Integrated Modeling Approach to Assess Freshwater Inflow Impact on Coastal Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of SWAT and EFDC Models and Their Coupling Process
2.3. Water Quality Parameters
3. Results
3.1. Flow Assessment: Calibration and Validation
3.2. Water Quality Assessment
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordan, S.J.; Benson, W.H. Introduction Sustainable Watersheds: Integrating Ecosystem Services and Public Health Supplementary Issue: Ecosystem Services and Environmental Health. Environ. Health Insights 2015, 9, EHI-S19586. [Google Scholar] [CrossRef]
- Meshesha, T.W.; Wang, J.; Melaku, N.D. Modelling Spatiotemporal Patterns of Water Quality and Its Impacts on Aquatic Ecosystem in the Cold Climate Region of Alberta, Canada. J. Hydrol. 2020, 587, 124952. [Google Scholar] [CrossRef]
- Prasad, M.B.K.; Long, W.; Zhang, X.; Wood, R.J.; Murtugudde, R. Predicting Dissolved Oxygen in the Chesapeake Bay: Applications and Implications. Aquat. Sci. 2011, 73, 437–451. [Google Scholar] [CrossRef]
- Bhusal, A.; Ghimire, A.B.; Thakur, B.; Kalra, A. Evaluating the Hydrological Performance of Integrating PCSWMM and NEXRAD Precipitation Product at Different Spatial Scales of Watersheds. Model. Earth Syst. Env. 2023, 9, 4251–4264. [Google Scholar] [CrossRef]
- Fabian, P.S.; Kwon, H.-H.; Vithanage, M.; Lee, J.-H. Modeling, Challenges, and Strategies for Understanding Impacts of Climate Extremes (Droughts and Floods) on Water Quality in Asia: A Review. Env. Res. 2023, 225, 115617. [Google Scholar] [CrossRef]
- Flipo, N.; Gallois, N.; Schuite, J. Regional Coupled Surface–Subsurface Hydrological Model Fitting Based on a Spatially Distributed Minimalist Reduction of Frequency Domain Discharge Data. Geosci. Model. Dev. 2023, 16, 353–381. [Google Scholar] [CrossRef]
- Parajuli, U.; Bhusal, A.; Babu Ghimire, A.; Shin, S. Comparing HEC-HMS, PCSWMM, and Random Forest Models for Rainfall-Runoff Evaluation to Extreme Flooding Events. In Proceedings of the World Environmental and Water Resources Congress 2023: Adaptive Planning and Design in an Age of Risk and Uncertainty–Selected Papers from World Environmental and Water Resources Congress, Henderson, NV, USA, 21–24 May 2023; pp. 1250–1262. [Google Scholar] [CrossRef]
- Sun, G.; Wei, X.; Hao, L.; Sanchis, M.G.; Hou, Y.; Yousefpour, R.; Tang, R.; Zhang, Z. Forest Hydrology Modeling Tools for Watershed Management: A Review. Ecol. Manag. 2023, 530, 120755. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Paris, A.; Sichangi, A.W.; O’Loughlin, F.; Papa, F. Water Resources in Africa: The Role of Earth Obser vation Data and Hydrodynamic Modeling to Derive River Discharge. Surv. Geophys. 2022, 44, 97–122. [Google Scholar] [CrossRef]
- Hwang, S.; Jun, S.M.; Song, J.H.; Kim, K.; Kim, H.; Kang, M.S. Application of the SWAT-EFDC Linkage Model for as sessing Water Quality Management in an Estuarine Reservoir Separated by Levees. Appl. Sci. 2021, 11, 3911. [Google Scholar] [CrossRef]
- Hwang, S.; Jun, S.M.; Kim, K.; Kim, S.H.; Lee, H.; Kwak, J.; Kang, M.S. Development of a Framework for Evaluating Water Quality in Estuarine Reservoir Based on a Resilience Analysis Method. J. Korean Soc. Agric. Eng. 2020, 62, 105–119. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Hwang, S.; Lee, H.; Kwak, J.; Song, J.H.; Jun, S.M.; Kang, M.S. Impact Assessment of Water-Level Management on Water Quality in an Estuary Reservoir Using a Watershed-Reservoir Linkage Model. Agric. Water Manag. 2023, 280, 108234. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Z.; Ding, X.; Liu, H.Y.; Wang, D.Q. Research on Water Environmental Capacity Accounting of the Yongzhou Section of Xiangjiang River Basin Based on the SWAT-EFDC Coupling Model. J. Water Clim. Chang. 2022, 13, 1106–1122. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Y.; Javed, A.; Arhonditsis, G.B. An Ensemble Modeling Framework to Study the Effects of Climate Change on the Trophic State of Shallow Reservoirs. Sci. Total Environ. 2019, 697, 134078. [Google Scholar] [CrossRef] [PubMed]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. SWAT2000 User’s Manual VERSION 2000. 2005. Available online: https://www.scribd.com/document/145722143/SWAT2000-User-s-Manual (accessed on 7 March 2023).
- Tetra Tech Inc. The Environmental Fluid Dynamics Code User Manual US EPA, Version 1.01; Tetra Tech Inc.: Fairfax, VA, USA, 2007.
- Tetra Tech Inc. The Environmental Fluid Dynamics Code Theory and Computation Volume 3: Water Quality Module; Tetra Tech Inc.: Fairfax, VA, USA, 2007; Volume 2, p. 96. [Google Scholar]
- Mississippi Commission on Environmental Quality. Regulations for Surface Water Quality Criteria for Intrastate, Interstate, and Coastal Waters; MDEQ: Jackson, MI, USA, 2021; pp. 39289–40385.
- Armandei, M.; Linhoss, A.C.; Camacho, R.A. Hydrodynamic Modeling of the Western Mississippi Sound Using a Linked Model System. Reg. Stud. Mar. Sci. 2021, 44, 101685. [Google Scholar] [CrossRef]
- Tetra Tech Inc. Visual EFDC 2.0 User’s Guide, A Grid Generation, Editing, Pre- and Post-Processing Tool for EFDC Hydrodynamic and Water Quality Modeling 2018; Tetra Tech Inc.: Fairfax, VA, USA, 2018. [Google Scholar]
- Bazgirkhoob, H.; Linhoss, A.; Armandei, M. A Numerical Tool for Dissolved Oxygen Simulation in the Western Mississippi Sound. J. Coast. Res. 2022, 38, 699–711. [Google Scholar] [CrossRef]
- Bhattarai, S.; Parajuli, P.B. Best Management Practices Affect Water Quality in Coastal Watersheds. Sustainability 2023, 15, 4045. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part 1: Model Development1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, R.; Xie, J.; Zhao, Y.; Yan, D.; Yang, S. Soil and Water Assessment Tool (SWAT) Model: A Systemic Review. J. Coast. Res. 2019, 93, 22–30. [Google Scholar] [CrossRef]
- Bhattarai, S.; Parajuli, P.B.; To, F. Comparison of Flood Frequency at Different Climatic Scenarios in Forested Coastal Watersheds. Climate 2023, 11, 41. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B.; To, F. Assessing the Effect of Spatial Variation in Soils on Sediment Loads in Yazoo River Watershed. Hydrology 2023, 10, 62. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to Model Ecosystem Services: A Systematic Review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.; Yao, H.; Chen, Y. A Coupled Modeling Approach to Evaluate Nitrogen Retention within the Shanmei Reservoir Watershed, China. Estuar. Coast. Shelf Sci. 2015, 166, 189–198. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Risal, A. Evaluation of Climate Change on Streamflow, Sediment, and Nutrient Load at Watershed Scale. Climate 2021, 9, 165. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Dübendorf, Switzerland, 2014; Volume 106. [Google Scholar]
- Saline Water and Salinity|U.S. Geological Survey. Available online: https://www.usgs.gov/special-topics/water-science-school/science/saline-water-and-salinity (accessed on 7 March 2023).
- Tang, X.; Xie, G.; Deng, J.; Shao, K.; Hu, Y.; He, J.; Zhang, J.; Gao, G. Effects of Climate Change and Anthropogenic Activities on Lake Environmental Dynamics: A Case Study in Lake Bosten Catchment, NW China. J. Env. Manag. 2022, 319, 115764. [Google Scholar] [CrossRef]
- Telesh, I.V.; Khlebovich, V.V. Principal Processes within the Estuarine Salinity Gradient: A Review. Mar. Pollut. Bull. 2010, 61, 149–155. [Google Scholar] [CrossRef]
- Kang, M.; Peng, S.; Tian, Y.; Zhang, H. Effects of Dissolved Oxygen and Nutrient Loading on Phosphorus Fluxes at the Sediment–Water Interface in the Hai River Estuary, China. Mar. Pollut. Bull. 2018, 130, 132–139. [Google Scholar] [CrossRef]
- Zhou, J.; Han, X.; Brookes, J.D.; Qin, B. High Probability of Nitrogen and Phosphorus Co-Limitation Occurring in Eutrophic Lakes. Environ. Pollut. 2022, 292, 118276. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P.; Gitau, M.W.; Member, A.; Moriasi, D.N. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Luo, C.; Li, Z.; Wu, M.; Jiang, K.; Chen, X.; Li, H. Comprehensive Study on Parameter Sensitivity for Flow and Nutrient Modeling in the Hydrological Simulation Program Fortran Model. Environ. Sci. Pollut. Res. 2017, 24, 20982–20994. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Her, Y.; Muñoz-Carpena, R.; Yu, X. Quantifying the Contribution of External Loadings and Internal Hydrodynamic Processes to the Water Quality of Lake Okeechobee. Sci. Total Environ. 2023, 883, 163713. [Google Scholar] [CrossRef] [PubMed]
S. No. | Data | Source |
---|---|---|
1 | Elevation Data: Digital Elevation Model (DEM) (30 m × 30 m) (2020) | United States Geological Survey (USGS) (https://apps.nationalmap.gov/viewer/) (accessed on 4 October 2022) |
2 | Land-use and Land-cover Data: Cropland Data Layer (CDL) (2010) | United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) (https://nassgeodata.gmu.edu/CropScape/) (accessed on 4 October 2022) |
3 | Soil Data: USSURGO (2020) | United States Soil Survey Geographic Database (US-SSURGO) SWAT-USSURGO (https://swat.tamu.edu/data/) (accessed on 4 October 2022) |
4 | Weather Data: NOAA (1995–2010) Precipitation, Maximum Temperature, Minimum Temperature | National Oceanic and Atmospheric Administration (NOAA) SWAT—Climate Data (https://swat.tamu.edu/data/) (accessed on 4 October 2022) |
5 | Discharge Data: -USGS 02481660 (2002–2005) (Jourdan River Nr Bay St Louis) -USGS 02481510 (1997–2010) (Wolf River Nr Landon) | United States Geological Survey (USGS) (https://waterdata.usgs.gov/ms/nwis/) (accessed on 5 October 2022) |
Location | Salt | DO | TN Filt | TP Filt | TN Unfilt | TP Unfilt | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | R2 | NSE | R2 | NSE | R2 | NSE | R2 | NSE | R2 | NSE | |
A | 0.83 | 0.83 | 0.92 | 0.88 | 0.84 | 0.32 | 0.82 | 0.23 | 0.76 | −0.3 | 0.75 | −0.3 |
B | 0.76 | 0.39 | 0.76 | 0.57 | 0.75 | − 0.35 | 0.71 | −0.6 | 0.54 | −2.4 | 0.50 | −2.3 |
C | 0.98 | 0.97 | 1 | 1 | 0.97 | 0.9 | 0.97 | 0.93 | 0.94 | 0.9 | 0.89 | 0.76 |
D | 0.99 | 0.99 | 1 | 1 | 1 | 1 | 0.99 | 0.99 | 1 | 1 | 1 | 1 |
E | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 1 | 1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, S.; Parajuli, P.; Linhoss, A. Integrated Modeling Approach to Assess Freshwater Inflow Impact on Coastal Water Quality. Water 2024, 16, 3012. https://doi.org/10.3390/w16213012
Bhattarai S, Parajuli P, Linhoss A. Integrated Modeling Approach to Assess Freshwater Inflow Impact on Coastal Water Quality. Water. 2024; 16(21):3012. https://doi.org/10.3390/w16213012
Chicago/Turabian StyleBhattarai, Shreeya, Prem Parajuli, and Anna Linhoss. 2024. "Integrated Modeling Approach to Assess Freshwater Inflow Impact on Coastal Water Quality" Water 16, no. 21: 3012. https://doi.org/10.3390/w16213012
APA StyleBhattarai, S., Parajuli, P., & Linhoss, A. (2024). Integrated Modeling Approach to Assess Freshwater Inflow Impact on Coastal Water Quality. Water, 16(21), 3012. https://doi.org/10.3390/w16213012