A Novel WTG Method for Predicting Ship Trajectories in the Fujian Inshore Area Based on AIS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Problem Definition
2.3. Model Structure
2.3.1. Wavelet Transform
2.3.2. Temporal Convolutional Network
2.3.3. Gated Recurrent Unit
2.3.4. Multi-Head Attention Mechanisms
2.3.5. Model Evaluation Indices
3. Results
3.1. Experimental Settings
3.2. Prediction Results and Analysis
3.2.1. Analysis of Results in the Minjiang Estuary
3.2.2. Analysis of Results in the Haitan Strait
3.2.3. Prediction Performance at Different Time Intervals
3.2.4. Ablation Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Adam | Adaptive moment estimation |
AED | Average Euclidean distance |
AIS | Automatic identification system |
Bi-LSTM | Bidirectional long short-term memory |
BP | Back propagation |
COG | Course over ground |
DWT | Discrete wavelet transform |
FD | Fréchet distance |
FDE | Final displacement error |
GRU | Gated recurrent units |
LSTM | Long short-term memory |
MAE | Mean absolute error |
PSO-LSTM | Particle swarm optimization long short-term memory |
RMSE | Root mean squared error |
ReLU | Rectified linear unit |
SMAPE | Symmetric mean absolute percentage error |
SOG | Speed over ground |
STFT | Short-time Fourier transform |
TCN | Temporal convolutional networks |
WT | Wavelet transform |
References
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
- Bao, K.; Bi, J.; Gao, M.; Sun, Y.; Zhang, X.; Zhang, W. An improved ship trajectory prediction based on AIS data using MHA-BiGRU. J. Mar. Sci. Eng. 2022, 10, 804. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, X.; Yao, W.; Chen, J.; Hu, Y. Bidirectional data-driven trajectory prediction for intelligent maritime traffic. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1773–1785. [Google Scholar] [CrossRef]
- Li, X.; Ying, X.; Chuah, M.C. Grip: Graph-based interaction-aware trajectory prediction. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3960–3966. [Google Scholar]
- Korbmacher, R.; Tordeux, A. Review of pedestrian trajectory prediction methods: Comparing deep learning and knowledge-based approaches. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24126–24144. [Google Scholar] [CrossRef]
- Atkeson, C.; McIntyre, J. Robot trajectory learning through practice. In Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7–10 April 1986; pp. 1737–1742. [Google Scholar]
- Li, H.; Liu, J.; Yang, Z.; Liu, R.W.; Wu, K.; Wan, Y. Adaptively constrained dynamic time warping for time series classification and clustering. Inf. Sci. 2020, 534, 97–116. [Google Scholar] [CrossRef]
- Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.-B. Exploiting AIS data for intelligent maritime navigation: A comprehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1559–1582. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, X.; Xiao, Z.; Xu, H.; Qin, Z. Vessel trajectory prediction in maritime transportation: Current approaches and beyond. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19980–19998. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, W.; Chen, X. Ship trajectory prediction algorithm based on polynomial Kalman filter. Signal Process. 2019, 35, 741–746. [Google Scholar]
- Guo, S.; Liu, C.; Guo, Z.; Feng, Y.; Hong, F.; Huang, H. Trajectory prediction for ocean vessels base on K-order multivariate Markov chain. In Proceedings of the Wireless Algorithms, Systems, and Applications: 13th International Conference, WASA 2018, Tianjin, China, 20–22 June 2018; pp. 140–150. [Google Scholar]
- Zhou, H.; Chen, Y.; Zhang, S. Ship trajectory prediction based on BP neural network. J. Artif. Intell. 2019, 1, 29. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, W.; Hu, X.; Sun, H.; Wang, Y. Vessel trajectory prediction based on recurrent neural network. Syst. Eng. Electron. 2020, 42, 871–877. [Google Scholar]
- Quan, B.; Yang, B.; Hu, K.; Guo, C.; Li, Q. Ship trajectory prediction model based on LSTM. Comput. Sci. 2018, 45, 126–131. [Google Scholar]
- Zhao, C.; Zhuang, J.; Cheng, X.; Li, Y.; Guo, D. Ship trajectory prediction of RNN-Bi-LSTM based on characteristic attention mechanism. J. Guangdong Ocean. Univ. 2022, 42, 102–109. [Google Scholar]
- Jahangard, S.; Hayat, M.; Rezatofighi, H. Real-time trajectory-based social group detection. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 1901–1908. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palmieri, F.; Liu, Y. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 2020, 24, 16453–16482. [Google Scholar] [CrossRef]
- Ang, J.-S.; Ng, K.-W.; Chua, F.-F. Modeling time series data with deep learning: A review, analysis, evaluation and future trend. In Proceedings of the 2020 8th International Conference on Information Technology and Multimedia (ICIMU), Selangor, Malaysia, 24–26 August 2020; pp. 32–37. [Google Scholar]
- Zhao, L.; Shi, G.; Yang, J. Ship trajectories pre-processing based on AIS data. J. Navig. 2018, 71, 1210–1230. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, Z.; Chen, X.; Han, B.; Wu, S.; Ke, R. k-GCN-LSTM: A k-hop Graph Convolutional Network and Long–Short-Term Memory for ship speed prediction. Phys. A Stat. Mech. Its Appl. 2022, 606, 128107. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Wu, Q.; Liu, X.; Chu, X.; He, W. Enhance the AIS data availability by screening and interpolation. In Proceedings of the 2017 4th International Conference on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 8–10 August 2017; pp. 981–986. [Google Scholar]
- Haibing, H.; Zheng, X.; Yin, J.; Wang, Y. Research on O-ring dimension measurement algorithm based on cubic spline interpolation. Appl. Sci. 2021, 11, 3716. [Google Scholar] [CrossRef]
- Cho, K. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Zhang, X.; Liu, G.; Hu, C.; Ma, X. Wavelet analysis based hidden Markov model for large ship trajectory prediction. In Proceedings of the 2019 Chinese Control Conference (CCC), IEEE, Guangzhou, China, 27–30 July 2019; pp. 2913–2918. [Google Scholar]
- Zhu, W.; Li, X.; Liu, C.; Xue, F.; Han, Y. An STFT-LSTM system for P-wave identification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 519–523. [Google Scholar] [CrossRef]
- Abedinia, O.; Lotfi, M.; Bagheri, M.; Sobhani, B.; Shafie-Khah, M.; Catalão, J.P. Improved EMD-based complex prediction model for wind power forecasting. IEEE Trans. Sustain. Energy 2020, 11, 2790–2802. [Google Scholar] [CrossRef]
- Gárate-Escamila, A.K.; El Hassani, A.H.; Andrès, E. Classification models for heart disease prediction using feature selection and PCA. Inform. Med. Unlocked 2020, 19, 100330. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I.J. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Busbridge, D.; Sherburn, D.; Cavallo, P.; Hammerla, N.Y. Relational graph attention networks. arXiv 2019, arXiv:1904.05811. [Google Scholar]
Static Data | Dynamic Data | Navigation Data |
---|---|---|
MMSI | Longitude | Draught |
IMO Number | Latitude | Destination Port |
Ship Type | SOG | Estimated Time of Arrival |
Ship Length and Height | COG | |
Call Sign and Ship Number | Status |
Metric | Time Length /min | Models | |||||
---|---|---|---|---|---|---|---|
BP | Transformer | CNN | RNN | LSTM | WTG | ||
AED | 20 | 0.049 | 0.206 | 0.012 | 0.024 | 0.017 | 0.009 |
40 | 0.049 | 0.208 | 0.011 | 0.025 | 0.015 | 0.009 | |
60 | 0.049 | 0.263 | 0.011 | 0.027 | 0.015 | 0.009 | |
FD | 20 | 0.086 | 0.121 | 0.019 | 0.038 | 0.024 | 0.016 |
40 | 0.097 | 0.142 | 0.022 | 0.048 | 0.026 | 0.018 | |
60 | 0.109 | 0.168 | 0.026 | 0.055 | 0.028 | 0.021 | |
FDE | 20 | 0.049 | 0.120 | 0.010 | 0.025 | 0.015 | 0.010 |
40 | 0.048 | 0.132 | 0.011 | 0.028 | 0.012 | 0.009 | |
60 | 0.059 | 0.134 | 0.011 | 0.032 | 0.015 | 0.010 | |
MAE | 20 | 0.012 | 0.050 | 0.005 | 0.008 | 0.005 | 0.005 |
40 | 0.014 | 0.055 | 0.007 | 0.009 | 0.007 | 0.007 | |
60 | 0.015 | 0.063 | 0.008 | 0.010 | 0.008 | 0.008 | |
RMSE | 20 | 0.090 | 0.183 | 0.052 | 0.077 | 0.054 | 0.050 |
40 | 0.105 | 0.185 | 0.069 | 0.089 | 0.069 | 0.067 | |
60 | 0.115 | 0.187 | 0.077 | 0.095 | 0.077 | 0.075 |
BP | CNN | RNN | LSTM | WTG | |
---|---|---|---|---|---|
SOG | 0.0393 | 0.0062 | 0.0235 | 0.0074 | 0.0050 |
COG | 0.0414 | 0.0123 | 0.1196 | 0.0220 | 0.01330 |
TCN | GRU | WTG | |
---|---|---|---|
AED | 0.351 | 0.204 | 0.009 |
FD | 0.430 | 0.357 | 0.016 |
FDE | 0.391 | 0.172 | 0.009 |
MAE | 0.075 | 0.032 | 0.005 |
RMSE | 0.267 | 0.159 | 0.051 |
SMAPE | 2.147 | 1.414 | 0.487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Dong, D.; Guo, Q.; Lin, C.; Wang, Z.; Ding, Y. A Novel WTG Method for Predicting Ship Trajectories in the Fujian Inshore Area Based on AIS Data. Water 2024, 16, 3036. https://doi.org/10.3390/w16213036
Li X, Dong D, Guo Q, Lin C, Wang Z, Ding Y. A Novel WTG Method for Predicting Ship Trajectories in the Fujian Inshore Area Based on AIS Data. Water. 2024; 16(21):3036. https://doi.org/10.3390/w16213036
Chicago/Turabian StyleLi, Xurui, Dibo Dong, Qiaoying Guo, Chao Lin, Zhuanghong Wang, and Yiting Ding. 2024. "A Novel WTG Method for Predicting Ship Trajectories in the Fujian Inshore Area Based on AIS Data" Water 16, no. 21: 3036. https://doi.org/10.3390/w16213036
APA StyleLi, X., Dong, D., Guo, Q., Lin, C., Wang, Z., & Ding, Y. (2024). A Novel WTG Method for Predicting Ship Trajectories in the Fujian Inshore Area Based on AIS Data. Water, 16(21), 3036. https://doi.org/10.3390/w16213036