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Abstract: An accurate prediction model for dam deformation is crucial for ensuring the safety and
operational integrity of dam structures. This study introduces a hybrid modeling approach that
integrates long short-term memory (LSTM) networks with Kolmogorov–Arnold networks (KANs).
Additionally, the model incorporates a dual-stage attention mechanism (DA) that includes both factor
and temporal attention components, enhancing the model’s precision and interpretability. The
effectiveness of the DA-LSTM-KAN model was validated through a case study involving a concrete
gravity dam. A comparative analysis with traditional models, including multiple linear regression
and various LSTM variants, demonstrated that the DA-LSTM-KAN model significantly outperformed
these alternatives in predicting dam deformation. An interpretability analysis further revealed that
the seasonal and hydrostatic components contributed significantly to the horizontal displacement,
while the irreversible component had the least impact. This importance ranking was qualitatively
consistent with the results obtained from the Shapley Additive Explanations (SHAP) method and
the relative weight method. The enhancement of the model’s predictive and explanatory capabilities
underscores the hybrid model’s utility in providing detailed and actionable intelligence for dam
safety monitoring.

Keywords: monitoring; dam deformation; LSTM; KAN; attention; SHAP

1. Introduction

The reservoir dam is a critical infrastructure in irrigation, flood control, water resource
distribution, and hydroelectric power generation. However, despite its valuable utility,
dam failures can lead to significant property damage and loss of life in surrounding ar-
eas. Therefore, accurately identifying the operational status of dams and issuing timely
alerts for any abnormal behavior are crucial for ensuring the long-term operation safety
of dams [1]. Concrete dams are often the preferred option for dams that need to be taller
than 60 m. The concrete dam responds to variations in load and environmental factors by
exhibiting changes such as deformation, seepage, cracking, and other structural responses.
To effectively monitor dam behavior, a wide array of instruments are strategically placed
both within and around the structures to assess environmental variables and structural
responses. This strategic deployment results in the accumulation of detailed databases
that are essential for the ongoing surveillance of dam performance. Notably, among the
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various monitoring efforts, deformation monitoring is distinguished by its early adoption,
exceptional reliability, extended operational lifespan, and high frequency of data collec-
tion. It provides reliable insights for analyzing the deformation behavior [2]. Moreover,
the deformation behavior intuitively and comprehensively reflects the working status
of dams [3]. Thus, developing a predictive monitoring model for deformation based on
prototype monitoring data is crucial for evaluating dam operational safety.

The most commonly used monitoring model of dams is the statistical model [4]. Its
basic principle involves categorizing factors influencing concrete dam deformation into
three main parts: water pressure, temperature, and aging. These factors are then rep-
resented as polynomials. The Hydrostatic–Seasonal–Time (HST) model is a benchmark
statistical approach that quantitatively analyzes the factors influencing dam deformation
based on mechanical theory assumptions. The thermal effect in the HST model is de-
scribed by harmonic sinusoidal functions. Building upon the HST framework, various
adaptations of the HST model have been introduced [5]. For instance, Penot et al. [6] devel-
oped the Hydraulic–Seasonal–Thermal–Time (HSTT) model by incorporating a thermal
correction factor into the original HST model to account for air temperature influences.
Similarly, Léger and Leclerc [7] derived the Hydrostatic–Temperature–Time (HTT) statisti-
cal model, wherein the seasonal component of the HST model is substituted with actual
temperature recordings. Compared to the HST model, the HTT model more accurately
captures the thermal effect on dam behavior when sufficient measured temperature data are
available [3]. Furthermore, Tatin et al. [8] proposed a physico-statistical model (HST-Grad)
that incorporates the water temperature profile, allowing both the mean temperature and
the temperature gradient within the structure to be properly accounted for. Hu and Ma [9]
developed a statistical model to enhance the accuracy of dam displacement estimations
during initial impoundment phases, specifically by refining the assessment of thermal and
time-dependent effects. Statistical approaches are widely utilized in practical hydraulic
engineering projects because they offer simple formulas and rapid response times. Nonethe-
less, dams are inherently complex and dynamic systems. Given the variety of structural
forms and the complexity of external environmental factors, dams are characterized by both
uncertainty and diversity, with a typically non-linear mapping relationship between dam
behavior and its underlying causes. Additionally, there is also multi-collinearity among
the independent variables used to predict dam deformation, potentially resulting in unrea-
sonable interpretation of regression coefficients. To overcome this issue, methodologies
such as principal component regression [3] and partial least-squares regression [10] have
been employed.

With ongoing advancements in dam monitoring theory and artificial intelligence,
machine learning (ML)-based models, such as artificial neural networks (ANNs) [11,12],
random forest (RF) [13–15], support vector machine (SVR) [16–18], and extreme learning
machine (ELM) [19–21], have been proposed. These models have demonstrated unique
advantages in addressing the issues of uncertainty and nonlinearity associated with the
monitoring model factors and often yield more precise predictions than traditional statistical
models in various scenarios. Furthermore, a variety of intelligent optimization algorithms,
such as genetic algorithm [22], ant lion algorithm [23], particle swarm algorithm [24], artifi-
cial fish swarm algorithm [25], salp swarm algorithm [26], were utilized for hyperparameter
tuning in ML-based models, thereby enhancing their predictive capabilities. ML models
do not typically incorporate time dependencies. Instead, they approach the prediction of
dam deformation as a static regression task, thereby neglecting any potential temporal
relationships within the deformation data during the model development process [27].
However, dam deformation undergoes real-time changes that are influenced by temporal
variations and environmental factors. Advancements in deep learning have greatly ad-
dressed the shortcomings of traditional machine learning approaches. By utilizing multiple
layers within their networks, deep learning models achieve improved prediction accu-
racy and better handle nonlinear mappings compared to standard ML-based methods.
Techniques such as recurrent neural networks (RNNs) [28] and long short-term memory
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(LSTM) networks [29] have shown exceptional performance in managing multivariate time
series data. RNNs are capable of effectively transmitting temporal information from the
input sequence throughout the prediction process. Additionally, the specialized three-gate
architecture of LSTM networks resolves the common RNN challenges of gradient vanish-
ing and explosion [30]. Recently, several researchers have employed LSTM networks for
predicting dam deformation, achieving significant and satisfactory outcomes. Qu et al. [31]
focused on developing prediction models for concrete dam deformation by integrating the
rough set (RS) theory with LSTM networks. Liu et al. [32] integrated principal component
analysis (PCA) and the moving average (MA) method with the LSTM to achieve two
integrated prediction models (i.e., LSTM-PCA and LSTM-MA), aimed at predicting the
long-term deformation of Lijiaxia arch dam. Yang et al. [33] compared various models
for predicting the deformation of concrete dams. The results indicate that LSTM-based
models are potentially more effective for analyzing time-dependent data and capturing
temporal correlations.

Although deep learning models have made significant advancements, there remain
inherent limitations associated with these methodologies. For instance, many models
exhibit significant memory demands and computational complexities, alongside the con-
straint of single-step prediction and extended training times [34]. Moreover, the limited
interpretability of black box models often renders them impractical for engineering ap-
plications, as it is challenging to explain the relationship between input and output [35].
Recently, LSTM-based models were modified with attention mechanisms [36] to enhance
interpretability. This mechanism, modeled after the way visual attention is distributed
in the human brain, dynamically filters and prioritizes information from a wide range of
input features. It uses attention weights to emphasize the significance of different time
steps within the sequence. Yang et al. [37] enhanced the LSTM model with an attention
mechanism to identify information that significantly influences deformation. Shu et al. [38]
introduced a forecasting model that integrates a variational autoencoder (VAE) with a tem-
poral attention-enhanced LSTM network. Ren et al. [39] proposed a prediction model for
concrete dam deformation by integrating encoder–decoder architecture, attention mecha-
nism, and LSTM neural network. Cai et al. [40] utilized an innovative decomposition-based
algorithm to enhance the LSTM network by incorporating a self-attention mechanism. On
the other hand, numerous studies have explored the application of model-agnostic ML
interpretation methods such as Local Interpretable Model-Agnostic Explanation (LIME)
and Shapley Additive Explanations (SHAP) in geotechnical engineering [41,42], earthquake
engineering [43,44], and structural engineering [45,46]. These methods provide valuable
insights for knowledge discovery, model debugging, and justification of predictions. How-
ever, the application of LIME or SHAP in dam deformation monitoring has been relatively
limited. More recently, Li et al. [47] used SHAP to enhance the interpretability of the light
gradient boosting model for high arch dam stress analysis.

In summary, researchers have extensively investigated the use of LSTM in predicting
dam deformation, thereby achieving notable results. Several studies also explored the
integration of LSTM with other machine learning or deep learning models to enhance
prediction accuracy. However, efforts to simultaneously enhance the predictive capability
and interpretability of dam monitoring models remain constrained. More recently, a novel
neural network architecture, Kolmogorov–Arnold Networks (KANs), was proposed by
a MIT team [48]. This architecture was developed as an alternative to the conventional
Multi-Layer Perceptron (MLP) and has quickly attracted global attention within the AI com-
munity. Drawing inspiration from the Kolmogorov–Arnold representation theorem [49],
the KAN replaces traditional linear weights with spline-parametrized univariate functions.
This modification enables the dynamic learning of activation patterns and significantly
improves interpretability [50,51]. To the best of the authors’ knowledge, there is limited re-
search on the application of KANs for predicting dam deformation, particularly concerning
model construction, parameter optimization, and performance evaluation. Therefore, this
study aims to develop and implement a hybrid model for dam deformation by combining
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LSTM with KAN. The proposed model integrates the memory capabilities of LSTM with
the nonlinear expressive strengths of the KAN, thereby overcoming the limitations of single
models in handling complex time series data associated with dam deformation.

2. Models for the Deformation Monitoring of Concrete Dams
2.1. Hydrostatic–Seasonal–Time (HST)

In the classic HST model expressed in Equation (1), dam displacement δ(H, S, T) is
segmented into three distinct components: the hydrostatic component δ(H), which accounts
for the effects of reservoir water; the seasonal component δ(S), associated with temperature
variations; and the irreversible component δ(T), encompassing factors such as heat of
hydration dissipation, creep, and alkali–aggregate reactions.

δ(H, S, T) = δ(H) + δ(S) + δ(T) + ε (1)

where ε is the residuals.
The hydrostatic component δ(H) includes the deformation of the dam body under

hydrostatic pressure, the deformation of the dam body caused by the dam bedrock de-
formation, and the deformation of the dam body resulting from the rotation of the dam
bedrock due to the water weight. According to the mechanical analysis, δ(H) is defined as
a polynomial function of water height:

δ(H) =
n

∑
i=1

ai Hi (2)

where H is the upstream water height, ai is the fitting coefficient, and i is the power exponent.
In general, n is 4 or 5 for an arch dam and 3 for a gravity dam.

The seasonal component arises from temperature variations within the dam and its
foundation rock, which are influenced by the ambient air temperature. For a concrete dam
undergoing long-term operation, the heat of cement hydration has already dissipated, and
the dam body’s temperature primarily changes seasonally due to variations in ambient
temperature. Consequently, the seasonal component is determined as the superposition of
harmonic sinusoidal functions:

δ(S) =
m

∑
i=1

(b1i sin
2πit
365

+b2i cos
2πit
365

) (3)

where i denotes the period, m denotes the cycle, with m = 1 for the annual cycle and m = 2
for a half cycle, b1i and b2i represent the fitting coefficients, and t is the cumulative number
of days from the initial survey date to the current survey date.

The time-dependent irreversible component is intricate and thoroughly encompasses
the creep and plastic deformations of both the dam structure and the bedrock, as well
as the compressive deformation of the bedrock’s geological formations. Changes in the
irreversible component generally follow an increasing trend at the beginning and slow
down over time, which can be described as:

δ(T) = c1t + c2 ln(t) (4)

where c1 and c2 are two fitting coefficients.

2.2. Long Short-Term Memory (LSTM)

LSTM, a variant of RNNs, addresses the vanishing gradient problem by incorporating
a gating mechanism [52]. Figure 1 depicts the architecture of an LSTM. At each time step
t, the LSTM layer retains a hidden memory cell

∼
ct along with three gating mechanisms

(i.e., input gate, forget gate, and output gate). The LSTM cell takes the current input xt, the
previous output ht−1, and the previous cell state ct−1 as inputs. These gates work together



Water 2024, 16, 3043 5 of 18

to update or discard information. The input, forget, and output gates, along with the LSTM
memory cell, are expressed as follows:

ft = σg(W f · xt + U f · ht−1 + b f ) (5)

it = σg(Wi · xi + Ui · ht−1 + bi) (6)

ot = σg(Wo · xt + Uo · ht−1 + bo) (7)

c̃t = tan h(Wc · xt + Uc · ht−1 + bc) (8)

where Wf, Wi, Wo, and Wc represent the weight matrices of four layers, each of which is
connected to the input vector. Uf, Ui, Uo, and Uc represent the weight matrices of four
layers, each of which is connected to the previous hidden state. bf, bi, bo, and bc are four bias
vectors. σg and tanh(·) are sigmoid and hyperbolic tangent activation functions, respectively.
Then, the cell state vector state ct and the memory cell output vector ht can be expressed as:

ct = ft ⊙ ct−1 + it ⊙ c̃t (9)

ht = ot ⊙ tan h(ct) (10)

where ⊙ represents multiply by element.
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2.3. Attention Mechanism

The attention mechanism [53] is a specialized architecture integrated into machine
learning models that automatically determines the contribution of each input to the out-
put. This facilitates decision-making from large datasets, reducing the computation costs,
and enhances both learning efficiency and accuracy. The attention mechanism serves as
an advancement to the encoder–decoder architecture by focusing on and accumulating
information from inputs at each time step, thereby building a more effective memory
representation. The framework of the scaled dot-product attention is described in Figure 2.
To implement the attention mechanism, the raw input data are expressed as 〈key,value〉
pairs, and the similarity coefficient between the Key and the Query can be computed. The
corresponding weight coefficient for the Value can be obtained using the Query from the
specified task within the target. The weight coefficient W is then multiplied by the Value to
produce the output a. When Query, Key, and Value are, respectively, denoted by Q, K, and
V, the formulas for calculating W and a can be expressed as follows:

W = softmax(QKT) (11)
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a = attention(Q, K, V) = W ⊙ V (12)
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2.4. Kolmogorov–Arnold Networks (KANs)

The Kolmogorov–Arnold Networks (KANs) present a neural network architecture that
leverages learnable spline-based functions to enhance the approximation of complex nonlinear
relationships. KANs rely on the Kolmogorov–Arnold representation theorem [49]. The theo-
rem states that any multivariate continuous function f, which depends on x = [x1, x2, . . ., xn],
on a bounded domain, can be represented as a composition of univariate functions and the
addition operation:

f (x1, . . . , xn) =
2n+1

∑
q=1

Φq

(
n

∑
p=1

ϕq,p
(
xp
))

(13)

where ϕq,p indicates univariate functions that map each input variable xp, and Φq indicates
continuous functions.

In conventional MLPs, which are based on the universal approximation theorem,
weight parameters are typically assigned to the edges of the network, whereas neurons are
equipped with predefined activation functions. Different from this traditional approach,
KANs incorporate learnable activation functions on the edges (i.e., “weights”) between
nodes. These activation functions dynamically adapt during network training, effectively
replacing the network weight parameters with univariate spline functions. This innovative
approach enables the network to maintain flexibility while achieving a precise fitting of
intricate network structures.

A KAN layer is defined by a matrix Φ composed of univariate functions {ϕq,p (·)} with
p = 1, . . ., Nin and q = 1, . . ., Nout, where Nin and Nout denote the number of inputs and the
number of outputs, respectively, and ϕq,p indicates the trainable spline functions described
above. This architectural innovation allows KANs to better capture complex, nonlinear
relationships more effectively than traditional MLPs. Note that in the Kolmogorov–Arnold
theorem, the inner functions constitute a KAN layer with Nin = n and Nout = 2n + 1, while
the external functions constitute a KAN layer with Nin = 2n + 1 and Nout = 1. To extend the
capabilities of KANs, deeper network architectures have been developed. A deeper KAN
is essentially a composition of multiple KAN layers, with enhanced ability to model more
complex functions. A general KAN can be expressed by the composition L layers:

y = KAN(x) = (ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1 ◦ Φ0)x (14)
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2.5. LSTM-KAN with a Dual-Stage Attention Mechanism

This study introduces a hybrid model that merges LSTM and KAN, leveraging the
ability of LSTM to process sequential data and the ability of KANs in capturing complex
nonlinear relationships. During the initialization of the model, the LSTM layer is estab-
lished, and the KAN model is innovatively incorporated as a subsequent processing layer
for the output of the LSTM, replacing the traditional fully connected layer. In the forward
propagation function, the final hidden state of the LSTM serves as the input to the KAN
layer. Additionally, both a factor attention mechanism and a temporal attention mechanism
(i.e., a dual-stage attention mechanism) are introduced into the LSTM network, where
the LSTM serves as both encoder and decoder [39]. The factor attention mechanism is
devised to adaptively identify the most influential factors at each time step. Furthermore,
the temporal attention mechanism accurately extracts crucial time segments by identi-
fying the relevant hidden states across all time steps [54]. The proposed LSTM-KAN
network, featuring a dual-stage attention mechanism, is named DA-LSTM-KAN and is
specifically designed for predicting concrete dam displacement. Figure 3 illustrates the
overall architecture of the DA-LSTM-KAN model.
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The detailed procedure of the proposed method is outlined as follows:

Step 1: Identify the input variable x and the output variable y based on the HST model.
Step 2: Normalize the data to a range between 0 and 1, then split the data into training

and test sets in a 7:3 ratio.
Step 3: Configure the DA-LSTM-KAN model parameters. The root-mean-square error

(RMSE) is selected as the loss function.
Step 4: Train the model using the training dataset and optimize the parameters until the

loss value converges.
Step 5: Evaluate the robustness of the trained model using the test dataset.
Step 6: Apply the finalized model for predicting the displacement of the concrete dam.
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To evaluate the prediction performance, four evaluation metrics, including maximum
absolute error (AEmax), root-mean-square error (RMSE), mean absolute error (AEmean),
and forecast qualification rate (QR), were employed. The following formulas define the
evaluation metrics:

AEmax = max(yD(i)− y(i)), i = 1, 2, . . . , N (15)

RMSE =

√√√√ 1
N

N

∑
i=1

(yD(i)− y(i))2 (16)

AEmean =
1
N

N

∑
i=1

|yD(i)− y(i)| (17)

QR =
m
n
× 100% (18)

where y denotes the monitored displacement, yD represents the model prediction results,
and N denotes the number of samples; m and n, respectively, represent the number of
qualified predictions and the number of total samples, where a qualified prediction is
defined as one whose error is less than ±5% of the actual value.

3. Case Study

The effectiveness of the proposed DA-LSTM-KAN was validated through its appli-
cation to a concrete gravity dam located on the Minjiang River in Fujian Province, China.
The dam consists of 21 dam sections, and the maximum dam height is 71.0 m. Hori-
zontal displacement monitoring data along the river were selected and analyzed from
a measurement point on the No. 12 dam section (Figure 4). Due to the lack of thermometer
monitoring data, the input environmental variables included the reservoir water levels
and the annual and semiannual harmonic variations recorded from the start of the moni-
toring to the survey date. The time series of the reservoir level is shown in Figure 5. The
variation in horizontal displacement is presented in Figure 6. Note that the monitoring
data of the measurement points selected in this case were relatively complete. However,
when there are missing data or abnormal data, it becomes imperative to adopt cluster
analysis [55], mode decomposition [56], transfer learning [57], and other data processing
and reconstruction techniques prior to establishing the monitoring model.
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Figure 6. Measured horizontal displacements of the measurement point.

Furthermore, the performance of the proposed model was compared with those of
multiple linear regression (MLR), LSTM, LSTM with only a factor attention mechanism
(FA-LSTM), LSTM with only a temporal attention mechanism (TA-LSTM), and LSTM with
a dual-stage attention mechanism (DA-LSTM), using the monitoring data from a period
of 3019 days, from 10 January 2008 to 20 April 2016. All the models were trained with the
same training set and verified with the same test set. The input variables for all models
were selected as x = {x1, x2, . . ., x8, x9} = {H1, H2, H3, sin(s), cos(s), sin2(s), cos2(s), t, lnt},
where s = 2πt/365.

4. Results and Discussion
4.1. Hyperparameter Adjustment

A careful adjustment of the parameter settings is crucial for training an optimal model.
The learning rate, a crucial hyperparameter, dictates the speed at which the LSTM network
learns. A learning rate that is too low will cause the model to converge very slowly, while
a rate that is too high can lead to oscillations, preventing the model from reaching a stable
solution. In this study, based on preliminary experiments, the initial learning was set at
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0.01, and the number of hidden layers in LSTM was set at 2. Similarly, the hidden sizes
of the encoder and decoder are critical for capturing the complexity of the data and were
selected to range from 16 to 256, allowing for flexible model capacity. The batch size, which
affects memory consumption and training stability, was set between 8 and 64. The time
step value, impacting how the model processes sequential data, was set between 2 and 8
to balance computational efficiency and temporal resolution. Finally, 200 training epochs
were implemented to ensure sufficient learning without excessive computation. Using the
same procedure, the optimal hyperparameters for the other models were identified through
a trial-and-error approach, as presented in Table 1.

In order to further quantify the influence of hyperparameters on the model output,
Figure 7a–d show the relationships between the performance of the LSTM model and epoch,
batch size, time step, and hidden size. The hyperparameters used in this paper and those
optimized by an automated method called OPTUNA [58] are marked in the figure. The
results indicate that hyperparameter selection does have a certain impact on the model
performance, and the hyperparameters in Table 1 closely align with those obtained through
OPTUNA optimization, leading to favorable model outcomes. However, as hyperparameter
optimization is not the focus of this paper, it will not be discussed further.
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Table 1. Basic information of model hyperparameter.

Model Hyperparameter Values

LSTM epoch = 200, batch_size = 50, time step = 4, hidden size = 30

FA-LSTM epoch = 200, batch_size = 45, time step = 7, attention dimension = 9, hidden size = 210,
dropout rate for attention = 0.1

TA-LSTM epoch = 200, batch_size = 64, time step = 3, hidden size = 150, attention dimension = 150,
dropout rate for attention = 0.1

DA-LSTM epoch = 200, batch_size = 24, time step = 4, factor attention dimension = 9, hidden size = 130,
time attention dimension = 130, dropout rate for attention = 0.1

DA-LSTM-KAN epoch = 200, batch_size = 32, time step = 5, factor attention dimension = 9, hidden size = 100,
time attention dimension = 100, dropout rate for attention = 0.1, number of hidden layers in KAN = 3

4.2. Performance Comparison

This section provides a comprehensive overview of the prediction results, aiming
to assess and compare the performance of baseline models with that of the proposed
model. To visually demonstrate predictive performance, Figure 8 presents the predicted
displacements from different models alongside the measured displacements from the
training and test sets at the measurement point. The figure shows that the DA-LSTM-KAN
model predicted the measured data better than other models. The prediction accuracies on
the training and test sets of all models are shown in Table 2. The table indicates that the
proposed model outperformed all comparative models across all four performance metrics.
Among the models evaluated, the MLR model showed the weakest performance, while the
LSTM-based model with attention achieved better results than the model that relied solely
on LSTM. Compared to DA-LSTM, the elevated predictive power of DA-LSTM-KAN is
potentially attributed to the replacement of the fully connected layer processing the LSTM
output with the KAN. In order to further verify the robustness of the proposed model, we
split the data into training and test sets in an 8:2 ratio and compared all models again. The
results, shown in Table 3, indicated that the DA-LSTM-KAN model performed well across
all four metrics compared to the other models. In the subsequent analyses, we reverted to
the original data split in a 7:3 ratio for consistency.
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Table 2. Evaluation metrics of different models (7:3 ratio).

Model
Training Set Test Set

AEmax RMSE AEmean QR (%) AEmax RMSE AEmean QR (%)

MLR 0.3547 0.2558 0.2017 87.59 0.1277 0.3458 0.2749 61.40
LSTM 0.3015 0.2175 0.1714 91.24 0.1022 0.2766 0.2200 80.70

FA-LATM 0.2713 0.1957 0.1543 96.35 0.0920 0.2490 0.1980 89.47
TA-LATM 0.2442 0.1761 0.1389 96.35 0.0900 0.2223 0.1831 91.23
DA-LATM 0.2198 0.1585 0.1250 97.81 0.0318 0.2023 0.1611 89.47

DA-LSTM-KAN 0.1954 0.1409 0.1111 99.27 0.0255 0.1618 0.1289 100

Table 3. Evaluation metrics of different models (8:2 ratio).

Model
Training Set Test Set

AEmax RMSE AEmean QR (%) AEmax RMSE AEmean QR (%)

MLR 0.1715 0.2161 0.2146 93.51 0.2312 0.2017 0.2009 89.47
LSTM 0.3933 0.1967 0.1532 96.75 0.2089 0.1824 0.1817 97.37

FA-LATM 0.1454 0.1803 0.1792 100 0.1689 0.1646 0.1633 100
TA-LATM 0.1715 0.1792 0.1783 100 0.1761 0.1658 0.1647 100
DA-LATM 0.1603 0.1656 0.1647 100 0.1723 0.1609 0.1603 100

DA-LSTM-KAN 0.1254 0.1524 0.1516 100 0.1518 0.1453 0.1446 100

To gain deeper insights into the method’s effectiveness, residual box plots were utilized
to compare the predictive performance across different models. The results of these residual
box plots are displayed in Figure 9. It is evident from the figure that the proposed method
exhibited significantly lower volatility in deformation prediction compared to the other
comparison methods. Meanwhile, the residuals were more concentrated for DA-LSTM-
KAN, indicating superior deformation prediction performance. Additionally, the model
incorporating solely the factor attention mechanism (i.e., FA-LSTM) exhibited a slightly
lower predictive performance compared to the models utilizing only the temporal attention
mechanism (i.e., TA-LSTM) as well as the models integrating both temporal and factor
attention mechanisms (i.e., DA-LSTM).
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4.3. Interpretability Analysis

The attention mechanism automatically enables a model to focus on the most sig-
nificant factors along the time dimension. Figure 10 is the visualization of the temporal
attention weights of each factor of the DA-LSTM-KAN model. Among the nine input factors,
the weights of the hydrostatic and seasonal factors were relatively larger, while the weights
of irreversible factors were relatively smaller. Figure 11 shows the average attention weight
of each factor derived from Figure 10. SHAP, introduced by Lundberg and Lee [59], offers
a unified approach to interpreting machine learning models. This framework interprets
each feature as a contributor to the model, quantifying its average marginal contribution
to ascertain its influence on the model’s output. In order to further validate the attention
mechanism’s ability to enhance model interpretability, we conducted a feature importance
analysis of the LSTM black box model using SHAP, and the results are shown in Figure 12.
From Figures 11 and 12, it becomes evident that despite some discrepancies, the feature
importance rankings derived from both methods exhibit a significant degree of similarity.
In particular, two of the first three important features involve two hydrostatic components
(i.e., x1 = H and x2 = H2), while at least one irreversible component is included in the least
significant three variables.
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Figure 13a,b show the average attention weights (or average importance value) of the
hydrostatic, seasonal, and time-dependent irreversible components for DA-LSTM-KAN
and LSTM-SHAP, respectively. It is encouraging to note that the quantitative results for
three components obtained through the two methods exhibit a high degree of consistency.
Specifically, the figure indicates that the seasonal component is the largest contributor to
displacement, with a contribution of 41.6% for DA-LSTM-KAN and 43.5% for LSTM-SHAP.
The hydrostatic component follows, accounting for 37.3% of the displacement in DA-LSTM-
KAN and 37.0% in LSTM-SHAP. Lastly, the irreversible component contributes 21.1% of the
displacement for DA-LSTM-KAN and 19.5% for LSTM-SHAP. Multiple linear regression
(MLR) models often stand out as the most straightforward approach, offering inherent
interpretability. For a more comprehensive comparison, Figure 14 displays the process
lines of each component at the measurement point using the traditional MLR model, while
Figure 15 illustrates the relative importance of each component as determined by the relative
weight method [60]. In this method, the relative weight of each variable represents the
proportion of the predictable variance it accounts for. As shown in Figures 14 and 15, the
importance ranking of the three components derived from MLR aligns with that identified
by DA-LSTM-KAN. Furthermore, the attention and relative weight techniques offer a more
intuitive evaluation than the process line method, particularly when two components have
similar levels of importance.
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5. Conclusions

This study developed the DA-LSTM-KAN model, a sophisticated hybrid predic-
tive model for dam deformation that integrates the sequential data handling capabili-
ties of LSTM with the complex nonlinear relationship modeling of KANs, enhanced by
a dual-stage attention mechanism. The model was tested using prototype monitoring data
from a concrete gravity dam constructed on the Minjiang River in China. The results
revealed that the DA-LSTM-KAN model demonstrated superior predictive performance
compared to other models such as multiple linear regression and various LSTM variants,
and the LSTM-based architecture integrated with an attention mechanism outperformed
the model that relies exclusively on LSTM. Moreover, the interpretability analysis of DA-
LSTM-KAN revealed that for the investigated measurement point, the seasonal component
was the most significant contributor to dam displacement, followed by the hydrostatic and
irreversible components. This finding is qualitatively consistent with the results obtained
from the SHAP method and the relative weight method, highlighting the potential benefits
of applying deep learning models in dam deformation monitoring.

The hybrid model presented in this study is designed to enhance both the prediction
accuracy and the interpretability of the model concurrently. The results revealed that it
effectively discovers and interprets the time-varying trends in the deformation sequence,
overcoming the limitations of information mining inherent in single models. Future re-
search will focus on a more comprehensive comparative analysis between the hybrid model
proposed in this study and the existing models when they are used in more practical
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projects. Additionally, after thoroughly evaluating the model complexity and computa-
tional efficiency with large datasets, achieving greater scalability in real-time monitoring
emerges as the subsequent challenge that needs to be tackled.
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