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Abstract: To enhance the efficiency of solving the optimal operation model for cascade reservoirs,
this paper first constructed an optimal operation model of cascade reservoirs. The model comprehen-
sively considered the ecological flow, the guaranteed output of hydroelectric power plants, and the
relaxation constraints of the water level at the end of water supply and storage period. The relaxation
constraints refer to two relaxation variable constraints, which are used to ensure that the water levels
decline in the water supply period and rise in the water storage periods. At the same time, to avoid
the challenges of “dimension disaster” and susceptibility to local optima commonly encountered in
existing optimization algorithms when resolving the above model, a novel optimization algorithm,
M-IWO-ODDDP, derived from the optimization principles of the Invasive Weed Optimization (IWO)
and Discrete Differential Dynamic Programming (DDDP) algorithms, was proposed in this paper.
The 11 cascade hydropower stations in the Wujiang River basin were used as a case study, and the
results showed that the water-level dispatching process exhibited a high degree of conformity with
the actual dispatching process during both the water supply and storage periods. Furthermore, the
output calculation results based on the M-IWO-ODDDP algorithm were 3.94% and 0.30% higher than
the actual output and ODDDP calculation results, respectively, while reducing water abandonment
by 21.58% and 4.07%.

Keywords: cascade hydropower stations; complex constraints; optimal operation model; discrete
differential dynamic programming; orthogonal test

1. Introduction

In recent years, China’s hydropower industry has developed rapidly and 13 major
hydropower stations have been planned and constructed. Currently in China, hydropower
has the largest share of installed capacity for renewable energy sources. Fully exploiting
multi-reservoir joint power generation holds significant importance for enhancing the
utilization rate of hydropower resources and attaining carbon peak and carbon neutrality
objectives [1–3]. With the improvement of our understanding of the benefits of power
generation, as well as the operational safety and ecological protection of hydropower
stations, the operational processes of cascade reservoirs are becoming more complicated. In
addition to the conventional reservoir dispatching constraints, ecological flow constraints
and guaranteed output constraints are also taken into account in the construction of an
optimal operation model for cascade hydropower stations.

However, due to the distinctive attributes of the optimal operation model of cascade
hydropower stations, such as being high-dimensional, nonlinear, and subject to multiple

Water 2024, 16, 2963. https://doi.org/10.3390/w16202963 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16202963
https://doi.org/10.3390/w16202963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w16202963
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16202963?type=check_update&version=1


Water 2024, 16, 2963 2 of 17

constraints, the construction and resolution of the model have emerged as prominent and
challenging issues in contemporary research [4–7].

Currently, the techniques used for resolving reservoir optimization operation prob-
lems mainly fall into two categories: traditional optimization algorithms and swarm
intelligence optimization algorithms. Among them, traditional optimization algorithms
mainly include linear programming and its improved forms, nonlinear programming, and
dynamic programming and its improved algorithms. For example, a linear programming
model has been established to address the issue of flood control compensation and reg-
ulation in reservoirs, and the linear coupling between reservoir dispatch and river flow
has been effectively mapped in this model [8]. Regarding algorithms used for nonlinear
programming, a hedging model for the economic optimization of hydropower stations
has been formulated and resolved using nonlinear programming techniques [9]. In the
field of dynamic programming and its improved algorithms, when applying the above
algorithms to solve a hydropower optimal scheduling model, it is evident from the re-
sults that these three methods exhibit limited efficiency in addressing high-dimensional
multi-constraint problems [10]. Numerous studies have consistently demonstrated that
conventional optimization algorithms, such as dynamic programming and its enhanced
variants, often encounter “dimension disaster” when addressing the joint optimization
scheduling problem in large-scale reservoir systems [11–15].

To solve the “dimension disaster” problem faced by traditional optimization algo-
rithms, swarm intelligence optimization algorithms have been rapidly developed and
widely applied in reservoir optimization. For example, Afshar employed Particle Swarm
Optimization (PSO) for resolving an optimization operation model for water supply and
power generation in Iran’s DEZ reservoir, and the study’s findings indicated that the con-
vergence of the PSO algorithm was relatively reliable [16]. Azizipour et al. employed the
Invasive Weed Optimization (IWO) algorithm for resolving the optimization operation
model of power generation in a single reservoir and verified its applicability in reservoir
operation optimization [17]. Fang et al. took Liujiaping Hydropower Station as their
research object and employed the NSGA-II algorithm to improve an operational model
of the reservoir, using multiple objectives for optimization [18]. Li et al. used a genetic
algorithm (GA) for addressing the operational model for the multi-objective optimization
of Huangzangsi Reservoir, providing a theoretical reference for the scheduling and op-
erational management of the reservoir [19]. However, previous research has shown that
swarm intelligence optimization algorithms have the drawbacks of premature convergence
and falling into local optima when addressing optimization problems of significant scale
and high dimensionality [20].

Based on the principle of orthogonal testing, scholars have proposed an Orthogonal
Discrete Differential Dynamic Programming (ODDDP) algorithm that effectively addresses
computational dimensionality and optimally solves large-scale reservoir scheduling prob-
lems [21]. Through orthogonal experiments, the ODDDP algorithm greatly reduces the
number of scheme components, and greatly improves the convergence speed without af-
fecting the optimization results. Moreover, compared with swarm intelligence optimization
algorithms, the biggest advantage of ODDDP is that it solves the problem of unstable opti-
mization results (that is, poor reproducibility of results) of swarm intelligence optimization
algorithms. Under the condition of the same initial conditions, its optimization results
are fixed and unique each time. However, this algorithm has limitations related to its
reliance on the quality of the initial solutions and susceptibility to local optima convergence.
To address this issue, the present study examined the optimization principle of the ODDDP
algorithm and drew insights from the spatial diffusion mechanism of the IWO algorithm.
Consequently, novel IWO-ODDDP and M-IWO-ODDDP algorithms were designed and
proposed. By using the 11-stage mixed-model reservoir in the Wujiang River basin as a case
study, this research thoroughly analyzed and validated the efficacy of the enhanced ODDDP
algorithm for tackling intricate high-dimensional nonlinear optimization problems.
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The subsequent sections of this document are structured in the following manner.
Section 2 formulates the optimal operation model for cascade reservoirs, taking into account
the constraints of the relaxation variables. Section 3 introduces the ODDDP algorithm and
its enhancement strategy by analyzing the convergence and robustness of the improved
ODDDP algorithm based on test functions. Additionally, a methodology is presented to
solve the cascade reservoir optimal operation model using the enhanced ODDDP algorithm.
Following that, Section 4 presents and analyzes the case study along with its findings.
The subsequent section, Section 5, is dedicated to formulating conclusions.

2. Optimal Operation Model of Cascade Reservoirs
2.1. Objective Function

The guaranteed output reflects the power generation capacity of a hydropower station
to a certain extent. Reducing the damage to the guaranteed output is vital for ensuring
the safe operation of a power grid and demonstrating the level of reservoir dispatching.
Therefore, a maximum generation model of cascade hydropower stations that takes into
account the constraint of guaranteed output is proposed in this paper.

In this model, “year” is taken to mean the whole scheduling period, and “month” is
taken to mean the calculation period. The model’s objective function is formulated as follows:

F = max
T

∑
t=1

[
M

∑
i=1

Nt,i + ω·∅t·
(

M

∑
i=1

Nt,i − Np,i

)γ]
, Nt,i = ki·Q

gen
t,i ·ht,i (1)

where F represents the objective function expression, T represents the length of the scheduling
interval, M represents the count of reservoirs, Nt,i represents the output of reservoir i at period
t, ω and γ represent penalty coefficients, and ω > 0, γ represents a positive integer. Np,i is
the guaranteed output of reservoir i; ki is the overall output coefficient of reservoir i; Qgen

t,i
and ht,i are the flow of power generation and the generating head of reservoir i at period t,
respectively; and ∅t is the ternary logical variable at period t, and its value is as follows:

∅t =



0 ,
M
∑

i=1
Nt,i ≥ Np,i

−1 ,
(

M
∑

i=1
Nt,i < Np,i

)
∪ (γ mod 2 = 0)

1 ,
(

M
∑

i=1
Nt,i < Np,i

)
∪ (γ mod 2 = 1)

(2)

where mod is a function that takes the remainder. And in this paper, the value of γ is set to 1.

2.2. Constraints
2.2.1. Conventional Constraints

To ensure the safety of the reservoir, power station, and flood control equipment, the
conventional constraints are set in the model of reservoir optimal operation. Moreover,
the conventional constraints of the cascade reservoir optimal operation model mainly
include the water balance constraint, water level of the reservoir constraint, discharge
flow constraint, output of the hydropower plant constraint, generating flow constraint,
generating head constraint, and runoff coupling constraint between two adjacent reservoirs.
The specific expression of each constraint is as follows:

When the scheduling plan does not satisfy any of the constraints listed in Table 1, it is
penalized by setting the objective function value of the plan to a certain minimum value. And
this allows the solution to be discarded during the sorting process as a nonoptimized solution.
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Table 1. The conventional constraints of optimal operation model for cascade reservoirs.

Name Constraint Formula Description

water balance constraint

qt,i ·∆t + Vt,i = Qt,i ·∆t + Vt+1,i

Each time period in the reservoir operation must satisfy the water balance
constraint. Where qt,i and Qt,i represent the mean inflow and outflow of the

i-th reservoir at period t, respectively; ∆t represents the duration of the
scheduling period; Vt,i and Vt+1,i represent the storage capacities of the i-th

reservoir during the initial and final stages of period t, respectively.

qt,i =
m
∑

j=1
Qt−τj ,j + qin

t,i

The inflow to the reservoir also needs to satisfy the water balance constraint.
Where τj represents the delay in water flow between reservoir i and j, and if
∆t ≫ τj , then τj can be ignored; Qt−τj ,j represents the mean outflow of the
j-th neighboring reservoir located upstream from reservoir i over the time

period t − τj ; qin
t,i represents the average interval runoff during time t between

reservoir i and the adjacent upstream reservoirs; and m represents the count
of reservoirs located upstream and adjacent to reservoir i.

water level constraint Vt,i

(
Zt,i

)
≤ Vt,i(Zt,i) ≤ Vt,i

(
Zt,i
)

To ensure the normal operation of the reservoir, the water level at each stage
during the reservoir operation must be between the maximum and minimum
water levels. During the flood season, the maximum water level is the flood

control limit water level, and during the nonflood season, it is the normal
storage water level. The minimum water level is the dead water level of the

reservoir. Where Vt,i

(
Zt,i

)
and Vt,i

(
Zt,i
)

represent the boundaries at each end
of the volume (water level) at time t for the i-th reservoir, respectively.

discharge flow constraint Qt,i ≤ Qt,i ≤ Qt,i

The outflow from the reservoir at different times must be between the
required maximum outflow and the minimum outflow (such as ecological
flow). Where Qt,i and Qt,i represent the minimum and maximum outflow

constraints of reservoir i during period t, respectively.

Output constraint Nt,i ≤ Nt,i ≤ Nt,i

The power output of a hydroelectric power plant must be between the
minimum output and the maximum output (such as the installed capacity of
the hydroelectric power plant). Where Nt,i and Nt,i represent the lowest and

highest output constraints of reservoir i during period t, respectively.

generating flow constraint Qgen
t,i ≤ Qgen

t,i ≤ Qgen
t,i

The hydropower station’s generating flow must be between the minimum
allowable generating flow and the maximum generating flow. Where Qgen

t,i

and Qgen
t,i represent the minimum and maximum power generation flows of

reservoir i during period t, respectively.

generating head constraint ht,i ≤ ht,i ≤ ht,i

The generating head of the hydroelectric power station should be avoided in
the vibration zone of the hydroelectric power station to extend its service life.
Where ht,i and ht,i represent the range of generating head limits for the i-th

reservoir within period t.

2.2.2. Model-Specific Constraints

(1) Ecological Flow Constraint

With the promotion of ecological construction in China, ecological flow has become an
important constraint in the process of reservoir operation. That is, the minimum discharge
flow of the reservoir should not be less than the ecological flow. The expression of ecological
flow constraint is as follows:

QE
t,i ≤ Qt,i (3)

where QE
t,i represents the ecological flow of reservoir i at period t.

(2) Relaxation constraints of water level

The model solution results obtained via directly adopting the aforementioned objective
function and constraint conditions often exhibit inconsistencies with real-world scenarios.
This is primarily due to the model’s tendency to prioritize maintaining high water levels
for maximizing power generation during dispatch periods, disregarding uncertainties
associated with incoming water, particularly during flood seasons. Such an oversight
could potentially intensify reservoir flood control pressures and increase the risk of water
abandonment. Therefore, to ensure alignment between the solution results of the model and
the actual dispatching operation of the reservoir group, flexible constraints on relaxation
variables are proposed for the termination of both the water supply and storage periods.
The method of relaxation variable constraint control used for the termination of the water
supply period is presented in Equation (4), while Equation (5) illustrates the corresponding
control for the termination of the water storage period.

n∗
tsup ,i = ntsup ,i −

Ztsup ,i − Ztsup ,i

Ztsup ,i − Ztsup ,i
·α (4)
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n∗
tsto ,i = ntsto ,i −

Ztsto ,i − Ztsto ,i

Ztsto ,i − Ztsto ,i
·β (5)

where n∗
tsup ,i and n∗

tsto ,i are the outputs of reservoir i during the termination of the water
supply and storage periods, considering the constraints imposed by relaxation variables;
ntsup ,i and ntsto ,i are the outputs of reservoir i during the termination of the water supply
and storage periods, considering the constraints imposed by relaxation variables; Ztsup ,i and
Ztsto ,i are reservoir i’s water levels during the termination of the water supply and storage
periods, respectively; Ztsup ,i and Ztsto ,i are the upper limits of reservoir i’s water levels
during the termination of the water supply and storage periods, respectively; Ztsup ,i and
Ztsto ,i are the lower thresholds for reservoir i’s water levels at the termination of the water
supply and storage periods, respectively; and α and β are the relaxation control coefficients
during the termination of the water supply and storage periods, respectively.

3. Methodology
3.1. ODDDP Algorithm

Dynamic programming (DP) is the most commonly used optimization algorithm to
solve the optimal dispatching problem of a single reservoir, and it has the problem of
“dimension disaster” when solving the optimal dispatching problem of a cascade reservoir
with more than two reservoirs. The Discrete Differential Dynamic Programming (DDDP) is
an improved algorithm of DP, which is mainly used to solve the optimal scheduling problem
of cascade reservoirs. However, it still has the problem of “dimension disaster” when
solving the optimal scheduling problem of a large number of cascade reservoirs. Therefore,
the ODDDP algorithm based on orthogonal experiment came into being. Moreover, a
cascade reservoir optimization scheduling model containing 4 reservoirs was built by the
author of the algorithm, and the ODDDP and DDDP algorithms were used to solve the
model respectively. The results showed that there was no significant difference between the
optimization results of the ODDDP and DDDP. However, the DDDP takes nearly 700 times
longer than the ODDDP algorithm [21].

The ODDDP algorithm built on the foundations of the DDDP algorithm via orthogonal
experiments for dimensionality reduction. An orthogonal experiment is an experimental
plan that targets multiple factors and levels, adopting the principle of “uniform dispersion,
uniformity, and comparability” to select representative experimental plans, in an effort to
minimize the quantity of experiments while ensuring the reliability of experimental results
or conclusions. Although the ODDDP algorithm greatly reduces the number of scheme
combinations in the DDDP algorithm, it does not change the discrete increment generation
method of the DDDP algorithm, thus failing to overcome the shortcomings related to the
DDDP algorithm’s dependence on initial solution quality and easy convergence to local
optimal solutions.

At present, the DDDP algorithm utilizes two methods for generating discrete incre-
ments: the fixed increment [21] and variable increment [10] methods. The fixed increment
method uses a fixed and invariant discrete increment for optimization during the algorithm
iteration process. The variable increment method uses a larger discrete increment in the
early stage of iteration and a smaller discrete increment in the subsequent iteration phase
to shift the algorithm from global to local optimization. Related studies have shown that
the DDDP algorithm’s optimization effect with variable increment implementation is better
than that with fixed increment implementation [22]. Equation (6) is one of the calculation
methods used for determining the discrete increment.

dt,i =
Zt,i − Zt,i

iter
, iter = 1, 2, · · · , itermax (6)

where dt,i represents the discrete increment of time period t for reservoir i during each
iteration of the algorithm, iter represents the current quantity of iterations of the algorithm,
and itermax represents the upper limit of iterations that can be performed.
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As demonstrated in Equation (6), the discrete increment in the ODDDP algorithm
gradually decreases as the number of iterations grows, achieving a global-to-local opti-
mization process. However, when the initial optimization process deviates far from the
global optimal solution, the ODDDP algorithm often falls into local optima in the later opti-
mization process. Therefore, this article introduced Gaussian random variables to perturb
the discrete increments during the algorithm iteration process to enhance the algorithm’s
capacity for achieving global optimization.

The flowchart of the ODDDP algorithm for optimization is shown in Figure 1.
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Figure 1. The flowchart of the ODDDP algorithm.

3.2. Improvement Strategy for the ODDDP Algorithm

Drawing inspiration from the mechanism used for the spatial diffusion of seeds
around parent individuals in the Invasive Weed Optimization (IWO) algorithm [23], the
IWO-ODDDP algorithm was proposed, and its discrete increment generation method is
shown in Equation (7):

dt,i = N

(
0,
[

σi, f in +

(
itermax − iter

itermax

)w(
σi,ini − σi, f in

)]2
)

(7)

where σi,ini and σi, f in represent the standard deviations of reservoir i at the onset and cul-
mination of iteration, respectively, with σi,ini > σi, f in; w represents the nonlinear harmonic
index, with a value of 3; and N

(
0, σ2) represents a random variable that conforms to a

Gaussian distribution.
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As shown in Equation (7), the IWO-ODDDP algorithm and the variable increment
optimization method in the ODDDP algorithm are consistent, and both can achieve a one-
time optimization process that shifts from global to local. However, due to the disturbance
of random Gaussian variables, the IWO-ODDDP algorithm has a strictly nonmonotonic
“global–local” optimization characteristic, unlike the ODDDP algorithm. The optimization
process diagram of the IWO-ODDDP algorithm and ODDDP algorithm is depicted in
Figure 2. The data presented in Figure 2 illustrate that the optimization mode of the
ODDDP algorithm implements a strategy of global-to-local optimization based on strict
monotonic characteristics. Compared with the optimization mode of the ODDDP algorithm,
the IWO-ODDDP algorithm can improve the breadth and depth of optimization in the
initial iteration, theoretically improving the algorithm’s global convergence ability.
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Several scholars have highlighted the fact that the single “global–local” optimization
mode has the drawback of easily falling into local optimal solutions [24]. To further increase
the optimization breadth and depth of the algorithm, based on the periodic properties of
trigonometric functions, this paper proposed the M-IWO-ODDDP algorithm by modifying
Equation (7) to reflect the form shown in Equation (8) (where n is an integer):

dt,i = N

(
0,
[

σi, f in +
(

σi,ini − σi, f in

)
·cos2

[
iter

itermax
· (2n + 1)π

2

]]2
)

(8)

The schematic diagram of the M-IWO-ODDDP algorithm optimization process is also
depicted in Figure 2.

The information depicted in Figure 2 demonstrates that the optimization method of
the M-IWO-ODDDP algorithm can achieve the reciprocating optimization characteristic
of “global–local–global–local···”. It could potentially determine the local optimal solution
through subsequent “global–local” optimization when “global–local” optimization becomes
trapped in a suboptimal solution specific to the locality and cannot be completed, thereby
increasing the algorithm’s global search ability and search depth. Moreover, it could
enhance the algorithm’s capacity to achieve global convergence.

As shown in Equation (8), for a specific value of n, it is necessary to increase the
number of iterations as much as possible to reduce the range of discrete variables between
adjacent iterations, potentially decreasing the probability of the algorithm “crossing” the
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optimal solution during the optimization process. When n remains constant, increasing
the maximum threshold for the iteration count enhances the likelihood of convergence
towards the global optimal solution. Simultaneously, with an increase in the upper limit
of the iterations, there will be a significant rise in the program’s computational duration,
leading to the algorithm having low optimization efficiency. Taking into account both
the algorithm’s optimization quality and operational efficiency, this article recommended
taking n as 1, and then Equation (8) is transformed into the following:

dt,i = N

(
0,
[

σi, f in +
(

σi,ini − σi, f in

)
·cos2

[
3π·iter

2·itermax

]]2
)

(9)

3.3. Convergence and Robustness Analysis of the Enhanced ODDDP Algorithm
3.3.1. Convergence Analysis of the Enhanced ODDDP Algorithm

The Schaffer and Shubert functions are widely employed as benchmark test functions
to evaluate the optimization capabilities of intelligent algorithms [25]. The Schaffer and
Shubert functions are two-dimensional complex entities. The independent variables of
Schaffer and Shubert fall within the range of [−10, 10]. The Schaffer function attains
its minimum value of 0 at the coordinate (0, 0), while the Schubert function achieves its
minimum value of −186.7309 at the coordinate (−1.42513, 0.80032). The convergence of
ODDDP, IWO-ODDDP, and M-IWO-ODDDP was examined in this study using Schaffer
and Shubert functions.

In the process of resolving the Schaffer and Shubert functions using the ODDDP,
IWO-ODDDP, and M-IWO-ODDDP algorithms, we initialized the independent variable
coordinates at (5, 5) as the first proposed resolution and set the upper limit of iterations to
2000. The standard deviation was initialized at 5 and finally reduced to 0.0001 when using
the IWO-ODDDP and M-IWO-ODDDP to optimize and solve the aforementioned two test
functions. The optimization process and the resulting optimizations of the algorithm are
depicted in Figure 3 and Table 2, respectively.
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Table 2. The optimization results of an intelligent algorithm for test functions.

Function
Optimization Algorithm

ODDDP IWO-ODDDP M-IWO-ODDDP

Schaffer 0.037227 0.009716 2.00 × 10−12

Shubert −186.617395 −186.730909 −186.730909

The findings presented in Figure 3 and Table 2 demonstrate the following: 1⃝The im-
proved ODDDP algorithm had a significantly better convergence effect than the ODDDP
algorithm. 2⃝The M-IWO-ODDDP improvement method exhibited a higher likelihood of sur-
passing the constraints imposed by local optimal solutions and converging or approximating
towards the global optimal solution than the IWO-ODDDP improvement method.

3.3.2. Robustness Analysis of M-IWO-ODDDP

Based on the convergence analysis results of the improved ODDDP algorithm, we
observed that the M-IWO-ODDDP algorithm had a better convergence effect than the ODDDP
and IWO-ODDDP algorithms. To analyze the robustness of the M-IWO-ODDDP algorithm,
this paper took the Schaffer function as an example and analyzed its impact on optimization
results based on two aspects: different initial solutions and different parameter values.

(1) The influence of diverse initial solutions on optimization results

Within the range of independent variable values in the Schaffer function, 100 sets of
initial solutions were randomly generated, and the remaining parameter values were the same
as those in the convergence analysis of the improved ODDDP algorithm. The outcomes of the
optimization process can be observed in Figure 4. In the figure, the pink points represent the
initial solution, and the purple points represent the global optimal solution.
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The information depicted in Figure 4 shows that the M-IWO-ODDDP algorithm had no
significant dependence on the initial solution. This improvement method could converge
towards the globally optimal solution under different initial solution conditions. The above
results demonstrate that the M-IWO-ODDDP algorithm has a robust convergence effect.

(2) The impact of varying parameter values on the outcomes of optimization
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The M-IWO-ODDDP algorithm mainly involves two parameters: the initial and the
final values of the standard deviation. The initial standard deviation value mainly reflects
the algorithm’s global optimization performance, while the final standard deviation value
reflects the algorithm’s local optimization performance. Therefore, the initial standard
deviation value was considered a larger value in the search space, and the final standard
deviation value was considered a smaller value. The impact of varying parameter values
on the outcomes of optimization was analyzed by randomly generating 100 groups of
parameter values within the intervals of [2, 10] and [0, 0.01] for the initial and final standard
deviations. The outcomes of the optimization can be observed in Figure 5.
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The information depicted in Figure 5 reveals that under different initial and final stan-
dard deviation conditions, the M-IWO-ODDDP algorithm can converge or approximately
achieve the most favorable outcome on a global scale. Moreover, the convergence effect of
the M-IWO-ODDDP algorithm was relatively stable, as shown by the consistent variation
in the optimization results. Furthermore, by comparing the optimization results under
different initial and final standard deviation values, it can be seen that the impact of changes
in the initial standard deviation value on the convergence effect was smaller than that of the
ultimate measure of variability. Based on the optimization results under different standard
deviation terminal values, it can be seen that as the standard deviation terminal value
increased, the optimization effect gradually deteriorated. When the standard deviation
terminal value takes a smaller value, the optimization results converge or approximately
converge towards the globally optimal solution, and the convergence effect is stable.

The optimization results under different initial solutions, various initial standard devia-
tion measurements, and diverse final values of standard deviation demonstrate the robustness
of the M-IWO-ODDDP algorithm as a comprehensive approach. Regarding the specific
impacts of different parameter values on the optimization results, the sensitivity of the op-
timization results to the initial solution value was smallest, followed by the initial standard
deviation value, and the sensitivity of the final standard deviation value was highest.

3.4. Improved ODDDP Algorithm Application in Cascade Hydropower Station Optimal Operation Model

Due to the superior optimization effect of the M-IWO-ODDDP compared to IWO-ODDDP,
this study utilized the former to address the optimal operational model used for a series of
interconnected hydroelectric power plants. The solution flow chart of the cascade reservoir
optimization operation model based on the M-IWO-ODDDP algorithm was consistent with
the ODDDP algorithm (as shown in Figure 1). The following are the precise measures taken:
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Step 1: Generate the initial solution. Due to the fact that the M-IWO-ODDDP algo-
rithm is not affected by the quality of the initial solution, the initial reservoir water-level
scheduling process line {Zt,i} for cascade reservoirs was generated using either the equal
flow method or the random method.

Step 2: Reframe the orthogonal test plan. Orthogonal test combination schemes were
generated using allpairs software, taking into account the quantity of cascade reservoirs
engaged in the process of regulation and the quantity of the discrete states. Let m represent
the quantity of reservoirs participating in regulation and n represent the quantity of distinct
states (where n is an odd number). Consequently, we aimed to determine the total count M
of the orthogonal test scheme combinations at each moment during the dispatching period.
The matrix A was constructed by amalgamating the aforementioned M orthogonal test schemes.

A =



A1,1 · · · A1,i · · · A1,m
... · · ·

... · · ·
...

Aj,1 · · · Aj,i · · · Aj,m
... · · ·

... · · ·
...

AM,1 · · · AM,i · · · AM,m

,−n − 1
2

≤ Aj,i ≤
n − 1

2
(10)

where Aj,i is the element value corresponding to the i-level reservoir of the j-th state
combination scheme in the orthogonal experimental scheme combination matrix A, and
Aj,i is an integer.

Step 3: Generate the state combination scheme. The cascade reservoir water-level
dispatching process for each combination scheme was established according to the initial
water-level dispatching process and orthogonal test combination scheme matrix. This pro-
cess is defined in Equations (11) and (12).

Zt,i,j = Zt,i + Aj,i·N
(

0, σ2
iter,i

)
(11)

σiter,i = σi, f in +
(

σi,ini − σi, f in

)
·cos2

[
3π·iter

2·itermax

]
(12)

where Zt,i,j represents reservoir i’s water level at time t in state combination scheme j, and σiter,i
represents the standard deviation of reservoir i calculated via the algorithm in the iter iteration.

Step 4: Dynamic programming optimization. Given that there were M orthogonal test
scheme combinations at each time point throughout the scheduling period, the overall count
of possible arrangements for schemes throughout the scheduling period was MT−1 + 2M.
Moreover, the optimal scheduling process

{
Z∗

t,i

}
in all current combinations of scheduling

schemes was determined using the dynamic programming algorithm by calculating their
target fitnesses.

Step 5: Iterative calculation.
{

Z∗
t,i

}
was used as the new initial scheduling solution.

Moreover, we reiterated Steps 3~4 until the condition iter = itermax was met. Finally, the
ultimate optimization strategy was presented.

4. Case Study
4.1. Study Area

This study was centered on the Wujiang River basin, located in the province of Guizhou
in China. The research subject of this study comprised a total of 11 reservoirs situated
in the Wujiang River basin, constituting a cascade system. Based on this, we developed
a comprehensive power generation model for the Wujiang River cascade reservoirs that
takes into account both medium- and long-term factors. The runoff data from the actual
Wujiang Reservoir Group in 2018 were utilized as inputs for the model. Our objective was
to assess and exhibit the dependability of the M-IWO-ODDDP algorithm for optimizing
cascade reservoir dispatching through model resolution. Furthermore, the feasibility of
the proposed improved optimal dispatching model for cascade hydropower stations was
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verified in this paper. In the cascade reservoirs of Wujiang River, four reservoirs, namely
Suofengying, Geliqiao, Silin, and Shatuo, are operated on a daily basis, while the remaining
reservoirs are managed on an annual or multi-year basis. The medium- and long-term
dispatching processes of the daily regulation reservoir were simulated through a balanced
approach to inflow and outflow. That is, the outflow of the daily regulated reservoir was
simulated as equivalent to its inflow. The spatial topological relationship between the
11 reservoirs within the Wujiang River basin is depicted in Figure 6.
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The initial solution of the Wujiang cascade reservoir’s maximum power generation
model was generated using the equal flow method. In the course of resolving the model,
the discrete state number was taken as 3, and a seven-factor, three-level orthogonal table
was constructed using allpairs software to generate 18 orthogonal experimental schemes.
The final value of the standard deviation in the M-IWO-ODDDP algorithm was 0.0001, and
the initial value of the standard deviation was as follows:

σ
(i,t)
ini = Zt,i − Zt,i (13)

where σ
(i,t)
ini is the initial standard deviation value at time t of the i-th reservoir.

4.2. Results and Discussion

By setting different maximum iteration times, the ODDDP algorithm and M-IWO-
ODDDP algorithm were used to solve the medium- and long-term optimization scheduling
model of the Wujiang cascade reservoirs. Drawing from the outcomes of the proposed
solution, the ability of the M-IWO-ODDDP algorithm to perform optimization scheduling
modeling of a series of interconnected hydroelectric power plants was analyzed. The op-
timization results of the two algorithms under different maximum iteration times are
displayed in Figure 7.
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As depicted in Figure 7, the following conclusions were drawn in terms of optimization
results: (1) Overall, the M-IWO-ODDDP algorithm was more prone to overcoming the local
optimal solution limitation and achieving a global optimal solution, unlike the ODDDP
algorithm. (2) When itermax was small, the ODDDP algorithm’s optimization results improved
as itermax increased, but as the itermax value continued to increase, the optimization results
stabilized. By comparing the optimization results with those of the M-IWO-ODDDP algorithm,
it was seen that they only converged to a certain local optimal solution. (3) The M-IWO-
ODDDP algorithm exhibited significant instability in its optimization results due to the
randomness of Gaussian variables when itermax was small. As the itermax value increased,
although the optimization results stabilized, they still exhibited instability.

In terms of computational time, there was little disparity between the M-IWO-ODDDP
algorithm and the ODDDP algorithm under the same itermax conditions, and there was
a notable linear relationship between the duration of computation and the itermax value,
indicating that the computational time was only affected by the maximum number of
iterations and had no significant relationship with the generation method of discrete
variables in the ODDDP algorithm.

Furthermore, a comparative examination of the optimization results of the two algo-
rithms was also conducted in this paper by examining the optimal scheduling schemes for
cascade reservoirs optimized using the ODDDP and M-IWO-ODDDP algorithms. The out-
put and abandoned water flows of cascade reservoirs optimized by the ODDDP and
M-IWO-ODDDP algorithms are shown in Table 3.

Table 3. The optimal solution scheme for the optimization of the ODDDP and M-IWO-ODDDP algorithms.

Reservoir
Output (10 MW)

Increase
Proportion (%)

Abandoned Water Flow Rate (m3/s)
Increase

Proportion (%)Actual Values ODDDP M-IWO-
ODDDP Actual Values ODDDP M-IWO-

ODDDP

Hongjiadu 178.50 186.21 188.51 1.23 0.00 0.00 0.00 0.00
Puding 51.67 53.67 60.48 12.70 173.48 150.04 139.49 −7.03
Yinzidu 134.45 156.19 157.25 0.67 0.00 0.00 0.00 0.00

Dongfeng 401.83 411.46 414.65 0.77 0.00 0.00 0.00 0.00
Suofengying 294.30 281.94 281.75 −0.07 0.00 0.00 0.00 0.00
Wujiangdu 518.70 554.01 554.98 0.17 0.00 0.00 0.00 0.00
Dahuashui 99.10 102.98 105.92 2.85 81.00 65.53 65.53 0.00

Geliqiao 77.50 75.98 76.05 0.09 62.49 43.54 43.54 0.00
Goupitan 1006.60 1113.01 1108.25 −0.43 0.00 0.00 0.00 0.00

Silin 491.11 465.44 465.05 −0.08 0.00 0.00 0.00 0.00
Shatuo 535.90 526.48 526.27 −0.04 0.00 0.00 0.00 0.00

Sum 3789.67 3927.37 3939.14 0.30 316.97 259.11 248.56 −4.07
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According to the results presented in Table 3 for the output and abandoned water
flow of cascade reservoirs in the Wujiang River, it can be observed that both the optimized
ODDDP and M-IWO-ODDDP algorithms yielded higher calculated outputs compared
to the actual values, while the calculated abandoned water was lower than the actual
amount. The optimization scheme resolved by the M-IWO-ODDDP algorithm reduced
the unused water capacity of the cascade reservoirs, improved the rate at which water
resources were used, and increased the output of the series of interconnected hydroelectric
power plants in comparison with the ODDDP algorithm. Furthermore, according to the
output of Wujiang hydroelectric power plants, it is evident that the difference in output
between the two algorithm optimization results mainly manifested in the Puding and
Dahuashui reservoirs. Their reservoir water-level regulation process is depicted in the
diagram provided in Figure 8.
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The information depicted in Figure 8 indicates the following: (1) The water-level
dispatching process calculated via the enhanced cascade reservoir optimal dispatch model
was highly consistent with the actual dispatch process during water supply and storage
periods. This finding highlights that the optimization scheme proposed in this study is
more suitable for practical dispatching scenarios compared to traditional models. (2) The
overall water-level scheduling schemes of Puding and Dahuashui reservoirs optimized via
the M-IWO-ODDDP algorithm were better than those optimized by the ODDDP algorithm,
indicating that the optimization results of the M-IWO-ODDDP algorithm fully utilized
the head efficiency, reduced the rate at which water was consumed for generating power,
enhanced the efficiency of water resource utilization, and enhanced electricity production
within the timeframe of reservoir management in the “water-to-electricity” scheduling
mode. (3) The Puding and Dahuashui reservoirs did not abandon water before June,
and in early June, the reservoirs’ water levels all decreased to the lower boundary of the
reservoir water level, indicating that the optimization results of the M-IWO-ODDDP and
ODDDP algorithms both reduced the abandoned water volume during the flood period by
reinforcing the flow of power generation and reducing the reservoir water level before the
flood period, as well as pre-releasing the reservoir in advance. (4) For the Puding reservoir,
by the end of June, the M-IWO-ODDDP optimization scheme’s water level reached the
flood period limit water level (i.e., the upper limit of the flood season water-level constraint),
which was better than the ODDDP algorithm’s optimization result, resulting in a greater
amount of abandoned water being present in June. This indicates that in the later stage of
optimization, the ODDDP algorithm failed to overcome the local optimal limit due to the
reduced search range, causing the reservoir water level to not converge to the upper limit
of the flood season water-level constraint by the end of June, so it failed to achieve the most
favorable outcome on a worldwide scale.
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To analyze the impact of the number of reservoirs, size of the reservoirs, and other
factors on the calculation time of the M-IWO-ODDDP algorithm, we took Hongjiadu,
Puding, Hongjiadu–Dongfeng (H-D), Hongjiadu–Dongfeng–Suofengying–Wujiangdu (H-
D-S-W), and Hongjiadu–Dongfeng–Suofengying–Wujiangdu–Goupitan (H-D-S-W-G) as
research objects, respectively, by setting different orthogonal experimental level numbers,
and using the M-IWO-ODDDP algorithm to solve the model. The results are shown in
Table 4 and Figure 9.

Table 4. The computing time of M-IWO-ODDDP algorithm under different conditions.

Reservoirs Reservoir Capacity (108 m3) Number of Reservoirs Number of Factors Per
Time Period

Number of Levels for
Each Factor Computing Time (s)

Hongjiadu 49.47 1 1
3 0.268
5 0.437
7 1.198

Puding 4.2 1 1
3 0.141
5 0.288
7 0.391

H-D - 2 2
3 1.697
5 10.492
7 38.090

H-D-S-W - 4 3
3 3.231
5 22.807
7 78.717

H-D-S-W-G - 5 4
3 4.570
5 35.900
7 145.155
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Figure 9. The effects of varying quantities and levels of different factors on the computing time of
M-IWO-ODDDP: (a) the impact of factor quantity; (b) the impact of factor level numbers.

Analysis of Table 4 and Figure 9 reveals the following: (1) For a specific reservoir or
cascade reservoirs, an increase in the number of levels results in an exponential growth in
computing time. (2) The computing times for HJD and PD reservoirs indicate that, when
the number of levels is constant, reservoirs with larger capacity exhibit longer calculation
times. (3) At a given level number, as the quantity of reservoirs (primarily reflecting factor
count) increases, the calculation time also escalates, demonstrating a transition from linear
growth (with fewer factors) to exponential growth (as factor count increases).

5. Conclusions

By considering the ecological flow, guaranteed output, and relaxation constraints of
the water level at the end of the water supply and storage periods, a maximum generation
model of cascade hydropower stations that takes into account the constraint of guaran-
teed output was proposed in this paper. Moreover, by drawing on the spatial diffusion
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mechanism of the IWO algorithm, the IWO-ODDDP and M-IWO-ODDDP algorithms were
proposed. By analyzing the improved ODDDP algorithm’s convergence and resilience, as
well as considering the Wujiang cascade reservoirs to be the research object, a study was
carried out, the findings of which are outlined below:

(1) In comparison to the conventional optimal operation model of cascade reservoirs,
the results of the model constructed in this paper show that the reservoir water level
was lowered in advance of the flood season and rose during the flood season, which
aligned with the actual scheduling patterns observed in cascade reservoir systems.

(2) The convergence performance of the improved ODDDP algorithm surpassed that
of its original algorithm, and the M-IWO-ODDDP improvement method can more
easily overcome the local optimal solution limit than the IWO-ODDDP improvement
method and achieve the globally optimal solution through convergence.

(3) The M-IWO-ODDDP improvement method has no significant dependence on the
initial solution quality, and different parameter values in the algorithm have limited
impacts on the convergence effect. The algorithm also has good robustness.

(4) For the same maximum number of iterations, there was little disparity in computation
time between the M-IWO-ODDDP and ODDDP algorithms. The stability of the M-IWO-
ODDDP optimization results was lower than that of the ODDDP algorithm due to the
influence of random variable perturbations for different maximum iteration times.

(5) The computing time of the M-IWO-ODDDP is influenced by the number of cascade
reservoirs, reservoir size, and the levels of factors. As the quantity of reservoirs, stor-
age capacity, and factor levels increase, there is a corresponding rise in the algorithm’s
computing time.

In summary, the optimal operation model of cascade reservoirs constructed in this
paper is consistent with the actual scheduling law of reservoirs. The M-IWO-ODDDP
algorithm proposed in this paper can greatly improve the solving efficiency of the optimal
operation model of cascade reservoirs, and the research results can provide guiding value
for cascade reservoirs scheduling practice.

Despite this, the M-IWO-ODDDP algorithm does not demonstrate computational
superiority over the ODDDP algorithm; thus, further investigation is warranted to enhance
its computational efficiency through the application of computer parallel technology.
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12. Heidari, M.; Chow, V.; Kokotović, P.; Meredith, D. Discrete Differential Dynamic Programing Approach to Water Resources

Systems Optimization. Water Resour. Res. 1971, 7, 273–282. [CrossRef]
13. Feng, Z.; Niu, W.; Cheng, C. Optimizing electrical power production of hydropower system by uniform progressive optimality

algorithm based on two-stage search mechanism and uniform design. J. Clean. Prod. 2018, 190, 432–442. [CrossRef]
14. Raso, L.; Bader, J.; Weijs, S. Reservoir Operation Optimized for Hydropower Production Reduces Conflict with Traditional Water

Uses in the Senegal River. J. Water Resour. Plan. Manag. 2020, 146, 05020003. [CrossRef]
15. Mousavi, S.; Zanoosi, A.; Afshar, A. Optimization and simulation of a multiple reservoir system operation. J. Water Supply Res.

Technol. AQUA 2004, 53, 409–424. [CrossRef]
16. Afshar, M. Large scale reservoir operation by Constrained Particle Swarm Optimization algorithms. J. Hydro Environ. Res. 2012, 6, 75–87.

[CrossRef]
17. Azizipour, M.; Ghalenoei, V.; Afshar, M.; Solis, S. Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization

Algorithm. Water Resour. Manag. 2016, 30, 3995–4009. [CrossRef]
18. Fang, G.; Ding, Z.; Huang, X.; Dai, L. Optimization of hydropower reservoir operation considering river ecological protection.

J. Hydroelectr. Eng. 2018, 37, 1–9.
19. Li, Y.; Chen, Z.; Yang, J.; Tang, N.; Dong, G. Study on Optimal Operation of Heihe Huangzangsi Water Control Project. Yellow

River 2021, 43, 140–146.
20. Suwal, N.; Huang, X.; Kuriqi, A.; Chen, Y.; Pandey, K.; Bhattarai, K. Optimisation of cascade reservoir operation considering

environmental flows for different environmental management classes. Renew. Energy 2020, 158, 453–464. [CrossRef]
21. Feng, Z.; Liao, S.; Niu, W.; Cheng, C.; Tang, J.; Su, H. Orthogonal discrete differential dynamic programming for mid-long term

optimal operation of cascade hydropower system. Proc. CSEE 2015, 35, 4635–4644.
22. Feng, Z.; Niu, W.; Cheng, C.; Lund, J. Optimizing hydropower reservoirs operation via an orthogonal progressive optimality

algorithm. J. Water Resour. Plan. Manag. 2018, 144, 4018001. [CrossRef]
23. Mehrabian, A.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1, 355–366.

[CrossRef]
24. Fang, G.; Wu, C.; Liao, T.; Huang, X.; Qu, B. A two-layer improved invasive weed optimization algorithm for optimal operation

of cascade reservoirs. Water Supply 2020, 20, 2311–2323. [CrossRef]
25. Fozooni, A.; Kamari, O.; Pourtalebiyan, M.; Gorgich, M.; Khalilzadeh, M.; Valizadeh, A. An Analysis of the Operation Factors of

Three PSO-GA-ED Meta-Heuristic Search Methods for Solving a Single-Objective Optimization Problem. Comput. Intell. Neurosci.
2022, 2022, 2748215. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.esd.2022.12.013
https://doi.org/10.1016/0022-1694(76)90070-6
https://doi.org/10.1002/2013WR015181
https://doi.org/10.1016/j.energy.2018.04.173
https://doi.org/10.1007/s12665-021-09681-9
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001046
https://doi.org/10.1016/j.jhydrol.2021.126357
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000205
https://doi.org/10.1029/WR007i002p00273
https://doi.org/10.1016/j.jclepro.2018.04.134
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001076
https://doi.org/10.2166/aqua.2004.0032
https://doi.org/10.1016/j.jher.2011.04.003
https://doi.org/10.1007/s11269-016-1407-6
https://doi.org/10.1016/j.renene.2020.05.161
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000882
https://doi.org/10.1016/j.ecoinf.2006.07.003
https://doi.org/10.2166/ws.2020.140
https://doi.org/10.1155/2022/2748215

	Introduction 
	Optimal Operation Model of Cascade Reservoirs 
	Objective Function 
	Constraints 
	Conventional Constraints 
	Model-Specific Constraints 


	Methodology 
	ODDDP Algorithm 
	Improvement Strategy for the ODDDP Algorithm 
	Convergence and Robustness Analysis of the Enhanced ODDDP Algorithm 
	Convergence Analysis of the Enhanced ODDDP Algorithm 
	Robustness Analysis of M-IWO-ODDDP 

	Improved ODDDP Algorithm Application in Cascade Hydropower Station Optimal Operation Model 

	Case Study 
	Study Area 
	Results and Discussion 

	Conclusions 
	References

