Rethinking Freshwater Cage Aquaculture: A Case in Ghana
Abstract
:1. Introduction
2. Global Snapshot of Environmental Effects of Cage Aquaculture
3. Transitioning from Lake Volta Cage Aquaculture to Land-Based Fish Production
3.1. Capacity-Building (CB)
- (1)
- Innovation in inland-integrated aquaculture systems that promotes circularity, including farmer technical skill development for good husbandry and fish health management;
- (2)
- Environmental awareness among aquaculture stakeholders, highlighting the long-term environmental impacts of cage aquaculture on Lake Volta, along with the advantages of land-based alternatives;
- (3)
- Regulatory compliance to ensure authorities and farmers become more conversant with legal requirements and the consequences of non-compliance.
3.2. Delineating Aquaculture Zones (DAZ)
3.3. Regulation and Enforcement (R&E)
3.4. Adopting Best Management Practices (BMPs)
4. Governments’ Role in Transitioning from Open-Water to Land-Based Aquaculture
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asmah, R.; Karikari, A.Y.; Abban, E.K.; Ofori, J.K.; Awity, L.K. Cage Fish Farming in the Volta Lake and the Lower Volta: Practices and Potential Impacts on Water Quality. Ghana J. Sci. 2014, 54, 33–47. [Google Scholar]
- Kassam, L. Aquaculture and Food Security, Poverty Alleviation and Nutrition in Ghana: Case Study Prepared for the Aquaculture for Food Security, Poverty Alleviation and Nutrition Project; WorldFish: Penang, Malaysia, 2014. [Google Scholar] [CrossRef]
- Frimpong, S.K.; Adwani, A. The Challenges and Prospects of Fish Farming in Ghana: A Project Management Perspective. Int. J. ICT Manag. 2015, 3, 29–34. [Google Scholar]
- Asmah, R.; Falconer, L.; Telfer, T.C.; Karikari, A.Y.; Al Wahaibi, M.; Xia, I.F.; Handisyde, N.; Quansah, K.E.; Amoah, D.K.; Alshihhi, J.; et al. Waterbody Scale Assessment Using Spatial Models to Identify Suitable Locations for Cage Aquaculture in Large Lake Systems: A Case Study in Volta Lake, Ghana. Aquac. Res. 2021, 52, 3854–3870. [Google Scholar] [CrossRef]
- Rurangwa, E.; Agyakwah, S.K.; Boon, H.; Bolman, B.C. Development of Aquaculture in Ghana: Analysis of the Fish Value Chain and Potential Business Cases; IMARES Wageningen UR: IJmuiden, The Netherlands, 2015. [Google Scholar]
- Fisheries Commission. National Fisheries and Aquaculture Policy; Ministry of Fisheries and Aquaculture Development: Accra, Ghana, 2021.
- MOFAD. Annual Report—2022; Ministry of Fisheries and Aquaculture Development: Accra, Ghana, 2023.
- World Bank. Aquaculture Production in Ghana from 2008 to 2021 (in 1000 Metric Tons). 2024. Available online: https://www.statista.com/statistics/1118781/aquaculture-production-in-ghana/ (accessed on 10 March 2024).
- MWRWH. National Water Policy; The Ministry of Water Resources, Works and Housing: Accra, Ghana, 2007.
- Zornu, J.; Tavornpanich, S.; Brun, E.; van Zwieten, P.A.M.; van de Leemput, I.; Appenteng, P.; Anchirinah, J.; Cudjoe, K.S. Understanding tilapia mortalities and fish health management in Lake Volta: A systematic approach. Front. Sustain. Food Syst. 2023, 7, 1249898. [Google Scholar] [CrossRef]
- Ramírez-Paredes, J.G.; Paley, R.K.; Hunt, W.; Feist, S.W.; Stone, D.M.; Field, T.R.; Haydon, D.J.; Ziddah, P.A.; Nkansa, M.; Guilder, J.; et al. First detection of Infectious Spleen and Kidney Necrosis Virus (ISKNV) associated with massive mortalities in farmed tilapia in Africa. Transbound. Emerg. Dis. 2021, 68, 1550–1563. [Google Scholar] [CrossRef]
- Anane-Taabeah, G.; Frimpong, E.A.; Hallerman, E. Aquaculture-mediated invasion of the genetically improved farmed Tilapia (GIFT) into the lower Volta Basin of Ghana. Diversity 2019, 11, 188. [Google Scholar] [CrossRef]
- Akpojotor, E. Development of Carrying Capacity Estimates for Zonation of Cage Aquaculture in Lake Volta, Ghana. Master’s Thesis, University of St Andrews, St Andrews, UK, 2015. [Google Scholar] [CrossRef]
- Akrasi, S.A. The assessment of suspended sediment inputs to Volta Lake. Lakes Reserv. Res. Manag. 2005, 10, 179–186. [Google Scholar] [CrossRef]
- Karikari, A.Y.; Asmah, R.; Anku, W.W.; Amisah, S.; Trevor, T.; Lindsay, R. Assessment of cage fish farm impacts on physico-chemical parameters of the Volta Lake in Ghana. J. Fish. Coast. Manag. 2021, 3, 22–35. [Google Scholar] [CrossRef]
- Biswas, S. Oxygen and Phytoplankton Changes in the Newly Forming Volta Lake in Ghana. Nature 1966, 209, 218–219. [Google Scholar] [CrossRef]
- Attionu, R.H. Some Limnologtcal Investigations in the Ajena Bay (Volta Lake, Ghana); Volta Basin Research Technical Report; University of Ghana: Accra, Ghana, 1966; p. 8. [Google Scholar]
- Biswas, S. Limnological observations during the early formation of Volta Lake in Ghana. In Proceedings of the Man-Made Lakes Symposium, Knoxville, TN, USA, 3–7 May 1971. [Google Scholar]
- Czernin-Chudenitz, C. Recent limnological status of Volta Lake, Ghana. In Proceedings of the Man-Made Lakes Symposium, Knoxville, TN, USA, 7 May 1971. [Google Scholar]
- Entz, B. Observations on the limnochemical conditions of the Volta Lake. In Man-Made Lakes. The Accra Symposium; Obeng, L.E., Ed.; Ghana University Press: Accra, Ghana, 1969; pp. 110–115. [Google Scholar]
- Entz, B. Limnological conditions in Volta Lake, the greatest man-made lake of Africa. Nature and Resources. Bull. Int. Iydrol. Decade UNESCO 1969, 5, 9–16. [Google Scholar]
- FDMT. Flood & Drought Management Tools: Volta Basin. Technical Report. FDMT Project. Available online: https://fdmt.iwlearn.org/resolveuid/81a80735-9750-4f35-8532-fc4057ca01f1 (accessed on 17 August 2024).
- Karikari, A.; Akpabey, F.; Abban, E.K. Assessment of water quality and primary productivity characteristics of Volta Lake in Ghana. Acad. J. Environ. Sci. 2013, 1, 88–103. [Google Scholar]
- Boamah, L.A.; Nyamekye, C.; Gyamfi, C.; Ballard, J.Q.; Anornu, G.K. Mapping and estimating water quality parameters in the Volta Lake’s Kpong Headpond of Ghana using regression model and Landsat 8. Cogent Eng. 2024, 11, 2307165. [Google Scholar] [CrossRef]
- Olalekan, E.I.; Kies, F.; Omolara, L.A.; Rashidat, S.D.; Hakeem, F.B.; Latunji, A.S.; Zaid, A.A.; Emeka, N.; Charles, O.I.; Oluwaseun, F. Effect of Water Quality Characteristics on Fish Population of the Lake Volta, Ghana. J. Environ. Anal. Toxicol. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Tay, C.K. Integrating water quality indices and multivariate statistical techniques for water pollution assessment of the Volta Lake, Ghana. Sustain. Water Resour. Manag. 2021, 7, 71. [Google Scholar] [CrossRef]
- Bobobee, H.; Carboo, D.; Akuamoah, R.; Ntow, W.J. Water quality of fresh water bodies in the lower Volta Basin: A case study of lakes Kasu and Nyafie. Afr. J. Educ. Stud. Math. Sci. 2012, 10, 65–80. [Google Scholar]
- Tahiru, A.A.; Doke, D.A.; Baatuuwie, B.B. Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Appl. Water Sci. 2020, 10, 198. [Google Scholar] [CrossRef]
- Abban, K.E.; Agbenyega, O.; Asmah, R.; Afele, J.T.; Ofori, L.A.; Nimo, E. Assessment of social acceptance of caged fish culture for improvement and sustainability: A study on Volta Lake, Ghana. Int. J. Multidiscip. Res. Growth Eval. 2022, 3, 277–282. [Google Scholar] [CrossRef]
- Karikari, A.Y.; Asmah, R.; Anku, W.W.; Amisah, S.; Agbo, N.W.; Telfer, T.C.; Ross, L.G. Heavy metal concentrations and sediment quality of a cage farm on Lake Volta, Ghana. Aquac. Res. 2020, 51, 2041–2051. [Google Scholar] [CrossRef]
- Mul, M.; Obuobie, E.; Appoh, R.; Yeboah, K.K.; Bekoe-Obeng, E.; Amisigo, B.; Logah, F.Y.; Ghansah, B.; McCartney, M. Water Resources Assessment; IWMI Working Paper 166; International Water Management Institute: Colombo, Sri Lanka, 2015. [Google Scholar] [CrossRef]
- Andah, W.E.I.; van de Giesen, N.; Biney, C.A. Water, Climate, Food, and Environment in the Volta Basin. ADAPT. Technical Report. 2003. Available online: https://www.weap21.org/downloads/ADAPTVolta.pdf (accessed on 9 October 2024).
- Amoah, D.K.; Awuah, E.; Hodgson, I.O.A.; Appiah-Brempong, M.; Von-Kiti, E.; Nyarko, I.N.Y. The impact of river sand mining and waste management on the Volta Lake: A case study of Asutsuare. Sci. Afr. 2024, 26, e02359. [Google Scholar] [CrossRef]
- Bowan, P.A.; Tingan, E.M. Influence of Illegal Small-Scale Gold Mining on the Black Volta Water Quality. Commun. Appl. Sci. 2021, 9, 2201–7372. [Google Scholar]
- Duodu, S.; Ayiku, A.N.A.; Adelani, A.A.; Daah, D.A.; Amoako, E.K.; Jansen, M.D.; Cudjoe, K.S. Serotype distribution, virulence and antibiotic resistance of Streptococcus agalactiae isolated from cultured tilapia Oreochromis niloticus in Lake Volta, Ghana. Dis. Aquat. Org. 2024, 158, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Abarike, E.D.; Atuna, R.A.; Agyekum, S.; Akongyuure, D.N.; Alhassan, E.H. Isolation and Characterization of Aeromonas jandaei from Nile Tilapia in Lake Volta, Ghana, and Its Response to Antibiotics and Herbal Extracts. J. Aquat. Anim. Health 2022, 34, 140–148. [Google Scholar] [CrossRef]
- Appleyard, S.A.; Mather, P.B. Genetic characterization of cultured tilapia in Fiji using allozymes and random amplified polymorphic DNA. Asian Fish. Sci. 2002, 15, 249–264. [Google Scholar] [CrossRef]
- DFO. Responsible, Realistic, and Achievable: The Government of Canada Announces Transition from Open-Net Pen Salmon Aquaculture in Coastal British Columbia. Fisheries and Oceans Canada. 2024. Available online: https://www.canada.ca/en/fisheries-oceans/news/2024/06/responsible-realistic-and-achievable-the-government-of-canada-announces-transition-from-open-net-pen-salmon-aquaculture-in-coastal-british-columbia.html (accessed on 8 August 2024).
- Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tveterås, R. A Global Blue Revolution: Aquaculture Growth across Regions, Species, and Countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- Nadarajah, S.; Flaaten, O. Global aquaculture growth and institutional quality. Mar. Policy 2017, 84, 142–151. [Google Scholar] [CrossRef]
- FAO. Towards Blue Transformation. In The State of World Fisheries and Aquaculture (SOFIA); Food and Agriculture Organization: Rome, Italy, 2022; p. 266. [Google Scholar] [CrossRef]
- Swann, L. A Basic Overview of Aquaculture History. In Technical Bulletin Series; Iowa State University: Ames, IA, USA, 1992. [Google Scholar]
- Kumar, V.; Karnatak, G. Engineering consideration for cage aquaculture. IOSR J. Eng. (IOSRJEN) 2014, 4, 11–18. [Google Scholar] [CrossRef]
- Mwebaza-Ndawula, L.; Vincent, K.; Magezi, G.; Naluwayiro, J.; Gandhi-Pabire, W.; Henry, O. Effects of cage fish culture on water quality and selected biological communities in northern Lake Victoria, Uganda. Uganda J. Agric. Sci. 2013, 14, 61–75. [Google Scholar]
- Huguenin, J.E. The design, operations and economics of cage culture systems. Aquac. Eng. 1997, 16, 167–203. [Google Scholar] [CrossRef]
- Osei, L.K.; Asmah, R.; Aikins, S.; Karikari, A.Y. Effects of Fish Cage Culture on Water and Sediment Quality in the Gorge Area of Lake Volta in Ghana: A Case Study of Lee Fish Cage Farm. Ghana J. Sci. 2019, 60, 1–16. [Google Scholar] [CrossRef]
- Otu, M.K.; Bureau, D.P.; Podemski, C.L. Freshwater Cage Aquaculture: Ecosystems Impacts from Dissolved and Particulate Waste Phosphorus. Fish. Ocean. Can. 2017, 59, 55. [Google Scholar]
- Price, C.; Black, K.D.; Hargrave, B.T.; Morris, J.A., Jr. Marine cage culture and the environment: Effects on water quality and primary production. Aquac. Environ. Interact. 2015, 6, 151–174. [Google Scholar] [CrossRef]
- Diana, J.S. Aquaculture Production and Biodiversity Conservation. BioScience 2009, 59, 27–38. [Google Scholar] [CrossRef]
- Watts, J.; Conklin, D.E. A review of the literature on the environmental impacts of marine fish cage culture. Uniciencia 1998, 15, 143–155. [Google Scholar]
- Lubembe, S.I.; Walumona, J.R.; Hyangya, B.L.; Kondowe, B.N.; Kulimushi, J.-D.M.; Shamamba, G.A.; Kulimushi, A.M.; Hounsounou, B.H.R.; Mbalassa, M.; Masese, F.O.; et al. Environmental impacts of tilapia fish cage aquaculture on water physico-chemical parameters of Lake Kivu, Democratic Republic of the Congo. Front. Water 2024, 6, 1325967. [Google Scholar] [CrossRef]
- Musinguzi, L.; Lugya, J.; Rwezawula, P.; Kamya, A.; Nuwahereza, C.; Halafo, J.; Kamondo, S.; Njaya, F.; Aura, C.; Shoko, A.P.; et al. The extent of cage aquaculture, adherence to best practices and reflections for sustainable aquaculture on African inland waters. J. Great Lakes Res. 2019, 45, 1340–1347. [Google Scholar] [CrossRef]
- Aura, C.M.; Mwarabu, R.L.; Nyamweya, C.S.; Ongore, C.O.; Musa, S.; Keyombe, J.L.; Guya, F.; Awuor, J.F.; Owili, M.; Njiru, J.M. Unbundling sustainable community-based cage aquaculture in an afrotropical lake for blue growth. J. Great Lakes Res. 2019, 50, 102410. [Google Scholar] [CrossRef]
- Twesigye Kakuhikire, C.; Nsubuga, F.W.; Raja, R.; Kato, P. Genetic diversity of Nile tilapia (Oreochromis niloticus, L. 1758) in native and introduced populations in East Africa. J. Wildl. Biodivers. 2024, 8, 296–312. [Google Scholar] [CrossRef]
- Varol, M. Impacts of cage fish farms in a large reservoir on water and sediment chemistry. Environ. Pollut. 2019, 252, 1448–1454. [Google Scholar] [CrossRef]
- White, P.G. Environmental Management of Fish Cage Aquaculture. J. Indian Soc. Coast. Agric. Res. 2021, 39, 229–238. [Google Scholar] [CrossRef]
- Kashindye, B.B.; Nsinda, P.; Kayanda, R.; Ngupula, G.W.; Mashafi, C.A.; Ezekiel, C.N. Environmental impacts of cage culture in Lake Victoria: The case of Shirati Bay-Sota, Tanzania. Springerplus 2015, 4, 475. [Google Scholar] [CrossRef]
- Krkosek, M.; Lewis, M.A.; Morton, A.; Frazer, L.N.; Volpe, J.P. Epizootics of wild fish induced by farm fish. Proc. Natl. Acad. Sci. 2006, 133, 15506–15510. [Google Scholar] [CrossRef] [PubMed]
- Krkosek, M.; Lewis, M.A.; Volpe, J.P.; Morton, A. Fish farms and sea lice infestations of wild juvenile salmon in Broughton Archipelago—A rebuttal to Brooks (2005). Fish. Sci. 2006, 14, 1–11. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and food safety in aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Erkinharju, T.; Dalmo, R.A.; Hansen, M.; Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 2021, 13, 189–237. [Google Scholar] [CrossRef]
- VKM; Rimstad, E.; Basic, D.; Gulla, S.; Hjeltnes, B.; Mortensen, S. Risk assessment of fish health associated with the use of cleaner fish in aquaculture. In Opinion of the Panel on Animal Health and Welfare of the Norwegian Scientific Committee for Food and Environment; VKM Report 2017; Norwegian Scientific Committee for Food and Environment (VKM): Oslo, Norway, 2017; ISBN 978-82-8259-289-5. ISSN 2535-4019. [Google Scholar]
- Glover, K.A.; Pertoldi, C.; Besnier, F.; Wennevik, V.; Kent, M.; Skaala, Ø. Atlantic salmon populations invaded by farmed escapees: Quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet. 2013, 14, 74. [Google Scholar] [CrossRef]
- Naylor, R.L.; Williams, S.L.; Strong, D.R. Aquaculture—A Gateway for exotic species. Science 2001, 294, 1655–1656. [Google Scholar] [CrossRef]
- Stokesbury, M.J.W.; Lacroix, G.L.; Price, E.L.; Knox, D.; Dadswell, M.J. Identification of scale analysis of farmed Atlantic salmon juveniles in southwestern New Brunswick rivers. Trans. Am. Fish. Soc. 2001, 130, 815–822. [Google Scholar] [CrossRef]
- Silva, S.S.D.; Nguyen, T.T.T.; Turchini, G.M.; Amarasinghe, U.S.; Abery, N.W. Alien Species in Aquaculture and Biodiversity: A Paradox in Food Production. AMBIO A J. Hum. Environ. 2009, 38, 24–28. [Google Scholar] [CrossRef]
- Goldburg, R.; Naylor, R. Future seascapes, fishing, and fish farming. Front. Ecol. Environ. 2005, 31, 21–28. [Google Scholar] [CrossRef]
- Hulata, G. Genetic manipulations in aquaculture: A review of stock improvement by classical and modern technologies. Genetica 2001, 111, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Taabu-Munyaho, A.; Marshall, B.E.; Tomasson, T.; Marteinsdottir, G. Nile perch and the transformation of Lake Victoria. Afr. J. Aquat. Sci. 2016, 41, 127–142. [Google Scholar] [CrossRef]
- Kitchell, J.F.; Schindler, D.E.; Ogutu-Ohwayo, R.; Reinthal, P.N. The Nile Perch in Lake Victoria: Interactions between predation and fisheries. Ecol. Appl. 1997, 7, 653–664. [Google Scholar] [CrossRef]
- FAO. Yearbook of Fisheries Statistics; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Rao, D.; Perrino, E.S.; Barreras, E. The Sustainability of Tilapia Fish Farming in Ghana; Blue Kitabu Research Institute: Los Angeles, CA, USA, 2012; pp. 37–40. [Google Scholar]
- Abd Hamid, M.; Md Sah, A.S.R.; Idris, I.; Mohd Nor, S.A.; Mansor, M. Impacts of Tilapia Aquaculture on Native Fish Diversity at an Ecologically Important Reservoir. PeerJ 2023, 11, e15986. [Google Scholar] [CrossRef]
- Kour, R.; Bhatia, S.; Sharma, K.K. Nile Tilapia (Oreochromis niloticus) as a successful biological invader in Jammu (J&K) and its impacts on native ecosystem. Int. J. Interdiscip. Multidiscip. Stud. (IJIMS) 2014, 1, 1–5. [Google Scholar]
- Canonico, G.C.; Arthington, A.; McCrary, J.K.; Thieme, M.L. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 463–483. [Google Scholar] [CrossRef]
- Newton, R.W.; Maiolo, S.; Malcorps, W.; Little, D.C. Life Cycle Inventories of marine ingredients. Aquaculture 2023, 565, 739096. [Google Scholar] [CrossRef]
- Einarsson, M.I.; Jokumsen, A.; Bæk, A.M.; Jacobsen, C.; Pedersen, S.A.; Samuelsen, T.A.; Pálsson, J.; Eliasen, O.; Flesland, O. Nordic Centre of Excellence Network in Fishmeal and Fish Oil; Matís: Paris, France, 2019; pp. 1–124. [Google Scholar] [CrossRef]
- IFFO. Key Facts; IFFO—The Marine Ingredients Organization: London, UK, 2024; Available online: https://www.iffo.com/key-facts (accessed on 18 June 2024).
- IFFO. By-Product. In Marine Ingredients Organization. 2021. Available online: www.iffo.com/product (accessed on 18 June 2024).
- EUMOFA—European Market Observatory for Fisheries and Aquaculture Products. Fishmeal and Fish Oil—Production and Trade Flows in the EU; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-28913-5. [Google Scholar] [CrossRef]
- Kok, B.; Malcorps, W.; Tlusty, M.F.; Eltholth, M.M.; Auchterlonie, N.A.; Little, D.C.; Harmsen, R.; Newton, R.W.; Davies, S.J. Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture 2020, 528, 735474. [Google Scholar] [CrossRef]
- Olsen, Y. Resources for fish feed in future mariculture. Aquac. Environ. Interact. 2011, 1, 187–200. [Google Scholar] [CrossRef]
- Chuenpagdee, R.; Degnbol, P.; Bavinck, M.; Jentoft, S.; Johnson, D.; Pullin, R.; Williams, S. Challenge and concerns in capture fisheries and aquaculture. In Fish for Life: Interactive Governance for Fisheries; MARE Publications Series; Amsterdam University Press: Amsterdam, The Netherlands, 2005; pp. 25–37. [Google Scholar] [CrossRef]
- Garno, Y.S.; Riyadi, A.; Iskandar, I.; Kendarto, D.R.; Sachoemar, S.I.; Susanto, J.P.; Widodo, L.; Suwedi, N.; Prayogo, T.; Dewa, R.P.; et al. The Impact of Aquaculture in Floating Net Cages Exceeding the Carrying Capacity on Water Quality and Organic Matter Distribution: The Case of Batur Lake, Indonesia. Pol. J. Environ. Stud. 2024, 33, 3651–3663. [Google Scholar] [CrossRef]
- Price, C.S.; Morris, J.A., Jr. Marine Cage Culture and the Environment: Twenty-First Century Science Informing a Sustainable Industry. NOAA Tech. Memo. NOS NCCOS 2013, 164, 158. [Google Scholar]
- Doglioli, A.M.; Magaldi, M.G.; Vezzulli, L.; Tucci, S. Development of a numerical model to study the dispersion of wastes coming from a marine fish farm in the Ligurian Sea (Western Mediterranean). Aquaculture 2004, 231, 215–235. [Google Scholar] [CrossRef]
- Gorlach-Lira, K.; Pacheco, C.; Carvalho, L.C.T.; Melo, J.H.N.; Crispim, M.C. The influence of fish culture in floating net cages on microbial indicators of water quality. Braz. J. Biol. 2013, 73, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Bissett, A.; Burke, C.; Cook, P.L.M.; Bowman, J.P. Bacterial community shifts in organically perturbed sediments. Environ. Microbiol. 2007, 9, 46–60. [Google Scholar] [CrossRef]
- Felsing, M.; Glencross, B.; Telfer, T. Preliminary study on the effects of exclusion of wild fauna from aquaculture cages in a shallow marine environment. Aquaculture 2005, 243, 159–174. [Google Scholar] [CrossRef]
- Holmer, M. Environmental issues of fish farming in offshore waters: Perspectives, concerns and research needs. Aquac. Environ. Interact. 2010, 1, 57–70. [Google Scholar] [CrossRef]
- Klaoudatos, S.D.; Klaoudatos, D.S.; Smith, J.; Bogdanos, K.; Papageorgiou, E. Assessment of site specific benthic impact of floating cage farming in the eastern Hios Island, Eastern Aegean Sea, Greece. J. Exp. Mar. Biol. Ecol. 2006, 338, 96–111. [Google Scholar] [CrossRef]
- Soto, D.; Norambuena, F. Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: A large-scale mensurative experiment. J. Appl. Ichthyol. 2004, 20, 493–501. [Google Scholar] [CrossRef]
- AL-Keriawy, H.H.A. Impact of Fish Farming in floating cages on zooplankton Community in Euphrates River, Iraq. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 722. [Google Scholar] [CrossRef]
- Dias, J.D.; Takahashi, E.M.; Santana, N.F.; Bonecker, C.C. Impact of fish cage-culture on the community structure of zooplankton in a tropical reservoir. Iheringia. Série Zool. 2011, 101, 75–84. [Google Scholar] [CrossRef]
- Trushenski, J.; Flagg, T.; Kohler, C. Use of hatchery fish for conservation, restoration, and enhancement of fisheries. In Inland Fisheries Management in North America, 3rd ed.; Hubert, W., Quist, M., Eds.; American Fisheries Society: Bethesda, MD, USA, 2010; pp. 261–293. Available online: https://fisheries.org/docs/books/55060C/9.pdf (accessed on 8 February 2024).
- FAO. Contributing to food security and nutrition for all. The State of World Fisheries and Aquaculture (SOFIA); Food and Agriculture Organization: Rome, Italy, 2016; p. 200. ISBN 9789251093085. [Google Scholar]
- Machias, A.; Karakassis, I.; Labropoulou, M.; Somarakis, S.; Papadopoulou, K.N.; Papaconstantinou, C. Changes in wild fish assemblages after the establishment of a fish farming zone in an oligotrophic marine eco system. Estuar. Coast. Shelf Sci. 2004, 60, 771–779. [Google Scholar] [CrossRef]
- Romakkaniemi, A.; Pera, I.; Karlsson, L.; Jutila, E.; Carlsson, V.; Pakarinen, T. Development of wild Atlantic salmon stocks in the rivers of the northern Baltic sea in response to management measures. ICES J. Mar. Sci. 2003, 60, 329–342. [Google Scholar] [CrossRef]
- Machias, A.; Karakassis, I.; Giannoulaki, M.; Papadopoulou, K.N.; Smith, C.J.; Somarakis, S. Response of demersal fish communities to the presence of fish farms. Mar. Ecol. Prog. Ser. 2005, 288, 241–250. [Google Scholar] [CrossRef]
- Ibrahim, L.A.; Shaghaleh, H.; El-Kassar, G.M.; Abu-Hashim, M.; Elsadek, E.A.; Hamoud, Y.A. Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water 2023, 15, 4310. [Google Scholar] [CrossRef]
- Kloas, W.; Groß, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B.; et al. A New Concept for Aquaponic Systems to Improve Sustainability, Increase Productivity, and Reduce Environmental Impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef]
- Nasr-Allah, A.M. Tilapia Production Using Climate Smart Aquaculture System in Egypt, In-Pond Raceway System (IPRS). WorldFish. Conference Paper. 2019. Available online: https://hdl.handle.net/20.500.12348/4078 (accessed on 15 October 2024).
- Nissar, S.; Bakhtiyar, Y.; Arafat, M.Y.; Andrabi, S.; Mir, Z.A.; Khan, N.A.; Langer, S. The evolution of integrated multi-trophic aquaculture in context of its design and components paving way to valorization via optimization and diversification. Aquaculture 2023, 565, 739074. [Google Scholar] [CrossRef]
- Azhar, M.H.; Memis, D. Application of the IMTA (integrated multi-trophic aquaculture) system in freshwater, brackish and marine aquaculture. Aquat. Sci. Eng. 2023, 38, 106–121. [Google Scholar] [CrossRef]
- Little, D.C.; Edwards, P. Integrated Livestock Fish Farming Systems; Food & Agriculture Organization: Rome, Italy, 2003; ISBN 9251050554. [Google Scholar]
- Gangwar, L.S.; Saran, S.; Kumar, S. Integrated Poultry-Fish Farming Systems for Sustainable Rural Livelihood Security in Kumaon Hills of Uttarakhand. Agric. Econ. Res. Rev. 2013, 26, 181–188. [Google Scholar]
- Bregnballe, J. A Guide to Recirculation Aquaculture—An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; FAO and Eurofish International Organisation: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Losordo, T.M.; Ray, L.E.; DeLong, D.P. Flow-through and recirculating systems. Dev. Aquac. Fish. Sci. 2004, 34, 545–560. [Google Scholar] [CrossRef]
- Dabi, M.; Dzorvakpor, S.E.A. The Impact of Aquaculture on the Environment: A Ghanaian Perspective. Int. J. Sci. Technol. 2015, 3, 106. [Google Scholar]
- Amoah, A.; Dorm-Adzobu, C. Application of contingent valuation method (CVM) in determining demand for improved rainwater in coastal savanna region of Ghana, West Africa. J. Econ. Sustain. Dev. 2013, 4, 1–24. [Google Scholar]
- Zornu, J.; Tavornpanich, S.; Shimaa, A.E.; Addo, S.; Nyaga, P.; Dverdal, M.J.; Norheim, K.; Brun, E.; Cudjoe, K.S. Bridging knowledge gaps in fish health management through education, research, and biosecurity. Front. Sustain. Food Syst. 2023, 7, 1256860. [Google Scholar] [CrossRef]
- Zornu, J.; Oyih, M.; Binde, M.; Viglo, J.; Agbekpornu, H.; Nkansa, M.; Tavornpanich, S.; Norheim, K.; Brun, E.; Cudjoe, K.S. Stakeholder perspectives on the 2023 Ghana national aquaculture development plan: An integration within the ecosystem approach framework. Aquac. Fish Fish. 2023, 3, 459–471. [Google Scholar] [CrossRef]
- Hishamunda, N.; Ridler, N.; Bueno, P.; Yap, W. Commercial aquaculture in Southeast Asia: Some policy lessons. Food Policy 2009, 34, 102–107. [Google Scholar] [CrossRef]
- Chironjib, S.S.C.; Puja, R. Aquaculture practices in Bangladesh: A synopsis on prospects, productivity, and problems. J. World Aquac. Soc. 2024, 55, 4–25. [Google Scholar] [CrossRef]
- Rothuis, A.J.; van Duijn, A.P.; Roem, A.J.; Ouwehand, A.; van der Pijl, W.; Rurangwa, E. Aquaculture Business Opportunities in Egypt. Wageningen UR. 2013. Available online: https://edepot.wur.nl/258663 (accessed on 8 February 2024).
- Li, X.; Zhang, Y.; Chen, Y. Environmental benefits of pond aquaculture: A review of nutrient management approaches. Aquac. Res. 2019, 50, 691–705. [Google Scholar]
- Bosma, R.H.; Verdegem, M.C.J. Sustainable aquaculture in ponds: Principles, practices and limits. Livest. Sci. 2011, 139, 58–68. [Google Scholar] [CrossRef]
- Hasimuna, O.; Maulu, S.; Nawanzi, K.; Lundu, B.; Mphande, J.; Phiri, C.; Kikamba, E.; Siankwilimba, E.; Siavwapa, S.; Chibesa, M. Integrated agriculture-aquaculture as an alternative to improving small-scale fish production in Zambia. Front. Sustain. Food Syst. 2023, 7, 1161121. [Google Scholar] [CrossRef]
- Environmental Impact Assessment (EIA). Legislation Act 490, Legal Backing for Established EIA System to Be Implemented in Ghana. 1994. Available online: https://www.eia.nl/documenten/00000062.docx (accessed on 29 April 2024).
- Environmental Assessment Regulations. LI. 1625, Environmental Assessment Regulations. 1999. Available online: https://faolex.fao.org/docs/pdf/gha78169.pdf (accessed on 29 April 2024).
- Fisheries Act. Act 625, License for Aquaculture and Recreational Fishing. 2002. Available online: https://faolex.fao.org/docs/pdf/gha34737.pdf (accessed on 29 April 2024).
- Fisheries Regulations. LI. 1968, Fish Seed Production Certificate and Fish Transfer Permit. 2010. Available online: https://faolex.fao.org/docs/pdf/gha151991.pdf (accessed on 29 April 2024).
- Hishamunda, N.; Ridler, N.; Martone, E. Policy and Governance in Aquaculture: Lessons Learned and Way Forward; FAO Fisheries and Aquaculture Technical Paper No. 577; FAO: Rome, Italy, 2014; p. 59. [Google Scholar]
- Abarike, E.A. Review of Ghana’s Aquaculture Industry. J. Aquac. Res. Dev. 2018, 9, 545. [Google Scholar] [CrossRef]
- Anane-Taabeah, G.; Frimpong, E.A.; Amisah, S.; Agbo, N. Constraints and opportunities in cage aquaculture in Ghana. In Better Science, Better Fish, Better Life, Proceedings of the Ninth International Symposium on Tilapia in Aquaculture, Shanghai, China, 22–24 April 2011; Liping, L., Fitzsimmons, K., Eds.; AquaFish Collaborative Support Program; AquaFish CRSP, Oregon State University: Corvallis, OR, USA; pp. 182–190.
- Abhishek, G.; Suresh, K.; Gurjar, S.C. Circular system of resource recovery and reverse logistics approach: Key to zero waste and zero landfill. Adv. Org. Waste Manag. 2022, 2022, 365–381. [Google Scholar] [CrossRef]
- OECD. Recommendation of the Council on the Implementation of the Polluter-Pays Principle, OECD/LEGAL/0132. 2022. Available online: https://legalinstruments.oecd.org/public/doc/11/11.en.pdf (accessed on 30 April 2024).
- Luppi, B.; Parisi, F.; Rajagopalan, S. The rise and fall of the polluter-pays principle in developing countries. Int. Rev. Law Econ. 2012, 32, 135–144. [Google Scholar] [CrossRef]
- Nyaku, R.E.; Okayi, R.G.; Ataguba, G.A.; Mohammed, A. Diseases Associated with Livestock Integrated Fish Farming in Nigeria: A review. Fisheries Society of Nigeria. 2008. Available online: https://aquadocs.org/handle/1834/37940 (accessed on 10 June 2024).
- Petersen, A.; Andersen, J.S.; Kaewmak, T.; Somsiri, T.; Dalsgaard, A. Impact of Integrated Fish Farming on Antimicrobial Resistance in a Pond Environment. Appl. Environ. Microbiol. 2002, 68, 6036–6042. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lv, Z.; Yang, L.; Yang, L.; Liu, D.; Ou, Y.; Xu, C.; Liu, W.; Yuan, D.; Hao, Y. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain. Environ. Int. 2019, 130, 104708. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.T.; Feng, Y.Y.; Tan, A.P.; Zao, F.; Jiang, L.; Huang, Z.B.; Qi, Z. High Occurrence of Multiple-Drug Resistance Mediated by Integron in Aeromonas Isolated from Fish-Livestock Integrated Farms. Aquac. Res. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Barry, B.; Obuobie, E.; Andreini, M.; Andah, W.; Pluquet, M. Comparative Study of River Basin Development and Management. International Water Management Institute. IWMI Report. 2005. Available online: https://archive.iwmi.org/assessment/files_new/research_projects/river_basin_development_and_management/VoltaRiverBasin_Boubacar.pdf (accessed on 15 October 2024).
- MOFA. Ghana National Aquaculture Development Plan: 2024–2028; Ministry of Food and Aquaculture Development: Accra, Ghana, 2024.
- Fantini-Hoag, L.; Hanson, T.; Chappell, J. Production trials of in-pond raceway system growing stocker and foodsize hybrid Catfish plus Nile tilapia. Aquaculture 2022, 561, 738582. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banini, P.K.; Anyan, K.F.; Zornu, J.; Ackah, M.; Batsa, D.N.; Issifu, K.; Amankwah, A.; Ali, S.E.; Addo, S.; Cudjoe, K.S. Rethinking Freshwater Cage Aquaculture: A Case in Ghana. Water 2024, 16, 3054. https://doi.org/10.3390/w16213054
Banini PK, Anyan KF, Zornu J, Ackah M, Batsa DN, Issifu K, Amankwah A, Ali SE, Addo S, Cudjoe KS. Rethinking Freshwater Cage Aquaculture: A Case in Ghana. Water. 2024; 16(21):3054. https://doi.org/10.3390/w16213054
Chicago/Turabian StyleBanini, Philip Kwasi, Kofi Ferni Anyan, Jacob Zornu, Mabel Ackah, David Narteh Batsa, Kwame Issifu, Abigail Amankwah, Shimaa E. Ali, Samuel Addo, and Kofitsyo S. Cudjoe. 2024. "Rethinking Freshwater Cage Aquaculture: A Case in Ghana" Water 16, no. 21: 3054. https://doi.org/10.3390/w16213054
APA StyleBanini, P. K., Anyan, K. F., Zornu, J., Ackah, M., Batsa, D. N., Issifu, K., Amankwah, A., Ali, S. E., Addo, S., & Cudjoe, K. S. (2024). Rethinking Freshwater Cage Aquaculture: A Case in Ghana. Water, 16(21), 3054. https://doi.org/10.3390/w16213054