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Abstract: The Nyabarongo river catchment in Rwanda has experienced significant changes in its land
use and land cover (LULC) in recent decades, with profound implications for non-point source pollu-
tion. However, there are limited studies on non-point pollution caused by nutrient loss associated
with land use and land cover changes in the catchment. This study investigates the spatiotemporal
impacts of these changes on water quality considering nitrogen and phosphorus within the catchment
from 2000 to 2020 and 2030 as a projection. The SWAT model was used in analysis of hydrological
simulations, while the CA–Markov model was used for the future projection of LULC in 2030. The
results revealed (1) the important changes in LULC in the study area, where a decrease in forestland
was observed with a considerable increase in built-up land, grassland, and cropland; (2) that the R2

and NSE of the TN and TP in the runoff simulation in the catchment were all above 0.70, showing
good applicability during calibration and validation periods; (3) that from 2000 to 2020 and looking to
the projection in 2030, the simulated monthly average TN and TP levels have progressively increased
from 15.36 to 145.71 kg/ha, 2.46 to 15.47 kg/ha, 67.2 to 158.8 kg/ha, and 9.3 to 17.43 kg/ha, respec-
tively; and (4) that the most polluted land use types are agriculture and urban areas, due to increases
in human activities as a consequence of population growth in the catchment. Understanding the
patterns and drivers of these changes is critical for developing effective policies and practices for
sustainable land management and protection of water resources.

Keywords: LULC; non-point source pollution; Nyabarongo river; SWAT; Rwanda

1. Introduction

Non-point source pollution (NPS) is a pervasive environmental issue with global
significance, impacting water bodies and ecosystems across the planet [1]. Unlike point
source pollution, which originates from easily identifiable and regulated discharge points
such as factories or sewage treatment plants, non-point source pollution arises from diffuse
and often unregulated sources. These diffuse sources include various land use activities
such as agriculture, urbanization, deforestation, construction, and transportation [2]. The
Nyabarongo river catchment in Rwanda stands as a critical nexus of ecological, social,
and economic dynamics, embodying both the country’s natural richness and its devel-
opmental aspirations [3]. However, Mudahemuka [4] suggested that rapid urbanization,
agricultural expansion, and population growth have caused significant alterations in its
land use patterns, consequently affecting the hydrological and environmental integrity of
the catchment. Central to these transformations is the proliferation of non-point sources
of pollution, which lead to intricate challenges in water resource management, ecosystem
health, and sustainable development [5].
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Nitrogen and phosphorus play a pivotal role in the process of water eutrophication.
These essential nutrients are of significant concern when examining the factors that con-
tribute to the excessive enrichment of water bodies [6]. The presence of these pollutants is
attributed to the use of both inorganic and organic fertilizers in high-density farming, urban
sewage systems, grazing livestock, and farm disinfectants. With the shift in catchment
areas towards increased agriculture, deforested lands, and urban development, the amount
of contaminants entering the river has escalated [7]. Studying the key areas of non-point
source (NPS) pollution and their impact on river contamination as well as how these factors
correlate with land use changes within the watershed is a crucial step. This research is vital
for establishing strategies to manage land use practices in the watershed and mitigate the
decline in river water quality [8].

Recent studies have highlighted the significant impact of land use and land cover
(LULC) changes on non-point source (NPS) pollution across various catchments. For
instance, a study conducted by Zena [9] investigated the long-term effects of LULC changes
on pollution loads in a catchment in central Ethiopia. The research used hydrological
modeling and multivariate statistics to analyze the relationship between LULC changes
and NPS pollution, revealing a substantial increase in pollutants like nitrate and phosphorus
due to human-induced changes such as deforestation and agricultural intensification. The
evolution of potential non-point source pollution risks has also been assessed in the Heihe
watershed in northern China, which is similarly affected by land use changes [10]. This
research found that urbanization significantly contributed to the increase in pollutant
loads, with the most recent LULC conditions showing the highest impact. These studies
underscore the importance of understanding and managing LULC changes to mitigate
their effects on NPS pollution in catchments.

In the Nyabarongo catchment, various studies have been conducted with different
purposes, such as soil erosion and flood assessment [11–13], but no case of non-point
pollution has been assessed in terms of sediment and nutrient contaminants. This research
gap attracted the researchers to conduct this kind of study, which endeavors to delve
into the intricate interplay between land use cover change and its ramifications for NPS
within the catchment. We used the SWAT model, which is a robust hydrological simulation
framework, for elucidating the complex dynamics of land usage alterations with cascading
effects on water quality and ecosystem health. Several hydrological models have been
established to simulate surface runoff, sediment transport, and nutrient distribution in
the catchment [14–17]. In this case, the SWAT model was selected to investigate NPS in
the watershed due to its specific design for use in extensive and intricate basins across
extended timeframes [18,19]. This tool is capable of modeling and predicting non-point
source pollution from its origin to its entry into water bodies. It forecasts the flow and
concentration of pollutants at different locations within a watershed over time, using
future land use and land cover data projected by the CA–Markov model. Recently, a
number of studies have been used this model to project future urban expansion, assess
environmental impacts, and support sustainable development planning. For instance,
research has shown the model’s capability to predict LULC changes with high accuracy,
using Kappa coefficients to validate the reliability of the simulations [20–22]. On the
other hand, one of the primary advantages of the SWAT model is its adaptable structure,
which enables users to segment a vast watershed into numerous smaller sub-watersheds.
Additionally, it facilitates the modeling of diverse land management and usage practices
through simple adjustments of parameters [23].

This study was therefore conducted to evaluate NPS in the Nyabarongo catchment in
terms of nitrogen and phosphorus pollution and spatial and temporal distribution patterns
under conditions of land use change using the SWAT and CA–Markov models. Ultimately,
the findings of this research will contribute to the preservation of ecological integrity, the
enhancement of water security, and the promotion of resilient socio-ecological systems
within the Nyabarongo catchment and similar regions grappling with land use-induced
environmental challenges.
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2. Materials and Methods
2.1. Study Area Description

The Nyabarongo river catchment, spanning latitudes 1◦18′ to 2◦34′ S and longitudes
29◦5′ E to 30◦35′ E, is encircled by the central plateau to the south, the eastern plateau
and savannah to the east, and a volcanic range to the north with an estimated length
of 151.5 km draining a total area of 8478.24 km2 [24]. It encompasses roughly one-third
of Rwanda’s land area (Figure 1). The Nyabarongo river’s main feeders include the
Mbirurume, Rukarara, and Mwogo rivers on the western bank, while the Mukungwa
river and Lake Ruhondo are tributaries on the northern bank. The Nyabarongo river
and Lake Muhazi are on the eastern bank. Dominated by a tropical climate, the region
receives an average annual rainfall of 1231 mm and maintains an average temperature
of approximately 17 ◦C annually. The elevation within the catchment area ranges from
1342 to 4480 m above sea level, averaging at 2911 m. Dominated by agriculture, 74.85%
of the catchment’s total land area is composed of croplands. A lack of sustainable land
management practices has resulted in a significant soil erosion rate from these croplands,
estimated at approximately 618 tons per hectare per year (also containing nutrients), as
reported by Karamage and Zhang [25]. Furthermore, the same authors also noted that the
Nyabarongo river, flowing into the Akagera river, channels water towards Lake Victoria. As
the largest river catchment in Rwanda, it includes different 24 districts from all provinces
countrywide and also encompasses industrial areas with significant urbanization, like
Kigali city. However, the area experiences various forms of contamination, including
domestic waste, agricultural runoff, and emissions from quarrying, mining, and industrial
operations, particularly around Kigali and its environs [11].
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2.2. Datasets

The digital elevation model (DEM), land use land cover maps, and soil type maps are
among some of the spatial data applied for this study. More prominently, meteorological
data were served to simulate the catchment model’s climate and precipitation sources. The
coordinate system used here is referred to as WGS 1984. The study area’s coordinates were
mapped using the UTM projection system, specifically named WGS 1984 UTM Zone 350 S,
reflecting the region’s geographical positioning. The basic information of the data used is
presented in the table below.

The DEM served as a crucial component of the SWAT model, providing the founda-
tional layer for defining watershed perimeters, stream networks, and sub-basin formation.
In conjunction with additional datasets of land use and soil types, the DEM is instrumental
in producing hydrological response units (HRUs). For this study, the study area’s topo-
graphic features were derived using a DEM with a 30 m resolution, supplied by NASA’s
Shuttle Radar Topographic Mission (SRTM). The Landsat image scenes were obtained
from the United States Geological Survey (USGS) website, a freely accessible data portal
(http://earthexplorer.usgs.gov/ (accessed on 22 June 2022)), as described in Table 1.

Table 1. Data sources and basic information.

Input Data Scale Source

Land use map Landsat 8.30 m Resolution Earth exploration (USGS)
Soil map 30 arc-seconds FAO-UNESCO Soil Map of the World

DEM 30 m USGS (United States Geological Survey)

Water quality parameters Monthly, 2010–2020 Rwanda Water Resources Board (RWB)
UNILAK-Environmental Laboratory.

Rainfall and temperature Monthly, 1982–2020 Rwandan Meteorological Agency

The soil type distribution data were provided by the HWSD database built by the Food
and Agriculture Organization (FAO) of the United Nations, i.e., the FAO 1990 Soil Classifi-
cation System [26]. Figure 2b depicts the soil type map and Table 2 with its classification
correspondence.

Table 2. Soil type table.

No Code Name Code Name

1 Nh7-2/3c Humic Nitosols 7 Fo96-3b Humic Ferralsols
2 Tm10-2bc Mollic Andosols 8 Nd39-3bc Dystric Nitosols
3 Fo42-3b Humic Ferralsols 9 I-N-c Lithosols
4 Tm14-1/2c Mollic Andosols 10 Fh10-3b Humic Ferralsols
5 Nh5-2/3c Humic Nitosols 11 Bh14-3c Humic Cambisols
6 Fo97-3b Humic Ferralsols

The categorization of land use significantly impacts the simulation results of the model.
To illustrate this, the years 2000, 2010, 2020, and 2030 were chosen as benchmarks, each
marking a distinct phase in land use evolution (Table 3). Understanding these changes is
vital for grasping the model’s performance. Historical land use and cover (LULC) patterns
from 2010 to 2020 informed the transition probability matrices, which were essential for the
model’s initial periods for the CA–Markov model to predict the 2030 LULC. Therefore, to
effectively incorporate these land use classifications into the SWAT model, distinct codes
were allocated to various land classes, namely FRST for forestland, RNGE for grassland,
AGRR for cropland, URLD for built-up areas, WETL for wetland, and WATR for water
bodies. This coding facilitates the model’s ability to accurately represent the diverse
landscape and its associated ecological functions.

http://earthexplorer.usgs.gov/
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Table 3. Images used in this study.

Year Path/Row Acquisition Date Sensor Type Spatial Resolution (m) LULC Name Source

2000 173/62 27 September 2000 Landsat 7 ETM 30 2000 LULC USGS
2010 172/61 22 July 2010 Landsat 8 OLI 30 2010 LULC USGS
2020 172/62 27 September 2020 Landsat 8 OLI 30 2020 LULC USGS

The four stations were selected to collect the variation climate data in terms of precipi-
tation and temperature in the Nyabarongo catchment.

2.3. SWAT Model Description

In this study, SWAT 2012 software was leveraged for hydrological analysis, while
ArcGIS 10.8, enhanced with the Arc SWAT as an extension, was utilized for spatial data
management. The river basin was analyzed based on soil characteristics, LULC, and
topography to delineate sub-basins into hydrologic response units (HRUs). These HRUs
are critical for assessing hydrological properties and are central to the simulation, which is
driven by the water balance [27]. The simulation process is divided into two main stages:
the in-stream stage (which computes the loadings from each sub-basin throughout the
stream network) and the terrestrial stage (during which the SWAT model estimates the
contributions of flow, sediment, and nutrients from each HRU). These contributions are
then cumulatively assessed at the level of the sub-basin [28]. The simulation is based on
the following equation:

SWt = SW0 + ∑t
i=1(Rday − Qsur f − Ea − Wseep − Qgw) (1)
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where SWt—final content of soil water, SW0—daily soil water quality, t—time (days),
Rday—daily precipitation, Qsurf—surface runoff content per day, Ea—evapotranspiration
per day, Wseep—content of water entering the vadose zone from the soil profile per day,
and Qgw—amount of return flow per day.

Calibration and Validation

The SWAT model’s calibration and validation requires the modification of its parame-
ters to enhance correlation between the model’s predictions and the observed data for water
variables. After successful calibration, the model becomes a tool for assessing how various
land use strategies affect the quality of water and ecosystem vitality [29]. Calibration of the
model was performed within the watershed using the SWAT model feature in combination
with the SWAT-CUP tool 2012 [30]. The model outcomes and laboratory information were
set to calibrate the model with Sequential Uncertainty Fitting Ver.2 (SUFI-2) in SWAT-CUP
2012 [31]. Before the calibration process, we conducted an examination of the sensitivity
of the SWAT model’s parameters. Table 4 displays parameters that were discovered to
be the most sensitive. The parameters that were adopted originated from previous mod-
eling studies in the literature [32,33]. The model was calibrated by the chosen sensitive
parameters using accessible time-series data of runoff, total nitrogen, and total phosphorus.
Therefore, the calibration process took place over the period from 2010 to 2013, followed by
a validation phase that occurred monthly from 2014 to 2015.

Table 4. Meteorological stations.

No. Station Name Latitude Longitude Elevation Year

1 Gatumba 30.1954 −1.9495 1727 1982–2020
2 Ruriba 30.0139 −1.977 1569 1982–2020
3 Nyange 29.6381 −2.109 2082 1982–2020
4 Gasogi 30.1802 −1.9701 1444 1982–2020

The assessment of the model’s calibration and validation performance was conducted
using two metrics, the coefficient of determination (R2) and the Nash–Sutcliffe model
efficiency coefficient (NSE), which served as the benchmarks for evaluation [33]. The
coefficient of determination assesses the degree of linear correlation between observed data
and the predictions made by a model. Nash–Sutcliffe efficiency (NSE) is a standardized
metric that quantifies the proportion of the variance in the observed data that is predictable
by a model by comparing the residual variance to the variance of the observed data [2].
Calculations of NSE and R2 are shown below:

NSE = 1 −
∑n

j=i
(
Xj − Yj)

2

∑n
j=i

(
Xj − X)2

(2)

R2 =

[
∑n

j=1
(
Xj − X

)(
Yj − Y

)
]2

∑n
j=1

(
Xj − X)2∑n

j=1
(
Yj − Y)2

(3)

where n—duration of flow i and the number of errors; Yj—the value of data simulated at
time j; Xj—the value of data observed at time j; and X and Ȳ—the average observed and
simulated values.

The R2 is in the range of 0 to 1, among which 0 indicates no relationship and 1 indicates
perfect correlation. The NSE is within the range of −∞ to 1. If it is negative, the mean
of the observed data surpasses the results predicted by the model simulation [29]. The
SWAT-CUP 2012 is served by the above two parameters as an objective function in the
validation and calibration of the model.
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3. Results
3.1. SWAT Model Performances

A total of 25 sensitive parameters, of which 10 referred to runoff and 25 to water
quality (nutrients), were selected for the sensitivity analysis, as shown in Table 4.

Throughout the calibration and validation process, adjustments were made to the
model’s parameters to reduce discrepancies between the modeled and actual data for runoff,
TN, and TP over a five-year period. The R2 values ranged from 0.84 to 0.91, demonstrating
a robust correlation between the modeled and measured runoff, which is associated with
rainfall, total phosphorus, and total nitrogen data, as illustrated in Figures 3–5. This
suggests that the model captured a significant proportion above 0.72 of the variances in the
observed data, demonstrating a good overall fit. However, it is important to note that R2

alone does not provide insights into how well the model performs relative to the variability
of the observed data. Therefore, the NSE values, which vary between 0.72 to 0.78, were
also considered, as shown in Figures 3–5. Values above 0.70 for NSE suggest that the model
captures approximately 70% of the observed variability, which is considered satisfactory.
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3.2. Evaluation of Land Use and Land Cover Changes

The observation of LULC changes in the catchment was performed using data from
three years (2000, 2010, and 2020); supervised classification of Landsat imagery resulted
in six classes. The main land types in the catchment were cropland, grassland, and forest,
as shown in Table 5. In the three refence years, cropland occupied 5223.812 km2 (62.4%),
5000.115 km2 (59.7%), and 6021.218 km2 (72.0%), respectively, meaning the catchment is
considered an agriculture area. The area of forest has been steadily decreasing from 2603.76
to 1255.32 km2, resulting from many activities related to agriculture; the area of built-up
land has also been increasing (Table 5).

Table 5. List of used parameters for sensitivity analysis.

No Parameter Name Description Min_Value Max_Value Fitted_Value Taget

1 a_CN2.mgt SCS runoff curve
coefficient −0.2 0.2 −0.189 Runoff

2 a_ALPHA_BF.gw Base flow α coefficient 0 1 0.330 Runoff

3 a_GW_DELAY.gw Groundwater hysteresis
factor 30 450 275.000 Runoff

4 a_GWQMN.gw Groundwater
re-evaporation coefficient 0 2 1.500 Runoff

5 a_ESCO.bsn Soil evaporation
compensation factor 0 1 0.043 Runoff

6 a_SOL_AWC.sol Soil water availability 0 1 0.203 Runoff

7 a_SOL_BD.sol Wet capacity of surface soil 0.5 2.5 2.080 Runoff

8 a_SLSUBBSN.hru Average slope length 10 100 76.900 Runoff

9 a_OV_N.hru Manning factor for slope
diffuse flow 0 100 37.000 Runoff

10 a_LAT_TTIME.hru Soil flow measurement
delay index 0 100 40.333 Runoff



Water 2024, 16, 3033 9 of 17

Table 5. Cont.

No Parameter Name Description Min_Value Max_Value Fitted_Value Taget

11 a_NPERCO.bsn Nitrogen permeability
coefficient 0 1 0.257 Water Quality

12 a_PPERCO.bsn Phosphorus permeability
coefficient 10 17.5 13.225 Water Quality

13 a_PHOSKD.bsn Soil phosphorus partition
coefficient 100 200 186.333 Water Quality

14 a_PSP.bsn Index of phosphorus
effectiveness 0.01 0.7 0.127 Water Quality

15 a_N_UPDIS.bsn Nitrogen absorption
distribution parameters 20 100 61.333 Water Quality

16 a_P_UPDIS.bsn Phosphorus absorption
distribution parameters 20 100 51.733 Water Quality

17 a_FIXCO.bsn Nitrogen fixation factor 0 1 0.263 Water Quality

18 a_CH_ONCO_BSN.bsn Concentration of organic
nitrogen in the river 0 100 58.333 Water Quality

19 a_CH_OPCO_BSN.bsn Concentration of organic
phosphorus in the river 0 100 83.667 Water Quality

20 a_ORGN_CON.hru Organic nitrogen
concentration in runoff 0 100 27.000 Water Quality

21 a_ORGP_CON.hru Organic phosphorus
concentration in runoff 0 50 19.167 Water Quality

22 a_BIOMIX.mgt Biomixing efficiency 0 1 0.757 Water Quality

23 a_ERORGP.hru Organic phosphorus
enrichment rate 0 5 2.450 Water Quality

24 a_POT_NO3L.hru Nitrate decay rate in
potholes 0 1 0.043 Water Quality

25 a_ERORGN.hru Enrichment rate of organic
nitrogen 0 5 4.217 Water Quality

Table 6 depicts that forestland underwent a loss of −51.79% and water bodies a loss
of −2.96% in recent years, although grassland land, cropland and built-up areas have
increased by 170.97%, 15.26% and 168.20%, respectively. The most significant land use
change in the period 2000–2020 was observed in grassland and built-up areas, which is
linked to the increase in the population of the catchment (Figure 6). This observation goes
hand and hand with the exploitation of the forest and water.

Table 6. Changes in land use areas from 2000 to 2020.

2000 2010 2020 2000–2010 2010–2020 2000–2020

Classes Area_Sqkm Area_Sqkm Area_Sqkm Variation % Variation % Variation %

Forestland 2603.76 2777.50 1255.32 173.74 6.67 −1522.18 −54.80 −1348.44 −51.79
Grassland 235.47 251.38 638.05 15.91 6.75 386.67 153.82 402.58 170.97
Cropland 5223.81 5000.12 6021.22 −223.70 −4.28 1021.10 20.42 797.41 15.26
Built-up 78.39 97.03 210.25 18.64 23.78 113.22 116.68 131.86 168.20
Wetland 85.54 106.62 106.02 21.09 24.65 −0.60 −0.56 20.49 23.95
Water 134.77 129.04 130.79 −5.74 −4.26 1.75 1.36 −3.98 −2.96

Total area 8361.75
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3.3. Total Nitrogen Trends in Different Land Use Scenarios
3.3.1. Annual Range Simulation Analysis of Total Nitrogen

This study was carried out using land use data from three separate periods (2000, 2010,
and 2020). The nitrogen levels discharged from the watershed exhibited various trends in
alterations in random periods between 2010 and 2020. The land use map included data
from 2000 onwards, where the lowest count was in 2010 (with the value 15.36 kg/ha) and
the highest was in 2020 (with a value of 79.61 kg/ha). The 2010 map showed a lowest value
in 2011 (39.8 kg/ha) and a highest value in 2020 (84.51 kg/ha); the last map of 2020 showed
a clear increase in nitrogen load in the catchment, with a lowest value of 28.61 in 2010 and a
highest value of 145.71 kg/ha in 2020 (Figure 7). The outlet point concentrations revealed a
progressive increase, which also caused the ground water quality limit set by World Health
Organization (WHO) to be exceeded in 2019 and 2020.
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Figure 7. Annual load of total nitrogen and outlet points in three LULC phases.
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3.3.2. Spatial Distribution Characteristics of Total Nitrogen

The SWAT model was fed data from three land use maps to determine the average
annual load for each sub-basin during the years 2000, 2010, and 2020 (Figure 8).
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The variation in TN in 2000, 2010, and 2020 was between 2.47 to 4.55 kg/ha, 3.06 to
6.44 kg/ha, and 6.05 to 13.31 kg/ha, respectively, in all sub-basins. Therefore, the highest
distribution was observed in sub-basins 8, 11, 12, 13, 16, 20, and 23 with an increasing
tendency during the years 2000 to 2020. These sub-basins are located mostly in urban and
agricultural areas wherein domestic wastewater and fertilizers can actively contribute to
water pollution in the catchment.

3.4. Total Phosphorus Trends in Different Land Use Scenarios
3.4.1. Simulation Analysis of Total Phosphorus in Annual Range

This study used land use data spanning three distinct time frames to analyze the
exported phosphorus loads from the watershed. This analysis revealed a varied pattern
of phosphorus fluctuations during random intervals between 2010 and 2020. Specifically,
the 2000 land use data indicated a lowest phosphorus load in 2010, at 2.6 kg/ha, and a
highest load in 2020, at 8.38 kg/ha. Meanwhile, the 2010 data depicted a minimum load of
4.46 kg/ha in 2011, escalating to a peak of 10.8 kg/ha in 2020. The final set of data from 2020
demonstrated a clear upward trend in phosphorus load within the catchment area, starting
from 7.76 kg/ha in 2010 and surging to 15.47 kg/ha by 2020. Thus, the concentration levels
at the outlet points demonstrated a consistent upward trend, ultimately surpassing the
groundwater quality standards established by the World Health Organization (WHO) from
2018 to 2020 (Figure 9).

3.4.2. Spatial Distribution Characteristics of Total Phosphorus

The SWAT model was utilized to process three land use maps, resulting in the compu-
tation of the mean annual load for each sub-basin during the years 2000, 2010, and 2020, as
depicted in Figure 10. TP levels varied across all sub-basins, with readings ranging from
0.30 to 0.54 kg/ha in 2000, 0.41 to 0.86 kg/ha in 2010, and 0.73 to 1.65 kg/ha in 2020. Notably,
sub-basins 3, 4, 8, 11, 12, 13, 16, 20, and 23 exhibited the most significant increases over the
two-decade span. These particular sub-basins, predominantly situated in regions of urban
development and agricultural activity, are prone to heightened water contamination due to
the active contribution of domestic sewage and agricultural fertilizers.
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Figure 10. Spatial distribution of TP (2000, 2010, 2020) in the catchment.

3.5. Estimated Future Loss of TN and TP with the Projected LULC in 2030

The projected LULC in 2030, as provided by the CA–Markov model, displayed in-
creases in built-up and cropland areas, with values of 14.5% and 2.45%, respectively. This
expansion is expected to have a consequential impact on existing natural landscapes, with
grasslands and forests projected to decrease by 13.87% and 7.63%. These changes are
primarily attributed to the demand for land to support agricultural activities and urban
development (Table 7).
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Table 7. Changes in land use area from 2010 to 2030.

2010 2020 2030 2010–2020 2020–2030

Classes Area_Sqkm Area_Sqkm Area_Sqkm Variation % Variation %

Forestland 2777.4988 1255.3198 1159.4289 −1522.1789 −54.8039 −95.8909 −7.6388
Grassland 251.3760 638.0492 549.5345 386.6733 153.8227 −88.5147 −13.8727
Cropland 5000.1154 6021.2184 6169.3167 1021.1030 20.4216 148.0983 2.4596
Built-up 97.0321 210.2529 241.3488 113.2208 116.6839 31.0959 14.7897
Wetland 106.6249 106.0250 110.3860 −0.5999 −0.5627 4.3611 4.1132

Water bodies 129.0359 130.7897 131.6326 1.7538 1.3591 0.8429 0.6445

Total area 8361.75

Therefore, this scenario involved an increase in nutrient loss, as shown by the SWAT
model results. The projected LULC showed an increase in concentrations of TN and TP in
the context of land use and land cover changes by 2030, which is a significant environmental
concern. The estimated future loss, as indicated by an increase of 11.8 to 19.1 kg/ha in TN
and 2.2 to 3.1 kg/ha in TP suggests a substantial alteration in nutrient loading, which can
have profound implications for ecosystem health and water quality.

Thus, the spatial and temporal analysis from 2020 to 2030 showed an alarming in-
crease in nutrient concentrations, most notably in sub-basins 4, 8, 11, 12, 13,15, 16, and
20 (Figure 11). This trend suggests that ongoing land management methods are in con-
flict with ecological preservation efforts. Notably, the areas most affected are those with
significant human settlement and agricultural activity.
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4. Discussion

The research highlighted the dynamic nature of NPS (nitrogen and phosphorus) as
nutrients loaded across a landscape over time and influenced by land use changes. By
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integrating the SWAT model, this study analyzed land use data over three distinct periods,
providing a detailed examination of the spatial and temporal variations in phosphorus
and nitrogen loads within a watershed [34]. This approach revealed a complex pattern of
nutrient changes, which is crucial for understanding the environmental impacts of land
management practices not only in the present but also in the future by utilizing projections.

The data in Figures 7 and 9 indicated a significant fluctuation in nutrient levels, with
the lowest recorded levels of nitrogen and phosphorus being in 2000 (at 15.36 kg/ha and
2.6 kg/ha) before a stark increase to 79.61 kg/ha, 8.38 kg/ha, respectively. This trend sug-
gests a correlation between land use practices and nitrogen exportation. It is important to
consider the types of land use during these periods; for instance, agricultural practices often
contribute to higher nitrogen and phosphorus levels due to fertilizer application. Urban
development can also impact such pollutant loads through increased runoff and reduced
natural filtration systems, as reported by Yazdi [35]. The data from 2010 further supported
this, showing an initial low at 39.8 kg/ha and 4.46 kg/ha, escalating to 84.51 kg/ha and
10.89 kg/ha. The LULC 2020 provides a clear visualization of rising nitrogen and phospho-
rus loads, starting from 58.61 kg/ha and 7.68 kg/ha in 2010 and more than quadrupling
to 145.71 kg/ha and 15.47 kg/ha in 2020. Finally, a more concrete situation was observed
when using the future projected LULC in 2030, as also used by Gasirabo and Xi [20], which
showed a gradual increase in the estimated loss of nutrients from 67.2 kg/ha and 9.3 kg/ha
to 158.8 kg/ha and 17.43 kg/ha for nitrogen and phosphorus, respectively. Furthermore,
the temporal analysis from 2000 to 2020 with projections for 2030 revealed a worrying
escalation in nutrient loads, with the highest distribution in sub-basins 3, 4, 8, 11, 12, 13,
16, 20, and 23 (Figures 8, 10 and 11). This pattern is indicative of the cumulative effects of
sustained land use practices that are not in harmony with environmental conservation. The
spatial distribution of these loads is predominantly in areas of human habitation and crop
production [28].

These findings were alarming as they not only reflect changes in land use but also
potential risks to water quality and ecosystem health due to eutrophication [36]. Studies
like the one conducted on the Ashe river basin in China have used the SWAT model to
assess the impacts of land use changes on nitrogen and phosphorus pollution as non-
point pollutants, revealing that land conversion to urban areas and the associated increase
in precipitation have led to varying nitrogen and phosphorus exports over the last two
decades [33]. Similarly, research in the Chesapeake Bay basin in the USA has shown that
agricultural and urban areas have significantly impacted nitrogen transport, affecting water
quality and potentially altering the role of nitrogen in sediments as a source or sink of the
water body [29]. These findings underscore the importance of integrated land and water
management strategies in mitigating the adverse effects of land use changes on nutrient
loads and, by extension, on environmental and human health. Understanding the patterns
and drivers of these changes is crucial for developing effective policies and practices for
sustainable land management and protection of water resources.

Thus, the simulation results indicated that the increase in human settlements and the
population directly correlates with a rise in contamination of the Nyabarongo catchment.
To mitigate this environmental impact, it is essential to implement specialized sewage
treatment facilities in key locations. These plants will play a crucial role in safeguarding the
watershed from pollution, thereby actively reinforcing the commitment to environmental
conservation.

5. Conclusions

The integration of the SWAT model to assess the impact of land use and land cover
change on non-point source pollution has proven to be a valuable tool in environmental
management. This study aimed to investigate the influence of LULC from 2000 to 2020
(and predicted conditions in 2030) on the concentration of surface runoff and two important
pollutants, total nitrogen and phosphorus, in the Nyabarongo river catchment, which
is largely made up of agricultural, urban, grassland, and forest areas. The selection of
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the watershed was attributed to the dynamic nature of land cover, which has changed in
tandem with population expansion and development over time. The findings highlighted
increases in pollutants from 15.36 to 158.8 kg/ha kg/ha for TP and from 2.46 to 17.43 kg/ha
for TN during the study period. According to above results, both agricultural and urban
zones were the areas most vulnerable to NPS pollution, particularly load nutrients. The
findings of this research can assist decision makers and land custodians in crafting precise
and effective conservation tactics. These strategies will be customized to unique land use
and land cover categories and the intensity of non-point source pollution, with the goal of
safeguarding water resources and maintaining ecosystem viability. During the study, the
researchers met with uncertainties and limitations related to data variability and availability
for model calibration and validation due to low quantity of hydrological stations within the
catchment. Therefore, the spatial and temporal resolution of the data used may significantly
influence the model’s performance, with coarse data possibly leading to underestimation or
overestimation of pollution levels. Furthermore, it is recommended that in future research,
LULC data are integrated within current best management practice (BMP) allocation
frameworks to reflect the varied spatial presence of nonpoint source pollutants across
landscapes. Particularly in agriculture and urban locales, where NPS hotspots are widely
dispersed, it is essential to examine BMP implementation patterns and pinpoint successful
community-based measures for managing NPS pollution. Additionally, assessing the
societal effects of BMP implementation may contribute to devising impactful community
strategies. These suggestions are intended to deepen the comprehension of NPS pollution
management and foster the creation of more efficient BMP distribution methods.
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