Shields’ Curve and Its Extension in Rapidly Varied Flow. Water 2024, 16, 2960. https://doi.org/10.3390/w16202960
Riaz MZB, Iqbal U, Zain H, Yang S-Q, Sivakumar M, Ji R, Anjum MN. Influence of Vertical Force on Shields’ Curve and Its Extension in Rapidly Varied Flow. Water. 2024; 16(20):2960. https://doi.org/10.3390/w16202960
Chicago/Turabian StyleRiaz, Muhammad Zain Bin, Umair Iqbal, Huda Zain, Shu-Qing Yang, Muttucumaru Sivakumar, Rong Ji, and Muhammad Naveed Anjum. 2024. "Influence of Vertical Force on Shields’ Curve and Its Extension in Rapidly Varied Flow" Water 16, no. 20: 2960. https://doi.org/10.3390/w16202960
APA StyleRiaz, M. Z. B., Iqbal, U., Zain, H., Yang, S. -Q., Sivakumar, M., Ji, R., & Anjum, M. N. (2024). Influence of Vertical Force on Shields’ Curve and Its Extension in Rapidly Varied Flow. Water, 16(20), 2960. https://doi.org/10.3390/w16202960