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Abstract: In order to investigate the enhancement mechanism of modified three-dimensional elastic
filler (MTEF) on the nitrogen removal performance of the integrated fixed-film activated sludge
(IFAS) process, and to clarify the interactions between competition and synergy between activated
sludge and biofilm in the IFAS system, an IFAS reactor (T2) filled with MTEF was employed for the
study, while a sequencing batch reactor activated sludge process (SBR) reactor (T1) was utilized for
comparison. IFAS and SBR reactors were operated over an extended period at ambient temperature to
assess the enhancement of pollutant removal performance with the addition of the filler to investigate
the competitive dynamics between activated sludge and biofilm under varying influent water quali-
ties (C/N, N/P, and organic loading), and to analyze the synergistic relationship between activated
sludge and biofilm at the microbial level using high-throughput sequencing technology. The results
demonstrate that throughout the entire operational phase, reactor T2 exhibited superior pollutant
removal efficiency. Compared to reactor T1, reactor T2 achieved an average increase in the removal
rates of COD, ammonia nitrogen, and total nitrogen by 13.07%, 12.26%, and 28.96%, respectively. The
findings on the competitive dynamics between activated sludge and biofilm indicate that the nitrifica-
tion volumetric load of the IFAS system is significantly higher than that of a pure activated sludge
system, suggesting that the IFAS system possesses enhanced nitrification capabilities. Furthermore,
when dealing with wastewater characterized by low C/N ratios and high phosphorus pollution, or
under substantial organic loads, the biofilm holds a competitive edge and the IFAS system exhibits
improved stability. High-throughput sequencing data reveal that the microbial community structures
in activated sludge and biofilm can influence each other, thereby enabling the IFAS system to effec-
tively enrich denitrification-related functional microbial populations. Additionally, the biofilm has a
certain enhancing effect on the expression levels of nitrogen metabolism-related functional genes in
the activated sludge phase microorganisms, indicating that, in addition to competitive interactions,
there is also a synergistic effect between the biofilm and activated sludge.

Keywords: modified three-dimensional elastic filler (MTEF); integrated fixed-film activated sludge (IFAS);
activated sludge–biofilm interactions; nitrogen removal performance; high-throughput sequencing

1. Introduction

Currently, the core process of urban wastewater treatment plants in China predomi-
nantly employs the activated sludge method [1]. However, the nitrogen removal efficiency
of many wastewater treatment plants in operation is suboptimal [2], with nitrogen pollutant
concentrations in the effluent frequently exceeding regulatory standards. Based on this,
researchers have sought to address this issue by employing the IFAS process. Yang et al. [3]
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employed a Moving-Bed Biofilm Reactor (MBBR) to modify the original Anaerobic-Anoxic-
Oxic (A2O) system of the wastewater plant, finding that ammonia nitrogen and total
nitrogen concentrations in the effluent were reduced to 1.28 ± 0.91 and 5.78 ± 1.33 mg/L,
respectively; the treatment capacity of the sewage plant was upgraded from 10 × 104 m3/d
m³/d to 15 × 104 m3/d, achieving in situ expansion and enhancement of the sewage plant.
Li et al. [4] demonstrated that the nitrification rate of the IFAS system was 2.5 times higher
than that of the pure sludge system at temperatures of 4 ◦C to 6 ◦C; moreover, the effluent
consistently met regulatory standards while treating industrial wastewater after modifica-
tion of the original A2O system with the MBBR process. The addition of bio-carriers creates
attachment surfaces for microorganisms within the reactor, facilitating biofilm formation,
which enhances the biomass of functional flora [5]; this alteration impacts microbial com-
position, community structure, substrate distribution, and mass transfer mode, thereby
optimizing the purification process and improving effluent quality. However, in certain
sewage treatment plants, the introduction of suspended carriers into reaction tanks to en-
hance treatment efficiency can lead to their discharge into sedimentation tanks along with
sludge, causing damage to sludge-thickening equipment. This not only incurs economic
losses but also disrupts the normal operation of the sewage plants. Consequently, the study
of the IFAS process utilizing stationary fillers is of significant importance for achieving in
situ upgrades of wastewater treatment plants.

Recent studies have demonstrated that activated sludge and biofilm exhibit different
responses to the same water quality factors. Goswami et al. [6] compared the perfor-
mance of activated sludge and the MBBR process for treating chromium composite tannery
wastewater, finding that an increase in influent COD concentration from 300 to 500 mg/L
significantly inhibited the COD removal efficiency of the activated sludge system, whereas
the MBBR system remained largely unaffected. Song et al. [7] and Jia et al. [8] examined the
impact of temperature on the nitrification performance of activated sludge and biofilm, re-
spectively. Their results indicated that both activated sludge and biofilm exhibited inhibited
nitrification performance at excessively high influent temperatures, although the degree
of inhibition varied. Despite numerous studies investigating the wastewater treatment
performance of activated sludge and biofilm, a complex competitive [9] and synergistic [10]
relationship exists between activated sludge and biofilm within the IFAS system, wherein
the microbial community structures interact with one another. Previous studies primarily
focused on the overall pollutant treatment performance of IFAS systems or examined the
pollutant removal characteristics of activated sludge and biofilm in isolation, lacking a
thorough investigation into the interactions between activated sludge and biofilm.

In response, this paper investigates the IFAS system utilizing modified three-dimensional
elastic filler (MTEF) as the research focus, comparing and analyzing the differences in
pollutant removal performance between the IFAS system and the SBR system under identi-
cal operating conditions while exploring the competition between activated sludge and
biofilm in the IFAS system. Simultaneously, the microbial community structure and ni-
trogen metabolism-related genes in both activated sludge and filler biofilm from the two
systems were analyzed using high-throughput sequencing technology. This approach aims
to elucidate the enhancement mechanism of MTEF on the denitrification performance
of IFAS, analyze the competitive and synergistic interactions between biofilm and acti-
vated sludge, and provide a theoretical basis for the application of the IFAS process in
practical engineering.

2. Materials and Methods
2.1. Test Setup and Water

Two identical reactors were established to operate concurrently in this experiment,
with the T1 reactor lacking a filler and the T2 reactor incorporating a modified filler. The
reactor is constructed from organic glass, featuring a cylindrical main body with a diameter
of 18 cm and a height of 50 cm, providing an effective volume of 11 L. Two fillers are
installed within the reactor, with one end of each filler fixed to a metal frame at the bottom
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of the reactor. An aeration disk is positioned at the bottom of the reactor, utilizing an air
compressor for aeration, which is controlled by a valve to regulate the dissolved oxygen
(DO) levels in the reactor. The inlet water flow is regulated by a peristaltic pump, as
illustrated in Figure 1.
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Figure 1. Schematic of the experimental setup.

The homemade modified filler used in T2 consists of polypropylene (PP), iron tetraox-
ide powder (Fe3O4), and polyquaternary ammonium salt-10 (PQAS-10), which are co-
mingled, resembling a black rope brush with a diameter of 15 cm and a length of 40 cm. The
appearance of the filler is illustrated in Figure 2. The MTEF used in this study, in a water en-
vironment at pH = 7, has a water contact angle of 75.20◦ and a Zeta potential of −17.53 mV.
Compared to the commercial three-dimensional elastic Filler, which has a contact angle
of 85.00◦ and a Zeta potential of −51.11 mV, the MTEF exhibits enhanced hydrophilicity
and a reduced negative charge. These properties lead to increased surface biocompatibility,
which is more conducive to microbial adhesion and the formation of biofilms.
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Figure 2. Modified three-dimensional elastic filler.

The water used in the experiment consisted of manually prepared simulated domestic
sewage to which anhydrous sodium acetate (CH3COONa), ammonium chloride (NH4Cl),
and potassium dihydrogen phosphate (KH2PO4) were added to maintain an influent
chemical oxygen demand (COD) of 300–400 mg/L, NH4

+-N levels of 20–30 mg/L, and
total phosphorus (TP) levels of 4.0–4.5 mg/L. One liter of water was combined with one
milliliter of a micronutrient nutrient solution [11], and sodium bicarbonate (NaHCO3) was
added to provide the appropriate level of alkalinity, ensuring that the nitrification reaction
in the reactor was not inhibited by pH [12]. The activated sludge was sourced from the
aeration tank of a wastewater treatment plant in Baotou City, with a concentration of mixed
suspended solids (MLSSs) of approximately 4000 mg/L.
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2.2. Operational Programs

The two reactors were operated under identical conditions, differing only in the
presence or absence of filler, and both functioned in SBR mode. The experiment consisted of
two phases: the first phase involved reactor start-up and long-term operation, during which
the reactor was filled with filler material and activated sludge was added to facilitate the
domestication of the activated sludge and the initiation of biofilm growth. The hydraulic
retention time (HRT) was maintained at 12 h, comprising an aerobic phase of 7.5 h, an
anoxic phase of 3.75 h, water in for 0.25 h, water out for 0.25 h, and 0.25 h on standby for the
reactor. The mixed liquor suspended solids (MLSSs) were approximately 2000 mg/L, with a
pH of 7.5–8 and a dissolved oxygen (DO) concentration in the aerobic stage of 2.5–3.5 mg/L.
Influent and effluent water quality were monitored regularly, and the activated sludge and
MTEF biofilm in the two reactors underwent 16S rRNA high-throughput sequencing after
120 days of operation. In the second phase, the competition between activated sludge and
biofilm in the MTEF-based IFAS system was examined. Two reactors were established: one
as a pure sludge SBR system and the other as the MTEF-based IFAS system. The activated
sludge for both systems was sourced from the T2 reactor. The cycle time (CT) for the reaction
was 4 h, with approximately 2000 mg/L of MLSSs and a DO concentration of 2.5–3 mg/L.
The carbon-to-nitrogen ratio (C/N), organic loading, and nitrogen-to-phosphorus ratio
(N/P) were utilized as independent variables to investigate the effects of various factors
on the competitive relationship between activated sludge and biofilm. The experimental
control parameters for each factor are presented in Table 1.

Table 1. Corresponding control parameters for each factor experiment.

Control Variable COD/mg·L−1 NH4
+-N/mg·L−1 C/N N/P

C/N 400/200/100 20 20/10/5 0.2
Organic and nitrogen load 400/800/1600 20/40/80 20 0.2

N/P 400 20 20 5/1/0.2

2.3. Methods of Analysis
2.3.1. General Indicators

In this study, routine water quality indicators were determined following Chinese
standard methods [13]. Chemical oxygen demand (COD) was measured using the potas-
sium dichromate method, ammonium nitrogen (NH4

+-N) was analyzed via Nano reagent
spectrophotometry, nitrite nitrogen (NO2

−-N) was assessed using N-(1-naphthalenyl)-
ethylenediamine spectrophotometry, nitrate nitrogen (NO3

−-N) was determined by ultra-
violet spectrophotometry, and total nitrogen (TN) was measured using UV spectropho-
tometry with potassium persulfate digestion. Mixed liquor suspended solids (MLSSs) and
mixed liquor volatile suspended solids (MLVSSs) were determined using the gravimetric
method. Dissolved oxygen (DO) and pH were measured using a Multi8330 portable water
quality analyzer.

2.3.2. High-Throughput Sequencing

A section of the filler material was placed in a beaker, to which 50 mL of deionized
water was added. Ultrasonic vibration was employed to dislodge the biofilm from the
filler. Subsequently, the biofilm and activated sludge samples were stored in dry ice at
−80 ◦C and sent to Shanghai Meiji Biotechnology Company for analysis. Primers 338F
(5′-ACTCCTACGGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGGTWTCTAAT-
3′) were selected for PCR amplification of the V3–V4 region of the bacterial 16S rRNA
gene. The amplified products served as templates for library construction and sequencing
analysis using the Illumina MiSeq platform.
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2.4. Calculation of Biofilm Volumetric Loads

Due to the superior mass and oxygen transfer performance of activated sludge, its
nitrification volumetric load in both the activated sludge system and the IFAS system is
essentially the same when the control conditions are identical [14]. Therefore, the following
formula is employed to calculate and characterize this experiment.

ARLV =
∆CNH+

4 −N

CT × 1000
× 24 (1)

ARLV(bio f ilm) = ARLV(composite)
− ARLV(sludge)

(2)

Φ =
ARLV(composite)

− ARLV(sludge)

ARLV(composite)
(3)

ARLV—Nitrification volumetric load, kgNH4
+-N/(m3·d);

ARLV(biofilm)—Volumetric load of biofilm nitrification in IFAS system, kgNH4
+-N/(m3·d);

ARLV(composite)—Overall nitrification volumetric load for IFAS system, kgNH4
+-N/(m3·d);

ARLV(sludge)—Activated sludge system nitrification volumetric load, kgNH4
+-N/(m3·d);

φ—MTEF biofilm nitrification contribution, %;
∆CNH+

4 −N—NH4
+-N concentration change before and after system reaction, mg/L;

CT—Reaction cycle time, h.

3. Results and Discussion
3.1. Pollutant Removal Performance

The concentration of pollutants in the effluent stabilized after 72 days of reactor
operation; thus, the effluent quality from days 72 to 120 was selected for analysis to in-
vestigate the effects of pollutant removal during the long-term operation of each reactor.
Figure 3a illustrates that the average concentration of ammonia nitrogen in the influent was
27.01 ± 0.84 mg/L. The average concentrations in the effluent of the T1 and T2 reactors
were 4.71 ± 0.20 mg/L and 1.40 ± 0.084 mg/L, respectively, resulting in average removal
rates of 82.56 ± 2.40% and 94.82 ± 1.46%. Compared to the initial startup of the reactors
(0 days), the ammonium nitrogen removal capacity of reactor T1 decreased, while that of
reactor T2 increased. This is due to the long duration of the experiment, which began in the
summer with higher environmental temperatures, leading to stronger activity of nitrifying
bacteria and better ammonium nitrogen removal. As the experiment progressed into winter,
the nitrification performance was affected by lower temperatures, resulting in a decline
in the ammonium nitrogen removal capacity of reactor T1. However, a substantial body
of research has demonstrated that the impact of low temperatures on biofilm is less pro-
nounced than on activated sludge [4], hence the nitrification performance of reactor T2 was
not excessively compromised. Additionally, due to the low activated sludge concentration
within the reactor, the small amount of produced activated sludge was insufficient to meet
the needs of activated sludge renewal, failing to balance the rate of activated sludge aging.
Consequently, the overall activity of the activated sludge gradually decreased, leading to
a decline in reactor T1’s performance in removing ammonium nitrogen. In contrast, the
MTEF in reactor T2, with its larger biomass attachment capacity, increased the biomass
of nitrification-related functional microbial communities within the reactor. Furthermore,
the shedding of biofilm into the activated sludge during operation mitigated the issue
of activated sludge aging, resulting in a slight improvement in the ammonium nitrogen
removal performance of reactor T2. Figure 3b depicts the accumulation of nitrite nitrogen
in the reactors. As the test water was not supplemented with NO2

−-N, its concentration
was not represented in the results. The figure indicates that the concentration of NO2

−-N in
the effluent of each reactor was below 0.20 mg/L, with no accumulation of nitrite nitrogen.
Figure 3c demonstrates that the concentrations of NO3

−-N in the effluent of the reactors
were 7.85 ± 0.24 mg/L and 3.36 ± 0.17 mg/L, respectively. Compared to reactor T1, the T2
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reactor with the addition of MTEF showed a decrease of 4.49 mg/L in the concentration of
NO3

−-N in the effluent, indicating better denitrification performance in reactor T2. This
is attributed to the fact that once the biofilm reaches a certain thickness, its inner layer
creates an anaerobic environment that provides conditions conducive to the growth and
proliferation of anaerobic denitrifying bacteria. This enables the biofilm to carry out both
nitrification and denitrification processes, thereby enhancing the denitrification perfor-
mance of the reactor. Figure 3d shows that the average concentration of total nitrogen in
the influent was 27.97 ± 0.88 mg/L. The average concentrations of total nitrogen (TN) in
the effluent from the T1 and T2 reactors were 12.94 ± 0.42 mg/L and 4.84 ± 0.22 mg/L,
respectively, yielding average removal rates of 53.75 ± 3.34% and 82.71 ± 5.90%. The instal-
lation of MTEF enhanced the nitrification and denitrification performances of the reactor,
thereby strengthening the reactor’s nitrogen removal capabilities. Figure 3e indicates that
the average concentration of COD in the influent was 367.69 ± 5.04 mg/L, and the average
concentrations of COD in the effluents of T1 and T2 reactors were 81.59 ± 3.43 mg/L and
33.55 ± 2.05 mg/L, and the average removal rates were 77.76 ± 4.20% and 90.81 ± 1.93%,
respectively. The experimental results showed that the IFAS system with MTEF was better
than the pure activated sludge system for the removal of all types of pollutants, which
was attributed to the fact that the installation of filler increased the number of microorgan-
isms in the reactor [15] and changed the distribution and mass transfer of the substrate in
the system.
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3.2. Study of the Competition Law between Activated Sludge and Biofilm
3.2.1. Effect of C/N on the Nitrification Performance of the IFAS System

The results illustrating the effect of the carbon-to-nitrogen (C/N) ratio on the ni-
trification performance of the MTEF-based IFAS system are presented in Figure 4. The
nitrification volumetric loads for the activated sludge system at C/N ratios of 20:1, 10:1,
and 5:1 were 0.063 ± 0.002, 0.070 ± 0.002, and 0.081 ± 0.003 kgNH4

+-N/(m3·d), respec-
tively. The corresponding volumetric loads for biofilm nitrification in the IFAS system were
0.023 ± 0.001, 0.033 ± 0.001, and 0.045 ± 0.001 kgNH4

+-N/(m3·d), with contributions of
biofilm nitrification at 26.83%, 32.16%, and 35.66%, respectively.
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As the C/N ratio decreased, the nitrification volumetric load of both activated sludge
and biofilm exhibited an increasing trend; notably, the biofilm responded more significantly,
with its nitrification contribution increasing by 8.83%, thereby positioning it advantageously
in the competition between activated sludge and biofilm. It was found that under low
carbon-to-nitrogen ratio conditions, nitrogen removal efficiency in municipal wastewater
can be enhanced by adjusting the operating parameters and utilizing bio-carriers without
the need for additional carbon sources [16]. Therefore, when treating wastewater with a
low carbon-to-nitrogen ratio, the IFAS system demonstrates a higher nitrification load.

3.2.2. Effect of Organic Loading on Nitrification Performance of the IFAS System

The results illustrating the effect of organic loading on the nitrification performance of
the MTEF-based IFAS system are presented in Figure 5. In this portion of the experiment,
the C/N ratio was consistently maintained at 20:1, while the concentrations of influent
carbon and nitrogen sources were increased in equal proportions to the influent COD
and NH4

+-N concentrations of 400 mg/L and 20 mg/L, 800 mg/L and 40 mg/L, and
1600 mg/L and 80 mg/L, respectively. The nitrification volumetric loads for the activated
sludge system were 0.063 ± 0.002, 0.040 ± 0.002, and 0.021 ± 0.001 kgNH4

+-N/(m3·d),
respectively. The corresponding nitrification volumetric loads for biofilm in the IFAS
system were 0.023 ± 0.001, 0.021 ± 0.001, and 0.017 ± 0.001 kgNH4

+-N/(m3·d), with
biofilm nitrification contributions of 26.82%, 34.59%, and 45.38%, respectively.

As the organic load gradually increased, the nitrification volumetric loads of both
activated sludge and biofilm decreased to varying degrees, with activated sludge being
particularly affected, as its nitrification volumetric load decreased by 67.18%, while the
biofilm’s nitrification volumetric load decreased by 25.59%, resulting in an increased nitri-
fication contribution rate of 18.57%. These results indicate that the biofilm demonstrates
greater resistance to shock loading when treating wastewater with high pollutant concen-
trations [17]. As reported in previous studies, higher abundances of Comammox were
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detected in the denitrification system of the attached-growth biofilm process. This can be
attributed to the biofilm’s ability to enhance the resistance of microorganisms to shock
loading, providing a protective effect on these microorganisms; additionally, the oxygen
concentration gradient formed within the biofilm is more conducive to the synergistic
metabolism of Comammox and various types of nitrifying bacteria [18]. In research utiliz-
ing the A/O-MBBR process to treat wastewater from a highway service area, it was found
that, compared to the conventional A/O bioreactor, the A/O-MBBR maintains effective
total nitrogen (TN) removal efficiency even under higher organic loads. Moreover, it bet-
ter adapts to changes in water quality when treating wastewater characterized by high
ammonia–nitrogen concentrations and low carbon-to-nitrogen ratios, thereby providing
more stable treatment performance [19]. In summary, the MTEF-based IFAS system exhibits
greater shock load resistance and demonstrates enhanced stability and pollutant removal
efficiency when treating wastewater with high pollutant concentrations, with the biofilm
playing a crucial role in maintaining the system’s normal operation.
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3.2.3. Effect of N/P on the Nitrification Performance of the IFAS System

The results illustrating the effect of the nitrogen-to-phosphorus (N/P) ratio on the
nitrification performance of the MTEF-based IFAS system are presented in Figure 6. The
nitrification volumetric loads of the activated sludge system with N/P ratios of 5:1, 1:1, and
1:5 were 0.063 ± 0.002, 0.045 ± 0.002, and 0.033 ± 0.002 kgNH4

+-N/(m3·d), respectively.
The corresponding volumetric loads for biofilm nitrification in the IFAS system were
0.023 ± 0.001, 0.021 ± 0.001, and 0.020 ± 0.001 kgNH4

+-N/(m3·d), with biofilm nitrification
contributions of 26.83%, 31.17%, and 36.83%, respectively.

As the phosphorus concentration in the influent water gradually increased, the nitri-
fication performance of the biofilm was less adversely affected, while the nitrification of
activated sludge experienced inhibition; specifically, its nitrification volumetric load de-
creased by 46.59% whereas that of the biofilm decreased by only 15.10%, resulting in a 10%
increase in its nitrification contribution. These results indicate that the biofilm maintains
a competitive advantage over activated sludge in the context of increasing phosphorus
concentrations. Research indicates that in wastewater treatment utilizing simultaneous
nitrification and denitrification in sequencing batch biofilm reactors, nitrification can occur
only when aeration time is sufficiently extended, as nitrifying bacteria are less competitive
for oxygen compared to polyphosphate-accumulating organisms and heterotrophic bac-
teria [20]. Consequently, it is presumed that the high phosphorus environment enhances
the metabolic activity of phosphate-accumulating organisms [21], which compete with
nitrifying bacteria for dissolved oxygen (DO) [22], thereby inhibiting the activity of ni-
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trifying bacteria and resulting in decreased nitrification performance within the system.
Furthermore, the physical structure of MTEF facilitates the slicing [23] and retention [24] of
air bubbles within the water, resulting in a high concentration of DO at the filler’s surface.
This condition alleviates the competition for DO between polyphosphate-accumulating
bacteria and nitrifying bacteria, thereby preserving the nitrification performance of the
biofilm and playing a crucial role in maintaining system stability during the treatment of
high-phosphorus wastewater.
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3.3. Microbial Community Structure
3.3.1. Microbial Community Diversity Analysis

The microbial diversity indices of the biofilm and the activated sludge from both
systems are presented in Table 2. The detection results indicate that the microbial species
richness and community diversity on the biofilm are greater than those of the activated
sludge phase microorganisms in both systems, suggesting that the introduction of MTEF
provides an ideal growth environment for microorganisms. Furthermore, due to the partial
shedding of the biofilm on the MTEF as the reactor operates, it affects the community
diversity of the activated sludge phase microorganisms in reactor T2. Consequently, the
species richness and community diversity of the activated sludge phase microorganisms in
reactor T2 are greater than those in reactor T1. This result demonstrates that the installation
of MTEF not only enhances the biomass within the reactor but also increases the microbial
species richness and community diversity and has a regulatory and strengthening effect on
the activated sludge within the system.

Table 2. Each factor experiment corresponds to the control parameters.

Sample Shannon Simpson Ace Chao 1 Coverage

T1 activated sludge 4.45 0.047 1148.18 1116.96 0.99
T2 activated sludge 4.72 0.030 1209.36 1167.94 0.99

T2 biofilm 4.93 0.025 1370.39 1325.56 0.99

3.3.2. Differences in Dominant Genera

Figure 7 presents the dominant genera within the two types of filler biofilms, with
relative abundances exceeding 1% in at least one sample. The top five genera with the
highest relative abundances in the activated sludge of the T1 reactor were Paracoccus
(13.68%), Thauera (7.09%), OLB12 (5.53%), Flavobacterium (5.49%), and Hydrogenophaga
(3.78%); the five genera with the highest relative abundances in the activated sludge of the
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T2 reactor were Thauera (12.60%), OLB12 (8.29%), Paracoccus (6.93%), Azoarcus (5.20%), and
norank_f__Cryomorphaceae (5.06%); the five genera with the highest relative abundances in
MTEF biofilms were Thauera (13.32%), OLB12 (12.01%), Azoarcus (9.05%), Flavobacterium
(5.17%), and norank_f__Cryomorphaceae (3.86%).
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Thauera was the dominant genus in both MTEF biofilm and T2 reactor sludge, possess-
ing a strong EPS secretion capacity [25], which promotes biofilm formation [26] and partici-
pates in denitrification [27]. Its relative abundance in T1 reactor sludge was significantly
lower than in T2 reactor sludge, indicating that the microbial community composition of
activated sludge and biofilm influences each other. OLB12 is a class of aerobic nitrifying bac-
teria [28] that cannot function in anoxic conditions. Its relative abundance in the activated
sludge and biofilm of the T2 reactor was greater, indicating that the IFAS system effectively
enriches nitrifying bacterial genera, thereby improving the nitrifying performance of the
reactor. This is because the MTEF can cut and retain air bubbles, thereby improving the
utilization rate of aeration in reactor T2, which is conducive to the growth and proliferation
of nitrifying bacteria. This corresponds to the observed lower concentration of ammonia
nitrogen in the effluent from the IFAS system, as reported in previous studies. Azoarcus
is a common anaerobic, parthenogenetic denitrifying [29] bacterium in wastewater treat-
ment systems that can utilize stored carbon sources to denitrify, thus completing nitrogen
removal. It ranks among the five dominant genera with the highest abundances in both
activated sludge and biofilm of the T2 reactor, while its relative abundance in the sludge
of the T1 reactor is lower, further demonstrating the synergistic effect between activated
sludge and biofilm. Generally, most of the dominant bacteria in the activated sludge and
biofilm of the T2 reactor were involved in nitrogen removal and organic matter degrada-
tion. Consequently, the effluent quality of the IFAS system demonstrated a strong ability
to remove NH4

+-N and COD. This also indicates that the installation of filler effectively
enriches the functional flora related to denitrification [30], enhancing the system’s nitrogen
pollutant removal performance.

3.3.3. Characterization of Functional Bacterial Genera

From the previous section, it is evident that the reactor equipped with the MTEF
setup exhibits a superior denitrification effect. Additionally, the study of the dominant
genera indicated that the MTEF setup effectively enriches the functional bacterial flora.
Therefore, this subsection further analyzes the primary functional bacterial genera related
to denitrification in the T1 and T2 reactors. These genera are classified into three categories:
ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and denitrifying



Water 2024, 16, 3040 11 of 15

bacteria (DNB). The relative abundance of each functional bacterial genus is presented in
Figure 8.
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The MTEF setup effectively enriched nitrification-related functional bacterial genera.
Nitrosomonas is a typical ammonia-oxidizing bacterium (AOB) that can convert ammonia ni-
trogen in wastewater into nitrite nitrogen, thus completing the ammonia oxidation reaction
in wastewater treatment [31]. Its relative abundances in the activated sludge and MTEF
biofilm of the T2 reactor were 0.03% and 0.04%, respectively, while its abundance in the ac-
tivated sludge of the T1 reactor was less than 0.01%. This indicates that the implementation
of MTEF favors the enrichment of Nitrosomonas, thereby enhancing the reactor’s ammonia
nitrogen removal capability. Additionally, the synergistic effect between activated sludge
and biofilm significantly increased the relative abundance of this genus in the sludge of
the T2 reactor, confirming that the ammonia nitrogen removal capacity of the T2 reactor
was superior in the previous study. Ellin6067 is another genus of ammonia-oxidizing
bacteria, and its relative abundance in the activated sludge and biofilm of the T2 reactor
increased compared to that of the T1 reactor. The relative abundances of Nitrospira, a genus
of nitrite-oxidizing bacteria, in the activated sludge and MTEF biofilms of the T1 and T2
reactors were 0.06%, 0.11%, and 0.14%, respectively. Both the activated sludge and biofilm
of the T2 reactor exhibited increased relative abundance compared to the T1 reactor. This
indicates that the implementation of MTEF facilitates the enrichment of nitrite-oxidizing
bacteria in the reactor, ensuring the smooth progression of the nitrification reaction [32].
This is also consistent with the lower concentration of nitrite nitrogen observed in the
effluent of the T2 reactor.

A variety of denitrification-related functional bacterial genera (DNB) were detected in
the activated sludge and biofilm of both reactors. In addition to the previously mentioned
Thauera, Flavobacterium, Paracoccus, Pseudomonas, Gemmobacter, Zoogloea, and other common
DNB genera were also identified. Additionally, several autotrophic denitrifying bacterial
genera were identified. Hydrogenophaga is a hydrogen-oxidizing autotrophic denitrifying
bacterium capable of reducing nitrate nitrogen using hydrogen as an electron donor [33].
Ferruginibacter, an iron-autotrophic denitrifying bacterium involved in the conversion
between Fe2+ and Fe3+ and the denitrification process [34], reached a relative abundance
of 1.16% in the MTEF biofilm, possibly due to the embedding of ferric iron tetraoxide
powder within the MTEF. Thiothrix, a genus of sulfur-autotrophic denitrifying bacteria,
exhibited a notable relative abundance in both the activated sludge and biofilm of the T2
reactor, whereas its presence was undetected in the sludge of the T1 reactor. This finding
further supports the existence of a synergistic effect between activated sludge and biofilm,
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indicating that the implementation of MTEF could effectively enrich denitrification-related
functional genera, thereby enhancing the denitrification performance of the reactor.

3.4. Nitrogen Metabolism Functional Genes

Nitrogen metabolism encompasses a series of biochemical reactions facilitated by
enzymes encoded by specific functional genes. Therefore, to evaluate the enhancement
effect of MTEF on the nitrogen removal performance of the IFAS reactor, this study compar-
atively analyzed the abundance of major nitrogen metabolism-related functional genes in
the biofilm and activated sludge. This analysis aimed to investigate the influence of the
biofilm on the microorganisms in the activated sludge phase.

Figure 9 illustrates the abundance of major nitrogen metabolism-related functional
genes in both biofilm and activated sludge. The functional genes involved in the nitrification
process include amoA, amoB, amoC, hao, nxrA, and nxrB. The amo gene is recognized as
the marker gene for aerobic ammonia oxidation [35], encoding ammonia monooxygenase
(AMO), which oxidizes ammonia to hydroxylamine [36]. Hydroxylamine is converted to
nitrite by hydroxylamine oxidoreductase (HAO), encoded by the hao gene [37], completing
the ammonia oxidation process in wastewater treatment [38]. Simultaneously, nitrite is
oxidized to nitrate by nitrite oxidoreductase (NXR), encoded by the nxr gene [39], thereby
completing the nitrification process in wastewater treatment. The abundances of amo and
hao in the activated sludge and biofilm of the T2 reactor were slightly higher than in the
T1 reactor. Furthermore, the abundance of nxr in both the activated sludge and biofilm
of the T2 reactor significantly increased, indicating enhanced nitrite-oxidizing capacity.
This timely conversion of nitrite nitrogen, an intermediate product of nitrification, ensures
that the nitrification reaction proceeds efficiently. This finding also accounts for the lowest
concentrations of ammonia and nitrite nitrogen in the effluent of the T2 reactor.
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The functional genes involved in the denitrification process include narG, narH, narI,
napA, napB, nirK, nirS, norB, norC, and nosZ. Among these, the heterotrimeric nitrate reduc-
tases (NAR and NAP) encoded by the nar and nap genes reduce NO3

− to NO2
−, completing

the first step of the catalytic denitrification process [40], which indicates denitrification
performance. Subsequently, nitrite reductase (NIR), encoded by the nir gene, reduces
NO2

− to NO, nitric oxide reductase (NOR), encoded by the nor gene, converts NO to N2O,
and nitrogen removal from wastewater is completed by nitrous oxide reductase (NOS),
encoded by the nosZ gene, which converts N2O to N2 [41]. In comparison to the T1 reactor
sludge, all the aforementioned genes, except nirS and norC, exhibited greater abundances
in both the activated sludge and biofilm of the T2 reactor. This indicates that the synergistic
effect between activated sludge and biofilm enhances the expression levels of nitrogen
metabolism-related functional genes in the two-phase microorganisms, resulting in im-
proved denitrification performance of the IFAS system. This also explains the lower nitrate
nitrogen concentration observed in the effluent from the T2 reactor. Additionally, several



Water 2024, 16, 3040 13 of 15

genes related to heterogeneous nitrate reduction (nirB, nirD, nrfA, nrfH) and assimilatory
nitrate reduction (narB, NR, nasA, nasB, nirA) were present in both the biofilm and activated
sludge. These genes primarily facilitate the conversion of NH4

+-N and NO2
−-N, with

nirD, narB, and nasA being more abundant in the activated sludge and biofilm of the T2
reactor. Overall, the majority of nitrogen metabolism-related genes exhibited the highest
abundance in the biofilm, followed by the T2 sludge. This suggests that the biofilm enriches
nitrogen metabolism-related genes and increases their abundance in the activated sludge
phase of the system, which in turn enhances nitrogen metabolism-related gene expression
throughout the reactor.

4. Conclusions

(1) The T2 reactor employing the IFAS process demonstrates superior pollutant removal
performance. Compared to the T1 reactor, the average removal rates of COD, ammo-
nia nitrogen, and total nitrogen in the T2 reactor increased by 13.07%, 12.26%, and
28.96%, respectively.

(2) The nitrification volumetric load of the IFAS system was significantly greater than that
of the pure sludge system, indicating that the nitrification performance could be effec-
tively enhanced by this combined process. Furthermore, compared to the activated
sludge system, the IFAS system exhibits superior stability when treating wastewater
with low C/N ratios or high phosphorus levels, as well as when encountering higher
organic loads.

(3) The installation of a filler enhances microbial species richness and community diver-
sity within the system. Additionally, activated sludge and biofilm interact within
the microbial community structure, allowing the IFAS system to effectively enrich
functional flora related to denitrification. The biofilm also enhances the expression of
nitrogen metabolism-related functional genes in the activated sludge phase, indicating
a synergistic effect between activated sludge and biofilm beyond mere competition.
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