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Abstract: The significance of the interconnection between water and energy, known as the water–
energy (WE) nexus, is highly regarded in scientific publications. This study used a narrative review
method to analyze the existing WE nexus studies performed before 2024 in 26 European countries.
The aim of this study is to provide a comprehensive analysis of the existing WE nexus to identify
research gaps and to report a conceptual overview of energy consumption related to groundwater
use phases, ranging from the tapping to distribution. This information is valuable as a guideline for
any future estimates in this field. The results indicate that the WE nexus in 26 European countries
comprises a variety of topics, including the water supply system, wastewater treatment, hydropower,
desalination, and biofuel production. Most of the focus has been on fossil fuel production, while
water supply and desalination were considered rarely. Italy and Portugal had the largest WE nexus. It
is highlighted that there have been no studies on the WE nexus focusing on the groundwater supply
system that consider the conceptual hydrological model or hydrodynamic processes. In this work, a
view of these aspects was provided by taking into account different hydrogeological and hydraulic
scenarios that may affect the amount of energy required for groundwater exploitation. Most scientific
publications have focused on quantitative analysis. In the future, it will be necessary for WE nexus
models to place a greater emphasis on governance and the implications of the WE nexus approach.

Keywords: biofuel; water–energy security nexus; energy intensity; groundwater supply

1. Introduction

Water and energy are two essential elements for human life and sustainable devel-
opment that play essential roles in national security, poverty reduction, and economic
sustainability [1]. The WE nexus is a novel approach for addressing the interlinkage be-
tween these two resources and sustainable resource management [2]. It is claimed that
the WE nexus can enhance informed decision makers in water and energy planning and
improve understanding of potential alternatives for both policy and technology. It can help
resource coordinators and policy makers in energy and water conservation and sustainabil-
ity [3]. Energy and water are basically interlinked [4]. It was evaluated that approximately
350 bm3 of the water withdrawal was utilized for energy production, including hydropower
and bioenergy production. Energy is also required for water production. For example,
various stages of water treatment and distribution, including pumping, filtration, and de-
salination, consume significant amounts of energy [5]. Water scarcity can directly influence
energy poverty and vice versa [6]. For example, one study [7] indicated that the reduction
in the production of fossil fuel contributes the reduction in water stress in Germany.

The interconnections between water and energy have been initially acknowledged
in the United States since at least 1994 [8]. However, over the past years, the interaction
between water and energy as the WE nexus has been a hot topic among the scientific
community and public [4]. A deep and comprehensive understanding of the WE nexus
is crucial to achieve sustainable resource management [7]. There are so many literature
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reviews about the nexus topic, and most of the existing review papers analyzed the water–
energy–food nexus (WEF nexus) at a global scale, such as [4–15]. However, only limited
review papers focused on two these essential elements (WE nexus), such as [16–19]. There is
one review paper focused on the nexus among water, energy, and food across 26 European
countries [20] that demonstrated that water and energy security is a hot topic in European
countries because of energy poverty. Thus, this study is significantly different from the
previous review [20] because this review considered the interaction between water and
energy in different sectors, including wastewater treatment, water supply, hydropower
production, biofuel production, and desalination in European countries. In addition, a
conceptual outline has been reported based on technical and scientific aspects that can
expose the situation of energy consumption related to groundwater exploitation.

The aim of this review is to provide a holistic view on the WE nexus in 26 European
countries because despite the high number of publications on the WE nexus, a holistic and
comprehensive review on the WE nexus focusing only on European countries does not
exist. Therefore, this study focuses exclusively on the WE nexus in European countries to
identify the research gaps and provide insights into effective management strategies and
policy recommendations with a focused insight into groundwater exploitation.

2. Materials and Methods

To analyze the existing WE nexus, this study used a narrative review approach because
it is comprehensive and allows coverage of a different range of topics [21,22]. This study
considered papers published before 2024. The following steps have been done:

1. Research was performed using variety of databases that cover all the relevant topics
that addressed the interaction between water and energy (WE nexus). Unpublished
papers are excluded. The selection criteria focused on published international and
English language papers. In this study, Web of Science, Scopus, PubMed, Google
Scholar, and Science Direct were used as secure databases.

2. In this step, suitable keywords that provide answers to the research questions
were found.

3. All the relevant papers were selected, and non-relevant papers were omitted.
4. In this final step, all of the results and key findings were summarized and written.

In this study, the following keywords were used: water–energy nexus, water energy
security, water–energy nexus and desalinate, water–energy nexus and biofuel, water–
energy nexus and bioenergy, water–energy nexus and water supply, water–energy nexus
and water treatment, water–energy nexus and hydropower, and water–energy nexus and
groundwater pumping.

This review classified and analyzed the water–energy nexus based on geography and
the types of sectors involved. The ArcGIS software was used to visualize the number of the
WE nexus studies in each country and the different study sectors across European countries.

3. Results
3.1. Overview of WE Nexus Studies
3.1.1. The Number of Water–Energy Nexus Studies Across European Countries

Figure 1 illustrates the number of the WE nexus studies across the different European
countries. It is indicated that the most WE nexus research has been conducted in Italy
and Portugal with nine studies. Both countries rely considerably on hydropower for their
electricity generation. This creates a direct interconnection between water availability and
energy production and highlights the significance of studying the WE nexus. However,
there is a lack of WE nexus studies in some countries like Bulgaria, Estonia, Latvia, and
Lithuania. Moreover, it can be concluded that there is lack of studies in some countries
characterized by energy poverty, like Bulgaria (the country with the highest level of energy
poverty in Europe [23]), Latvia, and Lithuania [23]. Addressing energy security in countries
with energy poverty is essential to promote sustainable development and economic growth.
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It is important for these countries to efficiently manage their limited energy resources and
increase resilience to climate change.
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Figure 1. The number of WE nexus studies across the different European countries.

3.1.2. Sectors of Water–Energy Nexus Research Across European Countries

Figure 2 illustrates the water–energy nexus across various sectors in European coun-
tries. It demonstrates that the WE nexus is explored based on a range of topics, such as
household water supply, bioenergy production, hydropower, water treatment, and water
desalination. In each European country, the focus varies based on their specific needs. For
example, in Italy, the WE nexus approach strongly emphasizes renewable energy sources,
particularly hydropower production, to enhance energy efficiency and reduce carbon emis-
sions. However, in other countries like Germany, Spain, and the Netherlands, studies are
more focused on the bioenergy sector.

Figure 3 shows the number of WE nexus studies in different sectors in all of Europe. It
is indicated that most of the WE nexus studies focused on bioenergy production. Next to
bioenergy, the second largest number of studies was allocated to hydropower production.
However, desalination has the lowest number of WE nexus publications with one publica-
tion in Portugal to overcome seasonal water scarcity and increase water efficiency. Ref. [24]
used the WE nexus approach in Portugal to compare two different scenarios for desalina-
tion considering economic aspects. There is a lack of studies on the water supply in the
context of the WE nexus for the domestic sector, specifically considering the hydrological
conceptual model or the type of aquifer for pumping of groundwater. This is significant
because pumping groundwater from aquifers with high permeability requires less energy
since water moves readily, reducing the resistance against the pump. Understanding the
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type of aquifer is essential for sustainable groundwater management. Over-extraction
from low permeability aquifers can lead to rapid depletion and land subsidence. Only one
study in Romania [25] considered the WE nexus for drinking water purposes in the whole
life cycle.

Water 2024, 16, x FOR PEER REVIEW  4  of  18 
 

 

 

Figure 2. Sectors of water–energy nexus research across European countries. 

Figure 3 shows the number of WE nexus studies in different sectors in all of Europe. 

It is indicated that most of the WE nexus studies focused on bioenergy production. Next 

to bioenergy, the second largest number of studies was allocated to hydropower produc-

tion. However, desalination has the lowest number of WE nexus publications with one 

publication in Portugal to overcome seasonal water scarcity and increase water efficiency. 

Ref. [24] used the WE nexus approach in Portugal to compare two different scenarios for 

desalination considering economic aspects. There is a lack of studies on the water supply 

in the context of the WE nexus for the domestic sector, specifically considering the hydro-

logical conceptual model or the type of aquifer for pumping of groundwater. This is sig-

nificant because pumping groundwater from aquifers with high permeability requires less 

energy since water moves readily, reducing the resistance against the pump. Understand-

ing the type of aquifer is essential for sustainable groundwater management. Over-extrac-

tion from low permeability aquifers can lead to rapid depletion and land subsidence. Only 

one study in Romania [25] considered the WE nexus for drinking water purposes in the 

whole life cycle. 

Figure 2. Sectors of water–energy nexus research across European countries.
Water 2024, 16, x FOR PEER REVIEW  5  of  18 
 

 

 

Figure 3. Number of WE nexus studies in different sectors. 

3.1.3. Overview of Existing Approaches for the Water–Energy Nexus 

Table 1 provides a summary of the WE nexus studies in 26 European countries. It can 

be seen that during the past several decades, various approaches have been utilized to 

analyze the interaction between water and energy in various contexts. These approaches 

include life cycle assessment (LCA), optimization, statistical analysis, hydrological models 

and economic approaches. Some researchers used scenario analysis to discover the poten-

tial tradeoffs of the water–energy–food nexus for the future. 

The optimization approach is a decision-making assistance method that helps to find 

the best possible appropriate solution for the water–energy nexus approach [26,27] by im-

proving  the  energy  efficiency  and  achieving  sustainable water  resource management 

across various scale [28–30]. 

Life cycle assessment integrated with the WE nexus has been used by various schol-

ars, such as [25,31–35]. LCA is considered a standard approach to assess footprint indexes 

and energy performance [9]. Considering the LCA throughout the whole life cycle of wa-

ter and energy systems contributes  to an understanding of  the  interlinkage  impacts of 

water and energy at different stages. Moreover, LCA can help to identify the environmen-

tal impacts (including greenhouse gas emission, water consumption, and resource deple-

tion) across the different stages of water and energy production and consumption. This 

approach can help  to recognize  the stages with powerful negative  impacts. This  infor-

mation  is  important  for decision makers  for  sustainable prioritization. For  example,  a 

study by [31] identified that in biofuel production, the crop production stage has the larg-

est environment impact in terms of water resource consumption. Another study by [32] 

demonstrated  that groundwater abstraction  for drinking water supply consumed high 

levels of energy compared to surface water abstraction. Moreover, another study by [36] 

used LCA to compare the environmental impacts of different alternatives for wastewater 

treatment technology to find more sustainable alternatives for water and energy use effi-

ciency. However, it is challenging to choose a single functional unit that captures all these 

aspects because the WE nexus is a multi-functional unit. 

Input–output analysis is a common and widely used approach in WE nexus studies 

to quantify the interlinkage between water and energy by evaluating the monetary and 

physical flow. 

Hydrological models play an  important role  in  the WE nexus by providing  infor-

mation about water availability and water demand. It helps to predict river flow and water 

revisors for hydropower management. For example, one study [37] used a semi-distrib-

uted (CWatM) model to simulate the future water withdrawal and streamflow under cli-

mate change scenarios for hydropower production. Another study [38] applied a concep-

tual semi-lumped hydrological model to assess the impact of climate change and seasonal 

20

8
6

5

1

0

5

10

15

20

25

Biofuel Hydropower Water
Treatment

Water Supply Desalination

Figure 3. Number of WE nexus studies in different sectors.

3.1.3. Overview of Existing Approaches for the Water–Energy Nexus

Table 1 provides a summary of the WE nexus studies in 26 European countries. It can
be seen that during the past several decades, various approaches have been utilized to
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analyze the interaction between water and energy in various contexts. These approaches
include life cycle assessment (LCA), optimization, statistical analysis, hydrological models
and economic approaches. Some researchers used scenario analysis to discover the potential
tradeoffs of the water–energy–food nexus for the future.

The optimization approach is a decision-making assistance method that helps to find
the best possible appropriate solution for the water–energy nexus approach [26,27] by
improving the energy efficiency and achieving sustainable water resource management
across various scale [28–30].

Life cycle assessment integrated with the WE nexus has been used by various scholars,
such as [25,31–35]. LCA is considered a standard approach to assess footprint indexes and
energy performance [9]. Considering the LCA throughout the whole life cycle of water and
energy systems contributes to an understanding of the interlinkage impacts of water and
energy at different stages. Moreover, LCA can help to identify the environmental impacts
(including greenhouse gas emission, water consumption, and resource depletion) across
the different stages of water and energy production and consumption. This approach can
help to recognize the stages with powerful negative impacts. This information is important
for decision makers for sustainable prioritization. For example, a study by [31] identified
that in biofuel production, the crop production stage has the largest environment impact in
terms of water resource consumption. Another study by [32] demonstrated that ground-
water abstraction for drinking water supply consumed high levels of energy compared
to surface water abstraction. Moreover, another study by [36] used LCA to compare the
environmental impacts of different alternatives for wastewater treatment technology to
find more sustainable alternatives for water and energy use efficiency. However, it is
challenging to choose a single functional unit that captures all these aspects because the
WE nexus is a multi-functional unit.

Input–output analysis is a common and widely used approach in WE nexus studies
to quantify the interlinkage between water and energy by evaluating the monetary and
physical flow.

Hydrological models play an important role in the WE nexus by providing information
about water availability and water demand. It helps to predict river flow and water
revisors for hydropower management. For example, one study [37] used a semi-distributed
(CWatM) model to simulate the future water withdrawal and streamflow under climate
change scenarios for hydropower production. Another study [38] applied a conceptual
semi-lumped hydrological model to assess the impact of climate change and seasonal
streamflow on hydropower production. It can also help to predict some events like drought
and floods in the future and evaluate the impact of these event on water and energy systems.
For example, Refs. [39,40] used the watershed simulation and forecasting system (WSFS) to
estimate the impact of severe drought on future hydropower production. Thus, considering
hydrological models in the WE nexus benefits decision makers and planers to ensure the
sustainable and efficient use of both water and energy resources.

Technological aspects are considered in WE nexus studies. For example, [41] compared
different solar panels for freshwater production. However, economic dimensions are
considered rarely. Political and social dimensions are not considered. The role of the
behavior of the people and culture are not considered in WE studies.

Table 1. Summary of WE nexus studies in European countries.

Method Key Findings Type of Water Country Reference

Water footprint + nexus + economic
aspects

There is an essential need to produce a new
integrated approach that can manage water

for electricity production that considers
economic aspects of the water–energy

economic

Blue water Italy [42]
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Table 1. Cont.

Method Key Findings Type of Water Country Reference

LCA + WE nexus

Environmental impacts of water for energy
production and energy for water production
(from water withdrawal, water treatment,

and distribution) were considered.
Moreover, the results demonstrated that

water abstraction from surface water is less
energy demanding than groundwater.

Surface water
and

groundwater
Italy [32]

Semi-distributed hydrological
model CWatM + optimization

method
Changes in future prices and
climate on hydropower were

considered.

An increase in temperature contributes to a
slight increase in hydropower performance. Surface water Italy [37]

Urban ecological infrastructure
method

It provides energy for 600 households by
improving land usability and

environmental sustainability. This mini
hydropower plant also reduces the risk

of flood.

Surface water Italy [43]

Conceptual semi-lumped
hydrological mode + bottom-up

approach

The impact of change in climate, price, and
seasonal streamflow on hydropower

production was evaluated.
Surface water Italy [38]

WE nexus + LCA + water footprint

The crop cultivation step has the largest
impact on water resources. Biogas

production in terms of water consumption
was unsustainable.

Blue water Italy [31]

Dynamic simulation tool TRNSYS
Energy, economic and
environmental model

Two different solar plants sources for
freshwater production in domestic sector

was compared
Surface water Italy [41]

Techno-economic assessment Different scenarios were used to find the
best solution to reduce water consumption. Surface water

Germany,
Portugal,
United

Kingdom,
and Norway

[44]

LCA

Environmental impacts of different
alternatives for wastewater treatment

technology were compared to find more
energy and water use efficiency alternatives.

Grey water
(surface water) Germany [36]

Interview Comparison of WE nexus studies in 8 cities Grey water Germany [45]

Review
Considering the nexus between water and

energy for bioenergy production contributes
to poverty reduction and food security.

Blue water Germany [46]

Economic cost-benefit analysis

Using green roofs and a photovoltaic
system can increase the PV yield by about
0.3%, reduce demand for heating (0.1%),

and reduce runoff mitigation (30%).

Green water Germany [47]

Foreseer Future water, energy, and land demands
were estimated. Blue water Germany [7]

Watershed simulation and
forecasting system (WSFS)
hydrological model + RCP

The impact of drought on water resources
and hydropower production was analyzed.
Severe drought can substantially impact on

water resources and hydropower
production.

Surface water Finland [39]
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Table 1. Cont.

Method Key Findings Type of Water Country Reference

Hydrological model (WSFS) +
Energy PLAN

The impact of severe drought on energy
production in the future was assessed. The
results indicate that stress on energy will be

reduced by 2030 because of the
development of nuclear energy.

Surface water Nordic
countries [40]

Interview with water user
associations

WUAs can play an important role in water
management. Blue water Spain [48]

Prospective approach Biofuel production had a devastating
impact on water resources.

Blue water and
grey water Spain [49]

Irrigation efficiency and energy
consumption using historical data

Irrigation for the agricultural sector
required a high amount of energy in Spain. Blue water Spain [50]

LCA The environmental impact of carbonization
in different energy scenarios was compared. Surface water Spain [33]

Water footprint + different
scenarios

The impact of virtual water imports on
water and energy for biofuel production
was evaluated. Importing raw materials

from a country with abundant water
resources can reduce water stress in Spain.

Blue water Spain [51]

Medium-term hydrothermal
coordination (MTHC) + unit
commitment and dispatch

Hydropower generation in different years
was compared in terms of cost and the

volume of production.
Surface water Croatia [52]

Statistical models, including the
ordinary least squares (OLS) + the

geographically weighted
regressions (GWR) + GIS

The results indicated the trend and
provided solutions to manage resources. Grey water France [53]

Water–energy–carbon nexus + LCA

Reducing the use of herbicides and
pesticides can improve water quality and

reduce the demand for energy to treat
raw water.

Grey water
Norway,

France, Italy,
Canada

[34]

Water balance + water impact
assessment

The impact of bioenergy production was
compared using different scenarios. Blue water France [54]

Water–energy nexus

Different types of energy production were
compared. The result indicated that it is

essential to produce a national alternative
that can ensure climate resilience in the

energy and water sectors.

Grey water Greece [55]

Global macro-econometric model
(E3ME)

A new model was produced that forecasts
future energy demand and carbon

emissions.
Surface water

The
Netherlands
and Latvia

[56]

Environmental input–output (EIO)
model

+ water efficiency + energy
efficiency + carbon emission index

The result indicated that all of these
indicators have higher value compared with

the global average.
Blue water EU27

countries [57]

Water footprint + carbon footprint +
LCA

The water–energy–carbon nexus for
wastewater treatment in different industrial

sector was evaluated.
Grey water Ireland [35]

Statistical analysis (time series)
This study evaluates the role of North
Atlantic Oscillation (NAO) and East

Atlantic pattern (EA) on the WE nexus.

Surface water
and

groundwater
Portugal [58]

EPANET 2.0 (simulation model)
Using renewable energy can increase social
performance by increasing air quality and

prompt eco-efficiency.
Surface water Portugal [59]
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Table 1. Cont.

Method Key Findings Type of Water Country Reference

Comparison of three scenarios

Different scenarios were compared to find
the best one for water reuse, including

irrigating golf courses with reused water,
municipal irrigation with reused water, and
irrigating both locations with reused water.

Grey water Portugal [60]

Mathematical modeling
Water–energy–greenhouse gas

emissions nexus
Effect of flood on the WEG nexus Surface water Portugal [61]

Optimization model + cost analysis Two different strategies (centralized and
decentralized) were compared. Sea water Portugal [21]

Top-down and bottom-up
approaches

The top-down approach is easy to apply
because it does not need a lot of data. It is

applicable with minimum data. It can
provide accurate evaluation of energy

inefficiency. The bottom-up approach can
evaluate more details and provides more

detail. It also enables the evaluation of
disputed energy in pipes.

Groundwater
and surface

water
Portugal [62]

Water and energy efficiency +
statistical analysis

Higher energy consumption is related to the
shower. A device is used to control water

and energy consumption.
Blue water Portugal [63]

WAT + RCP
WELC nexus

Under different forest scenario, no
significant change in water flow. Surface water Romania [64]

LCA
The main consumers of energy in drinking

water treatment processes are pumping
water and wastewater treatment.

Grey water Romania [22]

Water footprint + gross water
consumption, net water

consumption, and water balance

There is a need to provide a method that
considers water evaporated from dams. Surface water Romania [65]

Water–energy nexus using a water
footprint approach

The impact of energy production on water
resources in different Swedish countries

was evaluated.
Blue water Sweden [66]

4. Discussion and Conclusions
4.1. Guidelines for WE Nexus Application to Groundwater Resource Use

In relation to the exploitation of groundwater, this work provides an overview of
the energy consumption associated, ranging from the extraction to the distribution (see
Figure 4). This information is capable of giving guidelines for future estimations in this
specific sector. The following proposal scheme is based on technical and scientific knowl-
edge derived from real case studies distinguishing variable scenarios depending on the
hydrogeological and hydraulic local settings. The elements outlined in the following sub-
chapters can be used as the basis for a solid analysis and models of energy consumption
related to groundwater exploitation. The following case studies are mainly derived from
works carried out in the Po Valley that, like many other areas of the world, is subject to
an increasing demand for groundwater related to multiple uses like drinking, bottling,
irrigation, livestock farming, and industry. This territory can be considered an excellent
model for the application of the WE nexus as it has heterogeneous features [32] linked
to different water-demanding contexts that vary according to geographical location, with
lower pressure in the mountainous areas at the edge of the basin and higher pressure in the
plain area where the main cities and water-demanding activities are located.
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4.1.1. Groundwater Tapping Work Construction

The first energy consumption to be taken into account comes from the implementation
of groundwater exploitation works, which are variable depending on the hydrogeological
context. With regard to spring tapping works, energy use is closely related to the size, the
type of building, and the areal location of the operation. A large catchment work requires
more material and thus energy use than a small one, and different types of intakes can
be more or less energy-impactful elements (a drainage gallery or an infiltration gallery
requires more energy for their construction than a simple artifact to convey outcropping
groundwater). The location of the spring may also require higher or lower energy efforts,
depending on the dynamics of access to the area. For example, the location of a spring
along a slope inaccessible and covered with vegetation requires a high energy effort to
build roads and to transport materials, compared to a location on the valley floor that is
easily accessible and close to existing utilities. Stepping to contexts where groundwater
does not outcrop, it is necessary to realize tapping work construction to drill the subsurface
(overall wells [67]). The energy for their construction is directly proportional to the depth of
the tapped aquifer (see the tapped depth of well 1 and well 2 in Figure 4) that can vary from
a few meters to many hundreds of meters below the surface as observed in the context of
the Po Plain [68] or across the entire Italian peninsula (ISPRA water well database [69]) in
relation to the different geological settings. In addition, the borehole diameter at the same
depth scenario could be an element of energy expenditure during the drilling phase in the
same way as the lithology (and in particular mineralogy) of the geological medium greatly
affects the energy required to drill the well, in relation to the hardness of the material of
which the drilled subsoil is composed (Mohs scale is the main indicator of this character).
The drilling rate could increase in an inversely proportional manner to the Mohs hardness,
from cm/min to m/min as reported in Hoseinie et al. 2012 [70]. Other technical aspects
specific to each well may alter the energy impact associated with their construction, such
as the pipe material (the most common are PVC, concrete, and steel). In addition, the
following general drilling methodologies could be considered: (i) less impactful methods,
in cases of wells drilled by manual digging or with percussion systems; and (ii) more
impactful methods, if excavators or well drilling rigs are employed.

4.1.2. Groundwater Tapping

A second and important cause of energy consumption to report is certainly related to
groundwater tapping. It could vary based on the function of the hydrogeological context,
and it is strictly related to the eventual necessity to uplift groundwater through the use of
pumps. Energy consumption related to tapping in the context of springs or for example
in the Po Plain “fontanili” context sensu [71] can be considered null or negligible because
of the natural outflow of groundwater from the aquifer (see the spring in Figure 4). In
contrast, in wells, energy consumption is directly proportional to the installation depth of
the pumping system, its flow rate and its efficiency. Groundwater tapping could occur using
electric pumps or combustion engine pumps, like Power Take-Off models (PTO) for tractors.
The well and the pump efficiency can decrease over time due to possible well clogging
phenomena. It mainly depends on the infiltration water’s origin and consequently physical,
chemical, and/or biological processes that can deposit significant filling material and/or
allow biofilm growth inside the well screen lights and the pumping equipment, decreasing
the permeability and the efficiency of the supply system [72–74]. The original permeability
of the exploited aquifer also affects energy consumption, facilitating withdrawal in locations
with greater permeability (see differences in permeability between the shallow [well 2]
and the deep [well 1] aquifers in Figure 4). This element is frequently heterogeneous
depending on geological setting, for example, as shown in the context of the Parma city
area [68], where [75,76] calculated a hydraulic conductivity varying from 1.2 × 10−5 to
4.9 × 10−5 m/s in coarse-grained horizons and from 9.3 × 10−0 to 1.3 × 10−0 m/s in
fine-grained horizons.
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4.1.3. Groundwater Treatment

As observed in several of the above mentioned studies (see Table 1), a possible sub-
sequent step after extraction that could require energy efforts is groundwater treatment.
Its entity could depend on the original condition of the quality of the groundwater and its
destination of use. Many aspects can affect water quality. These factors could be related to
the natural hydrogeochemical characters of each aquifer, like mineral composition above
all, as demonstrated in the Po Plain (e.g., [77]). As an example of these phenomena, numer-
ous testimonies of hexavalent chromium remaining on the Po Valley and precisely in the
Northern Apennine have been linked to the mineralogical nature of ophiolitic aquifers. In
these cases, peridotites rocks are able to impart non-potable characteristics to groundwater
(e.g., [78–80]).

To a greater extent, anthropogenic factors can make the aquifer polluted and thus
necessitate groundwater treatment. As reported in several studies conducted in the Po
Valley, it could be attributed to numerous possible origins, like industry [81–83], fertil-
ization and livestock [84–86], sewage [87], landfills [88], pharmaceuticals [89], cosmetic
products [90], and many others. Saltwater intrusion and upwelling are also human-induced
hydrogeological phenomena that occur through pumping and can reduce water quality
as schematized for Well 3 in Figure 4 (e.g., [91]). Water quality can be very different even
at short distances within the same hydrogeological context, depending on the location of
sources of contamination (see the lowland aquifer in Figure 4). Aqueduct or potable water
systems may need more operations to purify groundwater considering the human supply,
but they also can be extended to various entities for uses other than the tapped water. In
cases of pristine groundwater, the treatments, and consequently the energy consumed for
this purpose, may be negligible.

Even if characterized by lower consumption, it is also proper to include in this step
the energy used for the qualitative and quantitative monitoring actions, which takes place
through studies and analyses targeting the groundwater resource by the owners or the
public agencies, according to regulations such as the Directive 2000/60/EC of the European
Parliament (23 October 2000) and subsequent updates that establish a framework for com-
munity action in the field of water policy, including groundwater in the European Union.

4.1.4. Groundwater Distribution System

The last field to be reported that may require energy consumption is that related to the
distribution of groundwater resources. As exemplified in Figure 4, the energy to be used in
different contexts is closely related to the necessity of contrasting gravity. In a mountain
area or where a territory has sufficient topographic gradients, gravity could facilitate the
distribution of the resource from origin to delivery without the use of additional energy.
On the contrary, in flat settings or in conditions where it is necessary to impart pressure
to the distribution network, energy consumption could be drastically higher and related
to pumping systems. In these last contexts, there are infrastructural strategies that can
reduce the energy used and combine it with gravity using artificial reservoirs or water
towers. However, these strategies may still require great efforts in the construction phase.
The design of these works is governed by hydraulic projects and principles that can
vary substantially depending on a multitude of natural and anthropic factors. The most
impactful factors are related to the pressure required to allow the distribution, such as
altitude differences, an optimized design of the pipe network, and water losses from the
pipe system. In Italy, the National Institute of Statistics (ISTAT, 21 March 2023) revealed
that in 2020, 42.2% of pumped groundwater for aqueduct supply was lost due to leaky
distribution systems. An exhaustive overview of the abovementioned themes was given by
Vilanova and Balestrieri 2014 [92] and Coelho and Andrade-Campos 2014 [93]. Another
energy expenditure related to water distribution can be associated with the transport of
water resources where local conditions do not allow for a supply system, which often
takes place by road, train, or ship. These conditions could be attributed to hydrogeological
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features combined with the climatic features of an area such as the absence of exploitable
aquifers or the presence of drought periods.

4.1.5. The Proposal of a New Application for Hydrogeological Modelling

The combination of the elements in the previous paragraphs influence the energy con-
sumption related to groundwater use. As detailed in this work, they are closely linked to
the hydrogeological and hydraulic context. Here, nexus analysis and life cycle assessment
methodologies (e.g., for the Po Plain context [32]) are applied to evaluate and compare
different process alternatives aimed to support the investigation of new solutions and
reducing the energy intensity and the release of greenhouse gas (GHG) emissions while
maintaining high-quality services under future pressures resulting from climate change.
These methods are mainly focused on the analysis of past or present scenarios, and the
use of future-oriented modelling and/or simulations could provide them with greater
predictive utility. In environmental science, many kinds of predictive modelling exist. In
this case, in relation to energy consumption, the points above have shown the importance
of hydrogeology, which is a sector where numerical models are currently used for a va-
riety of purposes. First, they are employed for hydrogeological balance analyses, where
they constitute advanced tools useful for quantitative studies mainly aimed at the deter-
mination of exploitable groundwater volumes, for tapping work construction planning
and for predict climate change scenarios (e.g., ref. [94] as an example for the Northern
Apennine context). Numerical models are also employed for environmental hydrogeology
that can be used for the prevention and/or remediation of areas contaminated by both
soluble (like nitrates) and non-soluble (like hydrocarbon non-aqueous phase) contaminants
in groundwater [75,76,95,96]. In conclusion, combining energy consumption data and
hydrogeological information, this work offers a new use for numerical modelling of the
WE nexus and thus to the evaluation of alternative scenarios useful for energy savings in
the field of groundwater.

5. Conclusions

This current review analyzes the existing WE nexus in 26 European countries. It
was remarked that the analysis of the WE nexus in European countries was conducted in
different types of sectors, including water supply, water desalination, hydropower, and
biofuel production. In each European country, the focus varies based on their specific needs.
Among the WE studies in Europe, those focused on the interlinkage between water and
energy in biofuel production represent 50% of scientific papers, showing the significance of
this research topic in European countries. It is indicated that most of the WE nexus studies
focused on surface water and blue water resources. The majority of the studies considered
groundwater integrated with surface water as blue water. There is lack of studies that
separately consider groundwater. Separate evaluations of groundwater would provide
deeper insights into its role and vulnerabilities in the context of the WE nexus. Moreover,
7.5% of all studies involved groundwater resources.

The existing bibliography related to the WE nexus in Europe is illustrative of a still
limited holistic approach to the field of water (and groundwater). For studies of the
WE nexus, there are a variety of approaches that are currently used, but there is not a
single and standard approach that can be utilized for the WE nexus globally. The first
fundamental challenge for the evaluation of the interaction between water and energy is
data availability at regional and global scales. For example, hydrogeological and hydraulic
information related to withdrawal are often not made available by public agencies or
private companies. Information on this critical theme is essential to standardize data
collection approaches, which can facilitate a high degree of estimation accuracy. This work
showed in detail how several hydrogeological and hydraulic factors could be extremely
influential on energy consumption in the sector of groundwater exploitation. For this
reason, a conclusive proposal is to use methods capable of incorporating all groundwater-
related energy consumptions with a first step represented by the creation (or consultation)
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of conceptual and numerical models based on hydrological principles. Numerical models
could support and guide the energetic consumption computations related to the entire
groundwater use steps (see Section 4.1). From these insights, their application is proposed
to be extended to WE nexus estimates to further support the results with scientifically
based models and simulations and to make it even more of a useful tool for a predictive
look at climate change and related socio-economic and energetic evolutions.
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