Spatiotemporal Variation Characteristics and Source Identification of Nitrogen in the Baiyangdian Lake Water, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to the Study Area
2.2. Sample Collection and Analysis
2.3. Data Analysis
2.3.1. Principal Component Analysis
2.3.2. Cluster Analysis
3. Results and Analysis
3.1. Temporal Variation Characteristics of Nitrogen Concentration in Baiyangdian Lake
3.1.1. Temporal Variation of Nitrogen Concentration in Baiyangdian Lake
3.1.2. Temporal Variation of Nitrogen Concentration in Influent Rivers
3.2. Spatial Variation Characteristics of Nitrogen Concentration in Baiyangdian Lake
- (1)
- Spatial variation of nitrogen in Baiyangdian Lake during the normal season
- (2)
- Spatial variation of nitrogen in Baiyangdian Lake during the flood season
- (3)
- Spatial variation of nitrogen in Baiyangdian Lake during the dry season
3.3. Water Quality Assessment of Baiyangdian Lake
4. Discussion
4.1. Comparison of Nitrogen Concentrations in Different Types of Lakes
4.2. Identification of Nitrogen Sources in Baiyangdian Lake
4.2.1. Ion Ratio Method for Source Tracing
4.2.2. Identification of Nitrogen Pollution Sources in Baiyangdian Lake Using PCA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dearig, J.A.; Yang, X.; Dong, X.; Zhang, E.; Chen, X.; Langdon, P.G.; Zhang, K.; Zhang, W.; Dawson, T.; Dawson, T.P. Extending the Timescale and Range of Ecosystem Services through Paleoenvironmental Analyses, Exemplified in the Lower Yangtze Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 6808–6809. [Google Scholar]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The Global Abundance and Size Distribution of Lakes, Ponds, and Impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef]
- Yang, M.N.; Zhu, L.; Liu, J.T.; Zhang, Y.X.; Zhou, B. Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China. J. Groundw. Sci. Eng. 2023, 11, 333–346. [Google Scholar] [CrossRef]
- Zhu, Y.; Jin, X.; Tang, W.; Meng, X.; Shan, B. Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China. J. Environ. Sci. 2019, 76, 319–328. [Google Scholar] [CrossRef]
- Zhai, T.L.; Zhang, Q.Q.; Wang, L.; Wang, H.W. Temporal and Spatial Variations in Hydrochemical Components and Driving Factors in Baiyangdian Lake in the Northern Plain of China. J. Groundw. Sci. Eng. 2024, 12, 293–308. [Google Scholar] [CrossRef]
- Galbraith, L.M.; Burns, C.W. Linking Land-use, Water Body Type and Water Quality in Southern New Zealand. Landscape Ecol. 2007, 22, 231–241. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, H.P.; Jiang, S.Y.; Ma, P.; Lai, X.J.; Deng, J.C.; Chen, D.Q. Spatiotemporal Variations in Nutrient Loads in River-Lake System of Changdang Lake Catchment in 2016-2017. Environ. Sci. 2020, 41, 4042–4052. (In Chinese) [Google Scholar]
- Liu, Y.; Zhang, Q. Study on the Spatiotemporal Variation in and Driving Mechanism of Water Quality in Baiyangdian Lake. Water 2024, 16, 166. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, Y.; Zhang, H.; Yu, C.; Li, X.; Zhang, M.; Zhang, Z.; Yang, Y. Tracing Nitrate Origins and Transformation Processes in Groundwater of the Hohhot Basin’s Piedmont Strong Runoff Zone through Dual Isotopes and Hydro-Chemical Analysis. Sci. Total Environ. 2024, 919, 170799. [Google Scholar] [CrossRef]
- Yu, S.S. The Water Quality Change and Driving Force Analysis in Xiaoxingkai Lake. Ph.D. Thesis, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China, 2015. [Google Scholar]
- Mbaye, M.L.; Gaye, A.T.; Spitzy, A.; Dähnke, K.; Afouda, A.; Gaye, B. Seasonal and Spatial Variation in Suspended Matter, Organic Carbon, Nitrogen, and Nutrient Concentrations of the Senegal River in West Africa. J. Mar. Syst. 2016, 57, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Wang, Y.; Yang, M.; Zhu, L. Groundwater Quality Assessment and Pollution Source Apportionment in an Intensely Exploited Region of Northern China. Environ. Sci. Pollut. Res. 2017, 24, 16639–16650. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yan, J.; Wang, Y.; Zhang, B.; Wang, H. Seasonal variation of aquatic macrophytes and its relationship with environmental factors in baiyangdian lake, China. Sci. Total Environ. 2019, 708, 135112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Sun, W.; Han, Q.; Chen, H.; Chen, H.; Jin, Y.; Tong, R.; Tian, Z. Assessment of Spatial Variation in River Water Quality of the Baiyangdian Basin (China) during Environmental Water Release Period of Upstream Reservoirs. Water 2020, 12, 688. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.; Liu, Y.; Qiao, X.; Wang, X.; Ma, M.; Jin, X.; Liu, C.; Zheng, B.; Shen, J.; et al. High Contamination, Bioaccumulation and Risk Assessment of Perfluoroalkyl Substances in Multiple Environmental Media at the Baiyangdian Lake. Ecol. Toxicol. Environ. Saf. 2019, 182, 109454. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shen, H.; Li, S.; Liang, Y.; Zhang, L. Effects of Eutrophication on the Benthic-Pelagic Coupling Food Web in Baiyangdian Lake. Acta Ecol. Sin. 2018, 38, 2017–2020. [Google Scholar]
- Tang, C.; Chen, D.; Yi, Y.; Zhou, Y.; Zhang, S. Effects of Ecological Water Supplement on Vegetation Dynamics in Lake Baiyangdian Wetland. J. Lake Sci. 2022, 34, 1197–1207. (In Chinese) [Google Scholar]
- Xue, P.; Zhao, Q.; Wang, Y.; Geng, L.; Wang, D. Distribution Characteristics of Heavy Metals in Sediment-Submerged Macrophyte-Water Systems of Lake Baiyangdian. J. Lake Sci. 2018, 30, 1525–1536. [Google Scholar]
- Cui, Q.; Pan, Y.; Zhang, H.; Sheng, N.; Dai, J. Elevated Concentrations of Per-Fluorohexanesulfonate and Other Per- and Polyfluoroalkyl Substances in Baiyangdian Lake (China): Source Characterization and Exposure Assessment. Environ. Pollut. 2018, 241, 684–691. [Google Scholar] [CrossRef]
- Hu, Q. Analysis and Comprehensive Evaluation of Water Quality in Taihu Lake from 2011 to 2020. J. Shantou Univ. (Nat. Sci.) 2022, 37, 65–74. (In Chinese) [Google Scholar]
- Wu, L.; Zhang, Y.; Chen, Y.; Geng, M.; Chen, X. Distribution of Water Environmental Factors and Evaluation of Trophic State in the River-Lake System of Chaohu Lake Basin. J. Hydroecol. 2023, 44, 65–72. (In Chinese) [Google Scholar]
- Zhang, Z.; Liu, C.; Zhu, Y.; Li, J. Analysis on Temporal and Spatial Variation of Water Quality in Dianchi Lake from 1990 to 2020. J. Southwest For. Univ. 2023, 43, 141–151. (In Chinese) [Google Scholar]
- Yu, H. Temporal and Spatial Distribution of Nitrogen and Phosphorus and Pollution Loads from Internal and External Sources in Lugu Lake. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2022. (In Chinese). [Google Scholar]
- Saimire, T. Study on the Characteristics and Evaluation of Water Pollution Changes in Lake Bosten. Ph.D. Thesis, Xinjiang Normal University, Urumqi, China, 2023. (In Chinese). [Google Scholar]
- Chen, J.; He, D.; Cui, S. The Response of River Water Quality and Quantity to the Development of Irrigated Agriculture in the Last 4 Decades in the Yellow River Basin, China. Water Resour. 2003, 39, 1047. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Wang, H.; Zhai, T.; Liu, L.; Li, G.; Xu, Z. Spatial Patterns in Water Quality and Source Apportionment in a Typical Cascade Development River Southwestern China Using PMF Modeling and Multivariate Statistical Techniques. Chemosphere 2023, 311, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Greaver, T.L. A Global Perspective on Belowground Carbon Allocation and Dynamics: Patterns and Controls. Ecol. Lett. 2010, 3, 1459–1474. [Google Scholar]
- Han, Q.; Tong, R.; Sun, W.; Zhao, Y.; Yu, J.; Wang, G.; Shrestha, S.; Jin, Y. Anthropogenic Influences on the Water Quality of the Baiyangdian Lake in North China over the Last Decade. Sci. Total Environ. 2020, 701, 134929. [Google Scholar] [CrossRef]
- Chen, X.; Ren, M.; Li, G.; Zhang, J.; Xie, F.; Zheng, L. Identification of nitrate accumulation mechanism of surface water in a mining-rural-urban agglomeration area based on multiple isotopic evidence. Sci. Total Environ. 2024, 912, 169123. [Google Scholar] [CrossRef]
- Wang, W.; Song, X.; Ma, Y. Identification of Nitrate Source Using Isotopic and Geochemical Data in the Lower Reaches of the Yellow River Irrigation District (China). Environ. Earth Sci. 2016, 75, 936. [Google Scholar] [CrossRef]
- Yao, X.; Guo, L.L.; Shih, T.H.; Gavin, S.; He, Z.H. Salinity of Animal Manure and Potential Risk of Secondary Soil Salinization through Successive Manure Application. Sci. Total Environ. 2007, 383, 106–114. [Google Scholar]
- Zhang, Q.; Wang, H.; Liu, L.; Zhai, T.; Zhang, X. Multiple Isotopes Reveal the Driving Mechanism of High NO3– Level and Key Processes of Nitrogen Cycling in the Lower Reaches of Yellow River. J. Environ. Sci. 2024, 138, 597–606. [Google Scholar] [CrossRef]
- Torres-Martínez, J.; Mora, A.; Mahlknecht, J.; Kaown, D.; Barceló, D. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion—A multi-isotopic approach combined with self-organizing maps and a bayesian mixing model. J. Hazard. Mater. 2021, 417, 126103. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, X.; Liu, D.; Chao, L.; Shan, B. Temporal and Spatial Variation of Nitrogen and Phosphorus and Eutrophication Assessment for a Typical Arid River—Fuyang River in Northern China. J. Environ. Sci. 2017, 55, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, S.; Lang, Y.; Xiao, H. Using δ15N- and δ18O-values to identify nitrate sources in Karst ground water, Guiyang, Southwest China. Environ. Sci. Technol. 2006, 40, 6928–6933. [Google Scholar] [CrossRef] [PubMed]
Parameters | Season | Mean (mg/L) | Min (mg/L) | Max (mg/L) | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
TN | Normal Season | 0.759 | 0.450 | 1.98 | 0.401 | 52.7 |
Flood season | 0.786 | 0.502 | 1.54 | 0.313 | 39.8 | |
Dry season | 0.924 | 0.532 | 2.51 | 0.536 | 58.0 | |
NO3−-N | Normal Season | 0.559 | 0.020 | 1.35 | 0.278 | 49.7 |
Flood season | 0.380 | 0.130 | 1.07 | 0.256 | 67.4 | |
Dry season | 0.528 | 0.101 | 2.01 | 0.522 | 98.9 | |
NH4+-N | Normal Season | 0.025 | 0.025 | 0.032 | 0.002 | 6.9 |
Flood season | 0.025 | 0.025 | 0.025 | 0.000 | 0.0 | |
Dry season | 0.131 | 0.025 | 0.495 | 0.130 | 99.3 |
Parameters | Season | Mean (mg/L) | Min (mg/L) | Max (mg/L) | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
TN | Normal season | 2.37 | 1.46 | 3.10 | 0.654 | 27.6 |
Flood season | 2.12 | 0.557 | 4.06 | 1.26 | 59.6 | |
Dry season | 3.17 | 0.907 | 5.25 | 1.53 | 48.4 | |
NO3−-N | Normal season | 1.74 | 0.910 | 2.43 | 0.623 | 35.9 |
Flood season | 1.59 | 0.247 | 2.52 | 0.958 | 60.1 | |
Dry season | 2.38 | 0.161 | 4.28 | 1.30 | 54.5 | |
NH4+-N | Normal season | 0.553 | 0.319 | 0.802 | 0.188 | 34.0 |
Flood season | 0.074 | 0.041 | 0.135 | 0.036 | 48.3 | |
Dry season | 0.402 | 0.191 | 0.750 | 0.218 | 54.3 |
Sites | Season | Parameters | Standard (mg/L) | Min (mg/L) | Max (mg/L) | Mean (mg/L) | Exceedance Rate (%) |
---|---|---|---|---|---|---|---|
Baiyangdian Lake | Normal season | TN | 1.0 | 0.450 | 1.98 | 0.759 | 12.5 |
NO3−-N | 10 | 0.002 | 0.135 | 0.056 | 0.0 | ||
NH4+-N | 1.0 | 0.025 | 0.032 | 0.025 | 0.0 | ||
Flood season | TN | 1.0 | 0.502 | 1.54 | 0.786 | 18.8 | |
NO3−-N | 10 | 0.013 | 0.107 | 0.038 | 0.0 | ||
NH4+-N | 1.0 | 0.025 | 0.025 | 0.025 | 0.0 | ||
Dry season | TN | 1.0 | 0.532 | 2.51 | 0.924 | 31.3 | |
NO3−-N | 10 | 0.010 | 0.201 | 0.053 | 0.0 | ||
NH4+-N | 1.0 | 0.025 | 0.495 | 0.131 | 0.0 | ||
River | Normal season | TN | 1.0 | 1.46 | 3.10 | 2.37 | 100.0 |
NO3−-N | 10 | 0.090 | 0.240 | 0.174 | 0.0 | ||
NH4+-N | 1.0 | 0.320 | 0.800 | 0.553 | 0.0 | ||
Flood season | TN | 1.0 | 0.560 | 4.06 | 2.12 | 71.4 | |
NO3−-N | 10 | 0.020 | 0.250 | 0.159 | 0.0 | ||
NH4+-N | 1.0 | 0.040 | 0.130 | 0.074 | 0.0 | ||
Dry season | TN | 1.0 | 0.910 | 5.25 | 3.17 | 85.7 | |
NO3−-N | 10 | 0.020 | 0.430 | 0.238 | 0.0 | ||
NH4+-N | 1.0 | 0.190 | 0.750 | 0.402 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Xu, S.; Yang, L. Spatiotemporal Variation Characteristics and Source Identification of Nitrogen in the Baiyangdian Lake Water, China. Water 2024, 16, 2969. https://doi.org/10.3390/w16202969
Zhang Q, Xu S, Yang L. Spatiotemporal Variation Characteristics and Source Identification of Nitrogen in the Baiyangdian Lake Water, China. Water. 2024; 16(20):2969. https://doi.org/10.3390/w16202969
Chicago/Turabian StyleZhang, Qianqian, Shimin Xu, and Li Yang. 2024. "Spatiotemporal Variation Characteristics and Source Identification of Nitrogen in the Baiyangdian Lake Water, China" Water 16, no. 20: 2969. https://doi.org/10.3390/w16202969
APA StyleZhang, Q., Xu, S., & Yang, L. (2024). Spatiotemporal Variation Characteristics and Source Identification of Nitrogen in the Baiyangdian Lake Water, China. Water, 16(20), 2969. https://doi.org/10.3390/w16202969