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Abstract: Trophic state index (TSI) is a critical ecological and environmental issue in water resource
management that has garnered significant attention. Given the complexity of optical characteristics
in aquatic environments, this study employs fuzzy classification methods (FCM) and composite
nutrient status indices to meticulously classify in-situ remote sensing reflectance data, aiming to
develop evaluation models for different nutrient status categories to facilitate the assessment of the
Daihai River in Inner Mongolia, China. Subsequently, we applied this model to MSI data to analyze
the nutrient status of Daihai Lake from 2016 to 2021. Furthermore, a structural equation model
(SEM) was utilized to explore the primary driving factors influencing nutrient status. The results
indicated that the water bodies in Daihai Lake can be broadly classified into three categories, with the
nutrient status models demonstrating robust performance for each category (R2 = 0.80, R2 = 0.83, and
R2 = 0.74). Comparisons were made between nutrient status accuracies obtained through the NCM
and FCM based on measured data, yielding R2 values of 0.74 and 0.85, respectively. Furthermore, the
TSI results derived from MSI inversion were validated, with NCM achieving an R2 of 0.49, RMSE of
6.88, and MAPE of 10.36%, while FCM exhibited an R2 of 0.55, RMSE of 8.89, and MAPE of 13.18%.
An SEM–based analysis revealed that over the long term, human activities exerted a more substantial
impact on eutrophication in Daihai Lake, while climatic factors played an accelerating and reinforcing
role. These results are consistent with prior research in the Daihai area, indicating a state of mild
eutrophication and the potential of the fuzzy classification method and comprehensive trophic status
index method in eutrophication assessment.

Keywords: trophic status; Daihai Lake; fuzzy classification; Sentinel-2

1. Introduction

Trophic status refers to the process by which the accumulation of excessive nutrients
in water leads to a transition in productivity from low to high [1], this process exhibits high
spatiotemporal variability [2]. The enrichment of nutrients is an intrinsic mechanism that
alters the original nutrient status, thereby affecting water quality and leading to a series of
issues, such as eutrophication [3]. This can trigger recurrent algal blooms and significant
mortality of aquatic flora and fauna, thereby disrupting the aquatic ecosystem, impeding
rational water resource utilization, and potentially posing a threat to the longevity of
lakes [4]. However, traditional methods face various limitations in terms of spatial and
temporal scales, as well as in human and material resources. The emergence of remote
sensing technology not only addresses these shortcomings but also achieves significant
advancements in the integration of methods for temporal scale analysis, spatial analysis,
and the assessment of trophic status.
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In 1977 Carlson devised an indicator index for evaluating the nutritional state of
water bodies, using algal biomass as a key index [5]. Subsequently, methods for estimat-
ing nutritional status based on predictive equations between parameters have emerged.
Current remote sensing assessments of trophic status primarily employ the following
methodologies. (1) Remote sensing reflectance (Rrs) and trophic state index (TSI) empiri-
cal models. This approach involves applying the correlation between status indices and
single-band [6,7], band ratios [8,9], or band combinations [10,11] of remote sensing re-
flectance. Owing to limitations in accurately assessing trophic status with single indicators,
researchers have investigated the evaluation of trophic status in complex water bodies by
combining multiple parameters [9–18]. Existing inversion models may be challenging to
apply to different unmeasured lakes because models calibrated from limited field data may
only be applicable to sampled water bodies and similar conditions [19]. (2) Absorption co-
efficient and TSI empirical models. The absorption coefficient of optically active substances
in water contains all the TSI component information. Using remote sensing absorption
coefficients to assess TSI can effectively reduce the cumulative errors [20–22]. However,
the applicability of this method is relatively low in northern lakes dominated by Colored
Dissolved Organic Matter (CDOM) [21]. (3) Grading models are based on water parameters,
water color indices, and remote sensing reflectance. Through the correlation between these
parameters, classification, grading, and scoring can determine the nutritional status level
or type of the water body [23–27]. (4) Latest method. Researchers have developed various
methods to assess the trophic status of water bodies, including the Algal Biomass Index
(ABI) [28], the Forel–Ule Index (FUI) [19]. Additionally, by analyzing long–term changes in
land use and land cover (LULC), studies have explored how human activities affect water
quality, trophic status, and biodiversity, highlighting the complex relationship between
ecosystem services and anthropogenic activities [29]. Moreover, machine learning and deep
learning algorithms have been employed to classify and predict water quality categories,
enabling more precise trophic status assessments [30].

Optical classification is known to enhance the retrieval capabilities in optically complex
water bodies [31]. Optical classification methods offer a viable solution for the challenge
of remote sensing signal inversion in complex water bodies [32]. Bao et al.(2015) [33] and
Zhang et al.(2015) [34] proposed a method for estimating chlorophyll a concentration (Chla)
based on hard classification. However, the use of hard clustering methods can lead to
non-uniformity in the classification results of optical properties, resulting in discontinuities
in the estimates of Chla concentration [35]. Therefore, a soft classification–based method
for estimating Chla concentration has been developed [36–38]. The fuzzy clustering, also
referred to as soft classification, aims to mitigate the sharp boundaries inherent in hard
clustering by utilizing “membership degrees” to delineate distinctions between various
types of water bodies [39]. The soft classification method has attracted increasing attention
due to its ability to define the central spectrum of each class through fuzzy classification,
calculate the distance weights between each spectrum and the central spectra, and maintain
continuity in the estimation results [35–38]. Moreover, the fuzzy–based classification
method employing remote sensing reflectance is fundamentally independent of specific
regions and timeframes, indicating enhanced universality and potential for large-scale
applications compared with prior regional approaches [40].

Although optical classification–based grouping and algorithm development offer
notable advantages, there is currently no reported utilization of optical classification for
assessing lake nutritional status. In this study, we devised a novel algorithm utilizing soft
classification techniques to estimate the Trophic State Index by leveraging Sentinel–2 MSI
data from the highly turbid and eutrophic Daihai Lake. This study aimed to achieve the
following objectives: (1) to perform optical classification of Daihai Lake by employing a soft-
classification approach, (2) to develop a soft-classification-based algorithm for assessing
the nutrient status of Daihai Lake and validate the accuracy of the algorithm, and (3) to
analyze the spatiotemporal variations and underlying drivers of trophic status in Daihai
Lake from 2016 to 2021.



Water 2024, 16, 3032 3 of 20

2. Materials
2.1. Study Area

Daihai Lake is located in the southeastern part of Liangcheng County, Ulanqab City, Inner
Mongolia Autonomous Region, China (40◦29′07′′–40◦37′06′′ N, 112◦33′31′′–113◦46′40′′ E),
representing a characteristic graben-style tectonic basin (Figure 1) [41]. The lake faces
challenges in terms of water supply [42] and has experienced numerous expansions and
contractions due to tectonic shifts and historical climate fluctuations [43]. Positioned in the
sensitive region of northern China, Daihai experiences a mid-temperate, semi–arid, conti-
nental monsoon climate. This unique natural geographical setting enhances the fragility
of the lake wetland ecosystem in Daihai [44]. As the third largest inland lake in the Inner
Mongolia Autonomous Region, Daihai plays a vital role in climate regulation, ecological
restoration, and water conservation, serving as a pivotal component of ecological security
in northern China [44]. General Secretary Xi Jinping has expressed concerns about the
environmental state of Daihai’s water body and has emphasized the importance of com-
prehensive ecological management and effective implementation during the 13th National
People’s Congress. Currently, the emergency water replenishment project, “Bringing Water
from the Yellow River to Daihai”, is scheduled for official implementation in 2023. Over
the years, due to the intervention of climate change and human activities in the watershed,
the lake’s water level has continuously declined, and the lake surface has been shrinking.
This has led to a deterioration in water quality, resulting in an increasingly prominent issue
of eutrophication [41].
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2.2. In Situ Measurements

Six field surveys were conducted in the Daihai water area on 14 June, 21 July, 24 August,
12 October 2020, and 18 September 2019, 29 June 2021. The “water method” [45] was
employed to capture water surface spectra, while transparency was measured on-site
using a Secchi disk [46]. Water samples were collected from the surface, preserved at low
temperatures, and subsequently analyzed in the laboratory for chlorophyll concentration
using spectrophotometry [47]. A total of 156 datasets were obtained.
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2.3. Sentinel-2 MSI Data

For the trophic status assessment of water bodies, trophic status inversion can be
conducted using Sentinel–2 Multi–Spectral Instrument (MSI) data. Sentinel–2 images were
obtained from the official European Space Agency website (https://scihub.copernicus.
eu/, accessed on 7 September 2021). The two satellites yielded a 5–day revisit period,
providing remote sensing data with high spatial and temporal resolutions [48]. We obtained
atmospheric apparent reflectance remote sensing data for the Daihai area from 2016 to 2021,
comprising a total of 84 Sentinel–2 images to capture the long–term temporal dynamics
of the Daihai water body. Among these, three Sentinel–3 images were selected to align
with the dates of the field surveys: 14 June 2020, 21 July 2020, and 12 October 2020. These
images were used to validate the accuracy of the nutrient status remote sensing inversion
for the Daihai water body.

The accurate extraction of water body information from remote sensing images re-
quires high–quality atmospheric correction. In this 76 study, we employed the C2RCC
method for the atmospheric correction of Sentinel–2 Level 1c data. The C2RCC processor is
a versatile ocean color processor tailored for intricate Case 2 waters [49] and has demon-
strated commendable performance across various sensors in similar environments [50].
This processor relies on a radiative transfer simulation database calibrated using neural
networks anchored by five sets of inherent optical properties [51].

2.4. Other Data

Meteorological data, including air temperature, precipitation, and wind speed for
the years 2016 to 2020, were sourced from the Liangcheng Meteorological Station via the
China Meteorological Information Center (http://data.cma.cn, accessed on 7 September
2021). These data were used to investigate the relationship between lake nutrient status and
meteorological factors. Given the presence of an ice–covered period in Daihai, the monthly
average values for the interval from April to October, as well as the annual averages, were
utilized for meteorological analysis.

Agricultural and industrial data for Liangcheng County, Ulanqab City, spanning 2016
to 2020, were extracted from the Inner Mongolia Statistical Yearbook. We selected crop
sowing area, grain production, and gross domestic product (GDP) as agricultural data. The
industrial data include information from the primary, secondary, and tertiary sectors.

3. Methods

The primary research framework depicted in Figure 2 comprises three main compo-
nents. (1) Conducting optical classification of water bodies. First, actual measurement
data of Daihai water were collected. The Fuzzy C–Means (FCM) method was utilized to
conduct an optical classification of the spectral data of the water body, followed by an
analysis of the characteristics of each class. (2) Construction of a trophic state assessment
model. Optimal band ratios were selected to implement the assessment models for each
class. This included the principal assessment model based on the FCM method as well as a
model established without classification. An accuracy evaluation is performed for these
models. (3) Model application. C2RCC atmospheric correction and accuracy assessment
was performed on remote sensing images. The accuracy of remote–sensing inversion for
the trophic status of the Daihai water body was also validated. Subsequently, the appli-
cation of the soft–classification–based nutrient status assessment model was utilized for
Daihai time–series data spanning 2016 to 2021. The spatiotemporal distribution patterns
for the water body were derived, followed by an analysis of the driving factors, including
meteorological, agricultural, and industrial influences, using a structural equation model.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
http://data.cma.cn
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3.1. Trophic State Index: TSI

Eutrophication is a significant concern for inland lake management. This study em-
ployed the Comprehensive Trophic State Index (TSI) method proposed by Carlson in
1977 [5] to evaluate the eutrophication status of the Daihai water body. This method repre-
sents an enhanced iteration of Carlson’s TSI, primarily relying on weighted averages for
computation. The resulting trophic state index was conventionally normalized within a
range of 0–100, where TSI ≥ 50 denotes eutrophication, 50 ≥ TSI ≥ 30 indicates mesotrophy,
and TSI < 30 signifies oligotrophy. The specific formula is as follows:

TSI = ∑n
j=1 Wj × TSI(j) (1)

Wj =
r2

ij

∑n
j=1 r2

ij
(2)

TSI(SDD) = 10 × (5.118 − 1.086 ∗ InSDD) (3)

TSI(Chla) = 10 × (2.500 + 1.086 ∗ InChla) (4)

In this study, calculations were performed based on transparency, where “r2
j” repre-

sents the coefficient of determination between the SDD (Secchi disk depth) and parameter
“j”, which can be either the SDD or Chlorophyll-a concentration and Wj is the correspond-
ing. The specific values were r2

SDD = 1 and r2
Chla = 0.06. “n” = 2 indicates the number of

parameters utilized.
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3.2. Fuzzy C-Means Algorithm

This study employed FCM algorithm for clustering analysis on a dataset comprising
156 sets of field–measured remote–sensing Rrs data. FCM, an enhancement of the con-
ventional C-means algorithm (HCM) [52], is a more adaptable fuzzy partitioning method.
Unlike hard clustering methods, FCM facilitates the assignment of data points to multiple
cluster centers, expressing their association with each cluster through varying member-
ship degrees. This flexibility enables FCM to handle real–world scenarios in which data
may be indistinct, ambiguous, or pertaining to multiple categories. Among the various
fuzzy algorithms, FCM is prevalent because of its widespread use and effectiveness. It
autonomously categorizes samples by optimizing the objective function to ascertain the
membership degree of each sample to each class center [53]. The general steps of the soft
classification method are outlined as follows:

(1) Data preparation: Collect and organize the dataset required for the soft classification.
(2) Determine the number of clusters (m): The desired number of clusters for soft classifi-

cation was established based on problem–specific requirements or domain knowledge.
(3) Initialize the membership matrix: Assign initial membership values to each data

point either randomly or based on the preliminary information. Each element in the
membership matrix typically represents the degree of membership of a data point to
a specific cluster center.

(4) Compute cluster centers (c): Calculate the positions of each cluster center using the
current membership matrix.

(5) Update the membership matrix: Compute a new membership matrix based on the
current cluster centers. The membership values were updated according to the
distances between the data points and each cluster center. The Euclidean method was
employed for the distance calculation.

(6) Repeat iterations of Steps 4 and 5: The process was iterated by recalculating the cluster
centers and updating the membership matrix until a specified stopping criterion
was met, such as reaching the maximum number of iterations or when the change
in cluster centers fell below a predefined threshold. The iterative process aims to
optimize and approach the objective function progressively.

(7) Output the clustering results: The final membership matrix was used to assign each
data point to its respective cluster center, yielding the ultimate soft clustering result.

In addition, this algorithm facilitates the initialization of the cluster centers prior to
commencing the iteration process. The FCM algorithm, as a partition–based clustering
approach, attempts to maximize the similarity within clusters and minimize the similarity
between distinct clusters [54,55].

3.3. TSI Retrieval Algorithm

An optimal band ratio–based model was established to assess the nutrient status
tailored to each water body type classified using the FCM method.

TSIModeli= a × Rrs(λi)/Rrs(λj
)
+b (5)

where Rrs(λi) and Rrs
(
λj
)

represent the remote sensing reflectance in the visible light
bands. TSIModel1, TSIModel2, and TSIModel3 are models established for each type of water
body, and a and b denote the model coefficients.

3.4. Structural Equation Model

This study employed structural equation modeling (SEM) to analyze the spatiotem-
poral variations in nutrient status within Daihai, attributed to factors such as climate,
agriculture, and industry. The influence factor data spanning from 2016 to 2020 were
standardized using Z–scores in SPSS software 24. Subsequently, an SEM was constructed
using Amos 24.0, to assess the respective impacts of these three factors on eutrophication
of the Daihai water body.
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3.5. Accuracy Metrics

This study assessed the performance of nutrient status algorithms across various
optical water types, estimating model accuracy through metrics including the Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Coefficient of Deter-
mination (R2). The specific formulas used are as follows:

RMSE =

√
1
N ∑N

i=1

(
ximea − xipre

)2 (6)

MAPE =
1
N ∑N

i=1

∣∣ximea − xipre
∣∣

ximea
∗ 100% (7)

R2 =
∑N

i=1

(
ximea −

–
x
)(

yipre −
–
y
)

√
∑N

i=1

(
ximea −

–
x
)2

∑N
i=1

(
yipre −

–
y
)2

(8)

where N represents the number of samples; and ximea and xipre represent the measured and
estimated values, respectively.

4. Results
4.1. Water Optical Types

Based on the shape and distance of Rrs, 156 spectral samples were divided into three
clusters using cluster analysis (Figure 3). Figure 3a represents the aggregate reflectance,
while Figure 3b displays the centroid reflectance spectra for each cluster. Figure 3c–e
show the reflectance spectra of the three clusters. All water body types exhibited similar
magnitudes and spectral characteristics those to of the Rrs. The low reflectance and
high absorption in the blue wavelength range (400–500 nm) are characteristic of inland
water bodies [56]. As show in Figure 3 differences among optical water types primarily
arose in the magnitude of reflectance and spectral profile within the 600–700 nm range.
Cluster 1, with the fewest samples, generally exhibited higher remote sensing reflectance
values. Cluster 2 and Cluster 3 comprised 54 and 93 samples, respectively. The range
of remote sensing reflectance values gradually decreased from Cluster 1 to Cluster 3.
Additionally, Cluster 3 lacked a prominent peak at 670 nm and displayed a smaller peak
at 800 nm than Clusters 1 and 2. The reflectance spectra of the three clusters in Figure 3e
exhibited no substantial shape variations, although the peaks were slightly shifted towards
higher wavelengths.

4.2. Evaluation of TSI Inversion Results Based on Measured Data

In the non-classification scenario (NCM), the ratio of Rrs (665) to Rrs (490) was selected as
the dependent variable for model construction, yielding the equation y = −44.58 ∗ x + 103.23.
Within the fuzzy classification framework, three distinct models were formulated using
different band ratios, Rrs (665)/Rrs (443), Rrs (665)/Rrs (490), and Rrs (705)/Rrs (490), each
contributing to the construction of simple linear models, as detailed in Table 1.

Table 1. TSI evaluation model.

Methods Class x Model R2

No classification NCM Rrs (665)/Rrs (490) −44.58 ∗ x + 103.23 0.74

classification

class I Rrs (665)/Rrs (443) 43.08 ∗ x + 2.99 0.80

class II Rrs (665)/Rrs (490) 49.06 ∗ x + 8.49 0.83

class III Rrs (705)/Rrs (490) 25.31 ∗ x + 30.29 0.74
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Figure 3. Classification of measured remote sensing reflectance classification. (a) The distribution
of all spectral data. (b) The central spectrum of each of the three classes after performing fuzzy
classification on all spectral data. (c–e): The distribution of spectral data for the three groups, with
sample sizes of 9, 54, and 93, respectively.

4.2.1. Unclassified Case

Utilizing data collected on 14 June, 21 July, 24 August, 17 September, 12 October
2020, and 29 June 2021, 156 sets of measured parameters were employed to calculate the
comprehensive nutrient status index and identify the optimal band ratio (Rrs (665)/Rrs
(490)) for the NCM evaluation model, as presented in Table 1. A comparison was conducted
between the measured TSI and the model–inverted TSI, yielding an accuracy of R2 = 0.74
(Figure 4).
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4.2.2. FCM Classification

Assessment models for the three water types were established using the optimal
band ratios of Rrs, as outlined in Table 1. The empirical models for Classes 1, 2, and 3
demonstrated commendable accuracy, with R2 values of 0.74, 0.80, and 0.83, respectively.
A comparison between the measured TSI and TSI derived through the FCM yielded an
accuracy of R2 = 0.85 (Figure 5). Notably, the classification-based inversion models exhibited
markedly enhanced accuracy compared with the NCM method, imparting heightened
reliability and credibility to the findings.
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4.3. Evaluation of TSI Inversion Results Based on MSI Data
4.3.1. Verification of MSI Atmospheric Correction

The atmospheric correction of the MSI data was validated using in-situ measured
spectral data, as illustrated in Figure 6. From Figure 6a–c, there is substantial agreement
between the measured and Sentinel-2 MSI spectral reflectance on 14 June 2020, 19 July
2020, and 12 October 2020 (R2 = 0.91, RMSE = 0.003 sr−1, MAPE = 28.05%; R2 = 0.78,
RMSE = 0.003 sr−1, MAPE = 26.25%; and R2 = 0.65, RMSE = 0.004 sr−1, MAPE = 30.44%).
These results demonstrate the credibility of the atmospheric correction results for MSI data,
establishing their suitability for subsequent retrieval applications.

4.3.2. Verification of TSI Results from MSI Inversion

The TSI results obtained through the non–classification and fuzzy classification meth-
ods were assessed using the three MSI images mentioned earlier. Figure 7 illustrates a
visual representation of the accuracy achieved by both methods. The non–classification
method yielded an R2 of 0.49, RMSE of 6.88, and MAPE of 10.36%. Conversely, the fuzzy
classification method demonstrated enhanced retrieval accuracy with an R2 of 0.55, RMSE
of 8.89, and MAPE of 13.18%. Although the improvement of the FCM method over the
NCM method is not substantial, there is still a noticeable enhancement in the results
(Figure 7). The results also indicate the potential of the fuzzy−classification-based ap-
proach to significantly improve the precision of nutrient status retrieval. The full scope
of application and development potential for nutrient status remote sensing assessment
through fuzzy classification remains an area that warrants further exploration.
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4.3.3. Remote Sensing Application

Utilizing 156 sets of satellite–ground synchronized data obtained from Lake Daihai,
optimal band ratio linear algorithms were developed for both the hard classification and
fuzzy classification methods (Table 1). Subsequently, empirical models were applied to
synchronized remote sensing images captured on 14 June, 19 July, and 12 October 2020
(Figure 8).
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Figure 8. Optical classification and model application of remote sensing image water bodies. The
black circles highlights the regions where differences exist between the two images.

First, fuzzy–classification-based optical classification was applied to remote sensing
images of water bodies, as illustrated in the upper section of Figure 8. The classification
graph in Figure 2 indicates that water type 1, characterized by the highest remote sensing
reflectance, predominantly appeared at the lake boundaries, followed by other types,
with type 3 covering the largest area. Subsequently, the same images were employed
for eutrophication inversion using the non-classification method (NCM). The magnified
view of Figure 8 reveals that the NCM method produces more distinct boundaries in
the eutrophic areas (severe eutrophication: TSI > 70, moderate eutrophication: TSI > 60),
while the FCM method displays smoother transitions, particularly in the more vividly
colored regions. The differences between these two methods are primarily observed in the
eutrophic zones, with minimal variations in other areas. Eutrophication in water bodies is
a natural phenomenon that typically lacks distinct boundaries, highlighting the limitations
of the NCM method. In contrast, the black line shows a smooth transition in nutrient levels
along the water body boundaries, indicating that the fuzzy classification method effectively
reduces discontinuities at the water type boundaries. The eutrophication areas during the
three image periods were relatively small and were primarily located near the water–land
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boundary. This phenomenon may be attributed to the increased suspended matter in the
water due to sediment influx, resulting in higher reflectance and poorer nutrient status. A
comparative analysis between the two methods revealed that the nutrient status assessment
based on NCM was underestimated compared to the fuzzy classification method.

4.4. Spatial and Temporal Distribution Characteristics and Influencing Factors of Daihai TSI
4.4.1. Monthly Variation

Utilizing a time series of Sentinel-2 MSI remote sensing images, an FCM–based nutri-
ent status classification method was employed to estimate the eutrophication levels of Lake
Daihai from April to October. Annual spatial distribution maps of nutrient status were
generated by dividing the images for the respective months by the total count (Figure 9).
The monthly nutrient status maps revealed that in April, May, and October, Lake Daihai ex-
hibited eutrophication primarily in the southern region. However, from June to September,
the water quality was generally excellent, with the majority of water bodies experiencing
mild eutrophication.
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4.4.2. Interannual Variation

Figure 10 illustrates the annual dynamics of the nutrient status. In 2016, the water body
experienced the most severe eutrophication, followed by that in 2017, with pronounced
eutrophication observed in the southern and southeastern parts of the lake. In 2018 and
2019, the water quality was excellent, with only limited signs of eutrophication. In 2020
and 2021, eutrophication was evident around the lakeshore. Generally, from 2016 to
2021, severe eutrophication is predominantly concentrated near the water-land boundary.
Eutrophication gradually extended from the lake shore towards the lake surface, with the
majority of the lake surface characterized by a mild to moderate nutrient status.
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4.4.3. Analysis of Influencing Factors

Structural equation models find extensive applications across various domains [57,58].
Typically, climate change has a notable short–term impact, whereas human activities have
a long-term influence. Therefore, as depicted in Figure 11, this study conducted climate
factor analysis concerning monthly fluctuations in the nutrient status of Lake Daihai, along
with an examination of agricultural and industrial factors on an interannual scale. The
meteorological factors exhibited a significant impact on the monthly variations in the
nutrient status of Lake Daihai, with a commendable goodness–of–fit for the structural
equation model at 94%. Interannual fluctuations in nutrient status demonstrated a strong
correlation with agricultural and industrial factors, accounting for 86% and 76% of the
influence, respectively. Hence, human-related factors constituted the primary driver of
eutrophication in Lake Daihai over an extended temporal horizon.



Water 2024, 16, 3032 14 of 20
Water 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 11. Trend analysis of factors influencing trophic status and structural equation models. 

5. Discussion 

5.1. Sensibility analysis 
The FCM algorithm has been applied to various classification studies, ranging from 

medical image processing to remote sensing (Moore et al,2014), and has shown extensive 
applications in fields such as image analysis, medical diagnosis, shape analysis, and target 
recognition (Rezaee et al,1998). In FCM clustering, parameters such as m, Ɛ, and T are 
conventionally set to their default values except for the determination of the cluster count. 
Based on previous studies on the Daihai water body, which is characterized by predomi-
nantly singular spectral types, empirical analysis has established the optimal cluster count 
as n=3. In most studies, FCM applications tend to employ the default value of the weighted 

Figure 11. Trend analysis of factors influencing trophic status (a) and structural equation models (b).

In April and May, high wind speeds can easily disturb the sediment at the bottom of
the lake, leading to the suspension and release of nutrients. Additionally, strong winds can
disrupt the surface of Daihai Lake, causing sediment–laden water to be pushed into the
lake, which in turn results in changes to the trophic state. Starting in June, wind speeds
significantly decrease and temperatures gradually rise, creating favorable conditions for the
growth of aquatic plants. By October, the growth of these plants reaches its peak, further
exacerbating the eutrophication of the lake. Since 2017, the environmental conditions of
the water area have improved, primarily due to the implementation of the “Ulanqab City
Regulations on the Protection of Daihai and Huangqihai Lakes” and the shutdown of the
Daihai Water Cooling Power Plant in 2018, among other measures [59].
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5. Discussion
5.1. Sensibility Analysis

The FCM algorithm has been applied to various classification studies, ranging from
medical image processing to remote sensing [60], and has shown extensive applications in
fields such as image analysis, medical diagnosis, shape analysis, and target recognition [61].
In FCM clustering, parameters such as m,
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, and T are conventionally set to their default
values except for the determination of the cluster count. Based on previous studies on
the Daihai water body, which is characterized by predominantly singular spectral types,
empirical analysis has established the optimal cluster count as n = 3. In most studies, FCM
applications tend to employ the default value of the weighted exponent, m = 2, recognized
as the exponent weight employed to effectively “balance” noise in the data [62]. FCM
converges to hard clustering (HCM) as m approaches 1, while the singular solution of FCM
converges to the centroid of the dataset as m approaches infinity [63]. Nevertheless, despite
the acknowledged significance of the fuzzy parameter m in FCM clustering and the recogni-
tion that the preset value may not be universally suitable for all water body types, detailed
guidelines for discerning an appropriate m value tailored to diverse datasets, particularly
within the context of the optical clustering of water bodies, are currently lacking.

In this study, the determination of the fuzzy parameter, denoted as “m”, was omitted
when employing the FCM clustering method for the optical classification of water bodies.
Dembele et al. [64] have elucidated that the level of fuzziness in FCM is contingent upon the
fuzzy parameter “m” and the matrix norm “A”, indicating the significance of optimizing
“m” to augment the fuzziness of FCM. Furthermore, other researchers have proposed that
the selection of the weighted exponent relies on the inherent characteristics of the data, with
the optimal value of “m” exhibiting substantial variability across distinct datasets [64,65].
Additionally, Bi et al. (2019) [39] noted that employing the default value of “m = 2”,
especially in the context of high-dimensional data, may result in increased misclassifications
of categorical objects and insufficient separation of spectra containing vegetation. Therefore,
they proposed an adaptive algorithm termed FCM–m, founded on a dataset of inland water
bodies in China, and the outcomes demonstrated its superior efficacy compared with the
conventional FCM algorithm.

To apply FCM effectively in eutrophic lakes, it is crucial to engage in rigorous theoreti-
cal research to determine the optimal value of “m”, which is dependent on the intrinsic
data characteristics. Based on the examination of membership distribution at different
“m” values in Figure 12 and the findings of Bi et al. (2019) [39], this study selected “m”
values of 1.1, 1.36, 2, 3.6, and 5.6. When m = 1.1 and 1.36, the class members exhibited a
pronounced concentration at the ends, with relatively fewer interconnections in the middle.
This pattern suggests robust associations between the majority of the spectra and their
respective clusters. In contrast, for m = 3.6 and 5.6, the membership degrees tended to
converge towards the center, indicating a lack of distinct affiliations with any particular
cluster. Among these values, m = 2 proved to be the most suitable choice for fuzzy cluster-
ing of the water body spectra. It adeptly assigned the majority of the spectra to specific
clusters while simultaneously achieving a commendable balance for those that were less
accurately classified.

5.2. Applicability of the Model

Human activities play a significant role in influencing the nutrient levels of water
bodies. Studies have indicated that early stage developments, including the construction of
small–to medium–sized reservoirs in the Daihai Basin and extensive agricultural expansion,
led to wetland conversion for farmland and pastures. This has resulted in amplified
cultivated land and an upswing in the agricultural population. However, due to intensified
agricultural irrigation, increased industrial water consumption, excessive groundwater
extraction, and reduced surface area coverage, Daihai’s water level has rapidly declined.
This has contributed to heightened nutrient concentrations and deterioration of the nutrient
status [66–68]. The findings of this study have broad implications for water resource
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management and environmental policy–making. By combining optical classification with
the Trophic State Index (TSI) method, the accuracy of eutrophication assessments has been
enhanced, providing more reliable data for decision–makers to develop targeted strategies
for lake restoration and protection. This approach can aid in mitigating eutrophication
issues, improving water quality, and ensuring the sustainable use of water resources in
areas affected by both anthropogenic and natural pressures.
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Currently, recognizing the complexity of water optical properties and its limitations
on estimating Chla from remote sensing data, many researchers have conducted optical
classifications of coastal and inland waters [33,35,37]. Based on different water types,
specific Chla estimation algorithms have been developed, leading to hybrid algorithms for
Chla estimation. Most research findings suggest that optical classification of water bodies
can significantly improve the performance of Chla estimation algorithms [21]. Building
on these studies, the approach of performing optical classifications of complex waters
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to develop specific algorithms is equally applicable to estimating water eutrophication.
In this context, soft classification methods play a crucial role by enabling more flexible
categorization of water bodies, reflecting the continuous variation of water properties rather
than rigidly assigning them to a single category. Similar optical classification methods
have been successfully applied to various water bodies globally, ranging from tropical
lakes to temperate and subarctic waters, demonstrating broad applicability. Therefore, we
have reason to believe that this approach can be used to develop more precise models
for assessing eutrophication, offering enhanced accuracy. However, when this method is
applied to regions with significantly different environmental conditions, it may encounter
certain limitations. Therefore, careful adjustments and optimizations of the model are
necessary to ensure its suitability for specific regions.

6. Conclusions

This study integrated fuzzy classification techniques with nutrient status index method-
ologies, employing measured spectra, transparency, and chlorophyll data to evaluate the
nutrient status of the Daihai Lake. A tailored nutrient status assessment model for Daihai
Lake was developed.

(1) Fuzzy classification techniques were employed to categorize the in situ remote sensing
reflectance, resulting in the identification of three spectral classes characterized by
distinctive feature disparities.

(2) Empirical models were developed for the NCM and FCM methods using the mea-
sured data. Optimal band ratios were selected to establish the models, yielding
inversion accuracy test results of R2 = 0.74 and R2 = 0.85, respectively. Fuzzy cluster-
ing demonstrated the potential for evaluating the nutrient status of water bodies.

(3) Atmospheric correction of the three synchronized field images was successfully vali-
dated. The accuracy assessment of the remote sensing inversion using the NCM and
FCM methods yielded the following results: R2 = 0.49, RMSE = 6.88, MAPE = 10.36%,
and R2 = 0.55, RMSE = 8.89, MAPE = 13.18%.

(4) The algorithm was applied to Sentinel MSI remote sensing images to analyze the
temporal and spatial distribution characteristics of the trophic status of the Daihai
Reservoir from April to October from 2016 to 2021. MSI time-series data revealed
a long-term state of mild eutrophication in Daihai. The primary factors underlying
eutrophication were elucidated using a structural equation model. Climate-related
factors accounted for 94% of the monthly variation in the trophic status of the Daihai
Reservoir, while agricultural and industrial factors exhibited significant correlations
with interannual variations, explaining 86% and 76% of the variations, respectively.
This highlights the predominant role of human activities in the eutrophication of the
Daihai Reservoir, with climate factors acting as catalysts.
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