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Abstract: Lakes around the world, including Ghana’s Lake Volta, are facing insidious threats from pol-
lutants due to high dependency on aquatic ecosystems. Cage aquaculture is expanding across Africa
because of its potential to address food insecurity, provide livelihoods, and boost local economies.
However, the uncontrolled expansion of cage aquaculture can have significant negative impacts
on water resources, including environmental footprints that threaten biodiversity. Given the in-
tensification of cage aquaculture for tilapia farming on Lake Volta, we advocate for a transition to
inland-integrated aquaculture systems that promote circularity. Strengthening stakeholder collab-
oration is essential for enhancing competence in mapping inland aquaculture areas, identifying
eco-friendly alternatives and reinforcing aquaculture regulations, with particular emphasis on cage
culture on Lake Volta. These strategies can reduce the pressures imposed by tilapia cage farms on
the lake while promoting best management practices. Additionally, capacity building must be an
ongoing process to address knowledge gaps, including the development of effective preparedness
plans executed during emergencies. The ongoing pollution from illegal mining in the Black Volta
River, a tributary of Lake Volta, along with endemic diseases in the lake, further compounds fish
health and welfare issues. This underscores the urgent need to implement inland transition strategies
to protect the lake, mitigate disease spread, and ensure safe fish food production.

Keywords: Lake Volta; cage aquaculture; mapping inland areas; law enforcement; best management
practices; collaboration and capacity building; emergency preparedness

1. Introduction

Cage aquaculture began in Ghana in the mid-2000s with the establishment of the first
commercial farm on Lake Volta [1,2]. Fish farming in Ghana, however, started in 1953 with
the conversion of irrigation reservoirs in the Northern region [3]. Currently, most fish
farmers prefer Lake Volta (Figure 1) for several reasons, including its good water quality,
optimal flow rate, and appropriate water depths [4,5]. Lake Volta contributes approximately
90% of Ghana’s annual farmed production of Nile tilapia (Oreochromis niloticus) and African
catfish (Clarias gariepinus). In 2021, Ghana earned approximately $140 million from a total
aquaculture production of 89,400 metric tonnes (Figure 2) [6]. Of this production, tilapia
accounted for 68,740 metric tonnes, while catfish constituted 20,660 metric tonnes [7,8].

The socio-economic benefits derived from Lake Volta have made it the aquaculture hub
in Ghana. Currently, Lake Volta remains one of the few water resources in Ghana that is not
visibly polluted. However, future projections suggest that Lake Volta may lose its relevance
and importance due to the increasing water pollution caused by illegal mining in Ghana [9].
The effect of this illegal mining in the Black Volta River, a tributary of Lake Volta, is causing
much concern among cage farmers downstream. If the illegal mining activities, which have
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already destroyed almost all major water bodies and tributaries in the country, continue,
the conditions necessary to support life in the lake might be compromised. Furthermore,
forecasts indicate that expanding tilapia cage culture beyond the lake’s carrying capacity
could lead to chemical and nutrient pollution, the introduction of non-native species and
pathogens, as well as increased sediment and organic matter loading [10–14]. Some of these
concerns have already been substantiated [11,12]. Therefore, the objective of this paper is
to present alternative perspectives on rethinking cage aquaculture in Lake Volta to better
protect its ecosystem services and biodiversity. This is particularly important for informing
trans-regional management decisions, as Lake Volta connects to the Volta Basin, which
borders Benin, Burkina Faso, Côte d’Ivoire, Mali, and Togo.
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Figure 2. Annual aquaculture production in Ghana (2005–2023). The graph was created using data
from [6].

Many studies have assessed the potential effects of cage aquaculture on the physico-
chemical properties of Lake Volta. The majority of these studies concluded that there
were no significant changes in water quality parameters such as ammonia, pH, nutrient
levels, dissolved oxygen and total suspended solids in the lake. [1,15–22]. However,
drawing definitive conclusions about the overall water quality of Lake Volta is challenging
because these studies focused on localized areas rather than the entire basin. For instance,
dissolved oxygen, biochemical oxygen demand, and total suspended solids or turbidity
were within acceptable limits [23–25] or exceeded the thresholds expected for unpolluted
water bodies [26–28]. This suggests that the water quality of Lake Volta fluctuates between
pristine and poor levels, highlighting the need for continuous management to protect this
vital water resource.

Concerns have been raised about the impacts of fish farming, specifically effluents
affecting the water quality of the lake, in discussions about the social acceptance of cage
aquaculture on Lake Volta [29]. These concerns extend to effluents from households, the
Akosombo textile industry and agricultural activities [29–32]. Additionally, pollutants from
sand and mineral mining have been documented in the Black Volta River, which flows
downstream into Lake Volta [10,33,34]. These pollution sources are not unique to Lake
Volta but reflect the overall increase in water pollution across Ghana. The Ministry of Water
Resources confirmed this in a report linking rising water treatment costs in Ghana to mining,
industrial, agricultural, housing, and commercial activities [9]. Despite these challenges,
Lake Volta remains a critical source of drinking water, treated by the Ghana Water Company
Limited (GWCL). If pollution persists, the GWCL may face higher treatment costs, leading
to broader socio-economic consequences for Ghana.

Since 2018, ongoing disease outbreaks and unusual mortalities in Lake Volta have
created increasingly stressful conditions for farmed tilapia. A recent study conducted
by Zornu et al. [10] investigating unusual tilapia mortalities in Lake Volta identified a
combination of pathogens and non-infectious factors contributing to these mortalities.
The study linked fish mortalities to water pollution from human-mediated pollutants,
aquaculture wastes, and other non-infectious factors [10]. Despite these challenges, the
Fisheries Commission (FC) has projected an 8% annual growth in aquaculture production
over the next three years [7]. Meeting this projection could lead to intensified production
and the establishment of new tilapia cage farms on the lake. Assuming that each lake
farm operates with an average Feed Conversion Ratio of 1.5 and an 8% annual growth
rate [7], more tilapia cages could lead to a significant increase in feed input, resulting in
larger volumes of aquaculture waste. This, in turn, could further degrade the water quality
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of Lake Volta. The pursuit of higher fish production also increases the risk of aquatic
diseases with medium to large-scale effects. These range from localized outbreaks affecting
individual farms to widespread disease outbreaks across the country. Consequently, Lake
Volta could become a repository for chemicals used to combat fish diseases (Figure 3). The
rise in bacterial fish diseases in Lake Volta has led to increased antibiotic use, contributing
to the development of resistance [35,36]. While land-based aquaculture operations have
their peculiar environmental issues, cages, being open systems, can aggravate negative
environmental impacts on native species and contribute to the overall deterioration of the
lake. Native species in Lake Volta may contract diseases that could have originated from
the importation of unapproved fish species (Figure 3).

Water 2024, 4 FOR PEER REVIEW  4 
 

 

volumes of aquaculture waste. This, in turn, could further degrade the water quality of 
Lake Volta. The pursuit of higher fish production also increases the risk of aquatic diseases 
with medium to large-scale effects. These range from localized outbreaks affecting 
individual farms to widespread disease outbreaks across the country. Consequently, Lake 
Volta could become a repository for chemicals used to combat fish diseases (Figure 3). The 
rise in bacterial fish diseases in Lake Volta has led to increased antibiotic use, contributing 
to the development of resistance [35,36]. While land-based aquaculture operations have 
their peculiar environmental issues, cages, being open systems, can aggravate negative 
environmental impacts on native species and contribute to the overall deterioration of the 
lake. Native species in Lake Volta may contract diseases that could have originated from 
the importation of unapproved fish species (Figure 3). 

 
Figure 3. Negative impacts of unregulated tilapia cage aquaculture on Lake Volta. This Figure 
illustrates the aquaculture-mediated introduction of non-indigenous tilapia species and pathogens. 
This includes potential genetic effects on indigenous fish species as non-native tilapia species escape 
from floating cages. The intensification of tilapia cage aquaculture on the lake becomes a catalyst for 
the proliferation of fish pathogens of exotic and endemic origins, leading to the establishment of 
diseases. Consequently, the excessive use of chemicals to manage fish diseases, along with increased 
feed usage due to aquaculture intensification, contributes to water pollution. Created with 
BioRender.com. 

Most fish farms are located downstream from the lake, below the Akosombo dam. 
Any planned or unplanned spillage from the dam could have devastating effects on 
floating cages and riparian communities. The 2023 water spillage from the Akosombo dam 
caused massive destructions to fish farms and affected over 100 fishing communities. To 
safeguard the socio-economic wellbeing of fish farmers and riparian communities, it is 
prudent to explore alternative production systems. Cage fish farmers incurred losses of 
GHC 46 million due to the dam spillage. This event also raised ecological concerns as 
unapproved foreign fish species from the cages escaped into the Lake. Non-native fish 
species can outcompete local species, disrupt the lake’s ecosystem balance, and alter 
ecological relationships [37]. The introduction of foreign tilapia species through 

Figure 3. Negative impacts of unregulated tilapia cage aquaculture on Lake Volta. This figure
illustrates the aquaculture-mediated introduction of non-indigenous tilapia species and pathogens.
This includes potential genetic effects on indigenous fish species as non-native tilapia species escape
from floating cages. The intensification of tilapia cage aquaculture on the lake becomes a catalyst
for the proliferation of fish pathogens of exotic and endemic origins, leading to the establishment
of diseases. Consequently, the excessive use of chemicals to manage fish diseases, along with
increased feed usage due to aquaculture intensification, contributes to water pollution. Created
with BioRender.com.

Most fish farms are located downstream from the lake, below the Akosombo dam.
Any planned or unplanned spillage from the dam could have devastating effects on floating
cages and riparian communities. The 2023 water spillage from the Akosombo dam caused
massive destructions to fish farms and affected over 100 fishing communities. To safeguard
the socio-economic wellbeing of fish farmers and riparian communities, it is prudent to ex-
plore alternative production systems. Cage fish farmers incurred losses of GHC 46 million
due to the dam spillage. This event also raised ecological concerns as unapproved foreign
fish species from the cages escaped into the Lake. Non-native fish species can outcompete
local species, disrupt the lake’s ecosystem balance, and alter ecological relationships [37].
The introduction of foreign tilapia species through aquaculture (Figure 3) has led to the
loss of genetic integrity, as reported by Anane-Taabeah et al. [12]. The environmental conse-
quences of escaped fish are multifaceted and have long-term implications for ecosystem
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stability. Therefore, mitigating the risks associated with introducing non-native species into
the wild is crucial to maintaining the integrity of aquatic ecosystems.

Given these challenges, it is essential to consider environmentally sustainable alterna-
tives rather than focusing solely on the intensification of cage aquaculture. Many countries
within and outside Africa are actively pursuing diverse aquaculture systems to enhance
production and maximize socio-economic benefits. Advances in aquaculture engineer-
ing and research have made it possible to farm fish using alternative culture methods,
eliminating the need to farm directly in natural water bodies. Some of these systems
include raceways, aquaponics, Recirculatory Aquaculture Systems (RASs), ponds, and
tanks constructed from concrete, tarpaulin, fiberglass, and wood lined with plastic or other
waterproof materials. Shifting to these alternative systems can reduce the environmental
footprints of aquaculture compared to the dominant open-water fish farming. Countries
like the United States, Norway, and Canada have implemented strict measures to regulate
open-cage fish farming [38,39]. Coastal British Colombia in Canada is planning to consider
only marine or land-based closed-containment systems for future aquaculture licenses [38].
Adopting such best practices is crucial to encouraging the exploration of alternative culture
systems suited to the country’s terrain. Otherwise, any future disaster related to cage aqua-
culture could severely affect Ghana’s fish food security. By considering the effects of cage
aquaculture in Ghana, this review proposes a paradigm shift towards land-based culture
systems. To achieve this, the study provides a global snapshot of the environmental im-
pacts of cage aquaculture, juxtaposing it with the Ghanaian narrative. It also recommends
strategies for transitioning to inland systems through improved aquaculture governance
and infrastructure, while addressing both present and future challenges (Figure 4).

Water 2024, 4 FOR PEER REVIEW  5 
 

 

aquaculture (Figure 3) has led to the loss of genetic integrity, as reported by Anane-
Taabeah et al. [12]. The environmental consequences of escaped fish are multifaceted and 
have long-term implications for ecosystem stability. Therefore, mitigating the risks 
associated with introducing non-native species into the wild is crucial to maintaining the 
integrity of aquatic ecosystems. 

Given these challenges, it is essential to consider environmentally sustainable 
alternatives rather than focusing solely on the intensification of cage aquaculture. Many 
countries within and outside Africa are actively pursuing diverse aquaculture systems to 
enhance production and maximize socio-economic benefits. Advances in aquaculture 
engineering and research have made it possible to farm fish using alternative culture 
methods, eliminating the need to farm directly in natural water bodies. Some of these 
systems include raceways, aquaponics, Recirculatory Aquaculture Systems (RASs), 
ponds, and tanks constructed from concrete, tarpaulin, fiberglass, and wood lined with 
plastic or other waterproof materials. Shifting to these alternative systems can reduce the 
environmental footprints of aquaculture compared to the dominant open-water fish 
farming. Countries like the United States, Norway, and Canada have implemented strict 
measures to regulate open-cage fish farming [38,39]. Coastal British Colombia in Canada 
is planning to consider only marine or land-based closed-containment systems for future 
aquaculture licenses [38]. Adopting such best practices is crucial to encouraging the 
exploration of alternative culture systems suited to the country’s terrain. Otherwise, any 
future disaster related to cage aquaculture could severely affect Ghana’s fish food security. 
By considering the effects of cage aquaculture in Ghana, this review proposes a paradigm 
shift towards land-based culture systems. To achieve this, the study provides a global 
snapshot of the environmental impacts of cage aquaculture, juxtaposing it with the 
Ghanaian narrative. It also recommends strategies for transitioning to inland systems 
through improved aquaculture governance and infrastructure, while addressing both 
present and future challenges (Figure 4). 

 
Figure 4. A flowchart summarizing the review outline and goals. Created with BioRender.com. 

2. Global Snapshot of Environmental Effects of Cage Aquaculture 

Figure 4. A flowchart summarizing the review outline and goals. Created with BioRender.com.

2. Global Snapshot of Environmental Effects of Cage Aquaculture

Over the past 40 years, aquaculture has made significant contributions to global
seafood production [40]. In 2020, global fisheries and aquaculture production reached
178 million tonnes, with aquaculture accounting for 49% (88 million tonnes) of the total
volume [41]. Among the various aquaculture systems, ponds are the oldest and most
dominant system [42]. However, over the last 20 years, cage aquaculture has expanded
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rapidly; garnering global attention for its ability to intensify production in both natural and
artificial water bodies [43–45].

The exponential growth of cage aquaculture poses serious threats to essential aquatic
ecosystem services and can significantly influence global freshwater and marine
biodiversity [46–57]. Fish escaping from cages are almost unavoidable due to accidents,
flooding, and equipment failure. The problems of escapees and their effects on biodi-
versity include predation on native stocks, hybridization, and disease transmission. The
increased interaction between escapees and wild fish heightens the risk of disease and
parasite transmission to wild populations [58,59]. The excessive use of antimicrobials
to mitigate disease risks has subsequently accelerated the development of antimicrobial
resistance [60,61]. Additionally, biological interventions through cleaner fish to reduce par-
asitic infestations are linked to the transmission of diseases to wild fish populations [62,63].
Furthermore, farmed fish selectively bred for faster growth, with broodstock often modi-
fied to produce infertile fry, and hormonal sex reversal techniques are not 100% accurate.
As a result, escapees including modified broodstock demonstrate superior competitive
abilities, disrupt ecosystem health, introduce alterations to wild fish population habitats,
and risk species extinction [64–73]. For instance, tilapiines, frequently incriminated as
aquaculture-mediated invasive species, have displaced many native species [49,74–76].

An often-overlooked issue affecting marine and freshwater biodiversity in West Africa
is the depletion of capture fishery resources used in aquafeed production. Fishmeal and
fish oil, derived from small pelagic fish such as anchovies, sardines, Atlantic herring,
and menhaden, are limited resources [77,78]. Over the past decade, global fishmeal and
fish oil production have remained relatively stable at approximately 5 million tonnes
and 1 million tonnes, respectively [79]. In 2020, 86% of fishmeal and 73% of fish oil
were heavily used in aquaculture [80]. Unlike freshwater aquaculture, the demand for
these resources is particularly high in mariculture [81–83], mostly practiced in advanced
countries. This practice exacerbates the overexploitation of capture fisheries, especially
in poorer countries [84]. This diverted use of seafood in aquafeed production, which
otherwise would have been used for human consumption, forces affected countries to farm
fish to meet their nutritional needs.

The dispersion of fecal matter, dissolved nutrients and feed waste from floating cages,
is a major source of pollution in receiving waters, demonstrating the harmful impacts
of aquaculture on biodiversity [85–87]. Unlike emerging closed cages, poorly sited and
mismanaged open cages can lead to significant consequences, including changes in aquatic
microbial diversity, abundance, and community structure [88–90]. Benthic environmental
footprints are another concern from aquaculture practices, as biofouling from organic waste
leads to sedimentary stress and a decline in benthic communities [91–93]. Additional
evidence also suggests that aquaculture reduces zooplankton diversity and species rich-
ness near cage sites [94]. Despite these negative effects, aquaculture can offer benefits to
biodiversity, including reducing fishing pressure on overexploited wild stocks, supporting
conservation efforts by stocking native fish, and increasing species diversity, abundance,
and richness [95–100].

In response to the environmental footprints of cage aquaculture, aquaponics, In-pond
Raceway Systems (IPRSs), integrated multi-trophic aquaculture (IMTA) and RASs offer
more sustainable approaches. Aquaponics combines plant cultivation with fish farming in
a symbiotic environment where fish waste becomes nutrients for plants. This system pro-
motes resource efficiency while reducing environmental impacts [101,102]. Similarly, IPRSs
ensure resource efficiency through efficient water use, improved yields, and reduced global
gas emissions [103]. IMTA also mimics natural ecosystems by integrating species from
different tropic levels, such as fish, shellfish, and seaweed to enhance nutrient recycling
and reduce waste production [104,105]. This makes IMTA a more eco-friendly alternative
to traditional cage farming. Integrated Poultry/Livestock–Fish farming is a variation of
IMTA where animal waste is used to fertilize fishponds, reducing the need for artificial feed
and fertilizers [106,107]. Though an RAS requires significant capital investment, it operates
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by continuously filtering waste from recirculating water in a closed system, minimizing
the risks of escapees, pollution, and disease transmission to wild populations [108,109]. By
adopting these innovative systems, aquaculture can significantly reduce its ecological foot-
prints while maintaining productivity and promoting sustainability in global fish farming.

3. Transitioning from Lake Volta Cage Aquaculture to Land-Based Fish Production

This section outlines strategies for transitioning from cage aquaculture on Lake Volta
to more sustainable land-based fish farming systems. The goal is to protect the lake’s
ecosystem while ensuring the socio-economic benefits of aquaculture continue. The strate-
gies consider legal, environmental, and socio-economic dimensions needed to preserve
Lake Volta’s ecological integrity for future generations.

3.1. Capacity-Building (CB)

Capacity-building, both for individuals and institutions, is crucial for the successful
transition from Lake Volta cage aquaculture to land-based production systems (Figure 5).
Since 2004, the Water Resources Commission (WRC) in Ghana has led awareness-raising
campaigns (1a. Figure 5) which extend beyond aquaculture to include broader environ-
mental management. Regulatory bodies like the Fisheries Commission, the Environmental
Protection Agency (EPA), and the Volta River Authority (VRA) have also organized work-
shops and seminars aimed at educating fish farmers and key stakeholders throughout the
aquaculture value chain. These educational efforts must focus not only on sustainable
fish production and Lake management but also on promoting a shift towards eco-friendly
aquaculture systems [110,111]. The aquaculture sector requires balanced collaboration
between academia, private industry, and public sector institutions. Strong partnerships
among these sectors can foster knowledge sharing and practical-oriented education, which
are necessary for addressing sustainability challenges in aquaculture. Partnership-driven
capacity-building efforts can thus emphasize the following:

(1) Innovation in inland-integrated aquaculture systems that promotes circularity, including
farmer technical skill development for good husbandry and fish health management;

(2) Environmental awareness among aquaculture stakeholders, highlighting the long-
term environmental impacts of cage aquaculture on Lake Volta, along with the advan-
tages of land-based alternatives;

(3) Regulatory compliance to ensure authorities and farmers become more conversant
with legal requirements and the consequences of non-compliance.

However, limited collaboration currently exists in Ghana between academia, the
government, and the private sector in tackling sustainability issues, as noted by Zornu
et al. [112]. Strengthening these relationships could help identify industry needs and guide
appropriate interventions for the transition to land-based fish farming. Capacity-building
campaigns should extend beyond formal settings to reach a wider audience, particularly
through media. The media can play an essential role in raising awareness about the envi-
ronmental, social, and economic drawbacks of open-water cage aquaculture. Disseminating
this information can help shift public opinion and practices towards more sustainable land-
based systems. Furthermore, research and diagnostic institutions, as well as universities
(1b. Figure 5), must be equipped to bridge knowledge gaps and address industry setbacks
by providing science-based solutions. The knowledge acquired can guide the establishment
of fish health management systems (1c. Figure 5) that the industry desperately needs as
disease incidences persist. In summary, capacity-building is a cornerstone of the transition
strategy, ensuring that farmers and institutions are equipped with the knowledge, skills,
and resources necessary for a successful shift to land-based aquaculture.
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3.2. Delineating Aquaculture Zones (DAZ)

Capacity-building efforts will also be essential in equipping stakeholders with the
necessary skills and knowledge to effectively map and manage areas designated for inland
holding systems. The delineation of aquaculture zones (DAZ) is a critical component of
Ghana’s aquaculture planning (Figure 5). Current mapping efforts aim to identify suitable
locations within aquatic ecosystems, as highlighted in the 2012 Ghana National Aquaculture
Development Plan discussed by Zornu et al. [113]. This plan emphasizes the identification
of high-priority aquaculture zones, particularly in Lake Volta. However, with the lake al-
ready heavily populated with floating cages and the pollution from illegal mining activities,
designating additional aquaculture zones may exacerbate the environmental burden on
the ecosystem. To protect Lake Volta and other vulnerable water bodies, it is essential to
explore inlands areas that are suitable for aquaculture. Transitioning from cage aquaculture
to land-based production systems can help protect sensitive habitats, preserve biodiversity
and minimize environmental impacts on aquatic ecosystems. Inland aquaculture zoning is
more helpful in disease prevention through effective surveillance monitoring, compared
to the high-risk open waters of Lake Volta. The fish farm demography in Ghana is highly
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fragmented, predominantly among small operators. Therefore, zoning can also help cluster
small-scale farms into specific zones [114], enabling better regulation, access to extension
services, and containing disease outbreaks. The United Nations Environmental Programme
highlights the environmental impact assessment (EIA) as a crucial tool for evaluating the
environmental, social, and economic impacts of a project, offering a pathway to mitigate
negative effects. After identifying and zoning potential inland areas, conducting an EIA
becomes essential for safeguarding environmental health (2b. Figure 5). A comprehensive
environmental assessment that considers social, physical, chemical, and other factors would
provide a robust foundation for protecting ecosystems.

Having successfully zoned suitable inland areas and conducted an EIA, eco-friendly
aquaculture systems described above, like ponds and raceways, including circularity-driven
integrated systems like IMTA, must be sited (2c. Figure 5). It cannot be overemphasized
that these systems create a controlled environment between the fish and the ecosystem,
minimizing environmental impacts compared to open-water cages. While the majority
of Ghanaian fish farmers prefer cage aquaculture for various reasons, leading producers
like Egypt, China, and Bangladesh are inclined toward earthen pond production [115,116].
Ponds offer a natural alternative with lower environmental footprints but are limited
by factors, namely land suitability and availability, water supply, and dissolved oxygen
levels [117,118]. Nevertheless, ponds like any other closed-containment system, allow for
waste containment and the possibility of processing waste before discharge [119]. One
challenge with pond aquaculture is the potential contamination of aquifers that recharge
the ponds. This risk can be mitigated by reducing chemical use in pond aquaculture,
including integrated systems through nutrient recycling and bioremediation [119]. These
approaches optimize resource utilization and enhance overall productivity while protecting
environmental health.

3.3. Regulation and Enforcement (R&E)

Most fish farms in Ghana are not registered, thereby failing to comply with regulations
established by the FC, EPA, WRC, District Assembly, and the VRA. Strict implementation
of these regulations is vital for effectively managing cage farming on the lake and inland
aquaculture farms. This includes setting limits based on the lake’s carrying capacity and
ensuring that the VRA’s lake management framework for sustainable exploitation [10] is
applied effectively (3a. Figure 5). The EPA has established guidelines and regulations re-
garding EIA, which are enforceable through the EPA Act [120] and related Regulations [121]
(3b. Figure 5). The EPA must be empowered to routinely enforce these mandates, particu-
larly concerning water quality standards, in collaboration with the WRC and the VRA—the
main authority responsible for managing Lake Volta. This collaboration will facilitate
effective monitoring as land-based fish farms source water from the lake and other water
resources. The FC has also banned the importation of unapproved foreign fish strains
through Acts 2002 [122] and Regulations 2010 [123] (3c. Figure 5). In collaboration with port
and harbor authorities, checkpoints established must ensure that only approved species
with well-documented health statuses are imported into the country. This will help pre-
serve native fish diversity while reducing the risk of introducing exotic fish diseases and
pathogens into the industry.

3.4. Adopting Best Management Practices (BMPs)

Fish farmers must adopt best management practices (BMPs) alongside complying
with regulations to ensure responsible farming (Figure 5). BMPs can promote optimal
husbandry practices and biosecurity measures that minimize environmental impacts and
prevent fish diseases (4a. Figure 5). Consequently, implementing these practices can help
reduce the reliance on synthetic chemicals, thereby ensuring sustainable Lake Volta exploita-
tion (4b. Figure 5), minimizing antimicrobial resistance, and reducing the environmental
footprint of the aquaculture. Farming practices devoid of environmental degradation
enhance the social acceptability of aquaculture and support international fish trade [113].
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It is important that the financial incentives provided to fish farmers are for pursuing best
husbandry and the implementation of biosecurity measures (4c. Figure 5).

Like all food production systems, even the best husbandry and biosecurity practices
may not guarantee everlasting industry sustainability. There will be ‘inevitable setbacks’
(Figure 5), namely massive mortalities caused by emerging pathogens and parasites. There-
fore, it is important that there is ongoing capacity building to adequately prepare the
industry to bridge knowledge gaps and address these setbacks. Moreover, addressing
inevitable setbacks in the industry requires collaborative and multidisciplinary approaches
to develop comprehensive emergency preparedness plans (Figure 5). Partnership-driven
efforts led by regulatory authorities are paramount for establishing contingency plans that
protect both the industry and farmer livelihoods. For instance, collaboration between the
FC and the Veterinary Services Directorate is essential for effective surveillance monitoring
that enables rapid responses during fish health crises. Additionally, collaboration among
regulatory authorities, researchers, farmers, and other stakeholders will guide aquaculture
development and ensure its integration into the wider ecosystem without compromis-
ing ecosystem functions and services. In brief, without collaboration, processes such as
capacity-building, delineating aquaculture zones, and enforcing legislations to drive best
management practices become more challenging.

4. Governments’ Role in Transitioning from Open-Water to Land-Based Aquaculture

Good aquaculture governance is essential for creating an enabling environment that
fosters productivity and long-term growth in the industry [124]. In Ghana, one of the
primary challenges is the limited technical knowledge among fish farmers. While some
may possess basic skills in fish husbandry practices, many lack an awareness of sustainable
practices and the effects of fish farming on the wider ecosystem [5,125,126]. The government
plays a crucial role in addressing this gap by identifying and developing the necessary
human competencies and infrastructure to support sustainable aquaculture practices [124].
In collaboration with the Ghana Chamber of Aquaculture [113] or the National Aquaculture
Committee, the government can pinpoint key areas for improvement and help build
a more sustainable industry. Alternatively, the government’s active collaboration with
farmers, academic, and research institutions is key to generating critical knowledge for
the sector. Through the sector Ministry, the government can solicit innovative proposals
via competitive bidding, focusing on industry issues and scientific and technological
advancements for viable solutions.

One of the key ways the government can contribute is by investing in diagnostic
laboratories, and supporting educational and research institutions with relevant logistics.
These investments will enhance the industry’s ability to manage fish health, implement
biosecurity measures, and ensure compliance with environmental regulations. Moreover,
knowledge institutions can provide technical expertise in areas such as fish reproductive
biology, culture systems, husbandry management, and legislation enforcement. Through
media channels, the government can amplify new knowledge and discoveries among stake-
holders. To facilitate the transition from open-water cage aquaculture to land-based systems,
it is imperative that the government guarantees the availability of essential infrastructures,
like electricity and road networks. These resources are necessary for transportation and
access to key inputs and outputs within and beyond aquaculture zones. Additionally,
the government must deploy skilled aquaculture and veterinary officers to support these
initiatives through extension services.

One significant challenge in Ghana’s aquaculture sector is the complexity of farm
registration, which is burdened by bureaucratic processes across multiple institutions. This
often results in the weak enforcement of regulations and standards. The ongoing Fish for
Development in Ghana project, in collaboration with the FC, seeks to streamline this process
through the introduction of a one-stop-shop regime for farm registration and permits. By
simplifying farm registration processes, the government can better monitor and regulate
aquaculture operations to ensure compliance with the Aquaculture Code of Conduct,
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including environmental and ethical standards. Drawing from international models, such
as Coastal British Columbia’s plan to license only closed-containment aquaculture systems
in the future [38], Ghana can adopt similar measures.

The introduction of the Progressive Tax System (PTS) and Polluter Pays Principle
(PPP) policies by the government can serve as financial tools to promote sustainable fish
farming practices (Figure 5). The PTS would impose higher taxes on farmers who continue
cage farming on Lake Volta, while the PPP [127,128] would levy fines based on the amount
of waste produced and discharged into the lake. Implementing these financial policies
would gradually force reduction of the number of cages on the lake over a period of
time. For example, applying the PPP first involves identifying cage farmers operating on
small, medium, and large scales, followed by levying penalties based on the fish biomass
produced. This approach would encourage farmers to transition to holding systems that
offer greater control over waste treatment and disposal. The PTS is akin to the penalty unit
system implemented by the government of Ghana in the capture fisheries industry [94]. In
the aquaculture sector, these financial tools may be challenging to implement, especially for
small and medium-sized farms with limited resources [127,129]. However, basing penalties
on waste generation ensures fairness across all scales of production. In summary, adopting
the PTS and PPP will not only inspire a shift toward eco-friendly aquaculture practices
but will also discourage farmers from prioritizing short-term gains over environmental
sustainability. In summary, the government must prioritize aquaculture development
through effective policies and ensure that fiscal constraints do not hinder the sector’s
growth and sustainability.

5. Challenges and Future Perspectives

Adopting inland culture systems in Ghana offers promising sustainability oppor-
tunities for aquaculture, but it may face challenges beyond land and water availability.
One major hurdle is the cultural resistance to adopting alternative land-based culture
systems, given the long-standing popularity of cage aquaculture. The waste management
advantages of inland-integrated aquaculture systems may not be fully realized if local
farmers lack adequate husbandry knowledge in terms of water quality control and nutrient
cycling [5,125,126]. The absence of careful management could lead to nutrient overload
in the holding units, resulting in eutrophication, excess algae decomposition, and oxygen
depletion. It is therefore important to prioritize capacity building to develop the right
competencies for the use of such systems.

Additionally, the risk of disease transmission, including the transfer of resistant
pathogens and genes between terrestrial animals and aquatic species in integrated systems,
is another concern [130–133]. The sector is already vulnerable to emerging diseases, high-
lighting the need to establish passive and active surveillance, including strong biosecurity
measures, to ensure the industry is well-prepared during fish health crises. Moreover, the
requisite knowledge for efficiently implementing inland-integrated systems in Ghana is
not widespread among fish producers. However, with the government’s involvement by
resourcing educational intuitions, emergent knowledge gaps can be bridged.

An RAS entails significant financial investments, alongside the need for advanced
infrastructure, technology, and a dependable energy supply. Additionally, biofilm accumu-
lation is one of the critical husbandry challenges in managing an RAS, further complicating
its adoption and making it less accessible to a wider range of farmers [108,109]. However,
energy accessibility can be improved through renewable sources like solar, wind, and
biogas energy, which can reduce the reliance on insufficient hydroelectric power in Ghana.
Furthermore, the availability of quality tilapia fingerlings and feed may continue to pose
challenges in the future. Thus, access to these essential inputs and well-developed local
supply chains is pivotal for ensuring the success of these systems and the overall growth
of aquaculture.

One of the major causes of water pollution in Lake Volta that can persist in peripheral
inland aquaculture is the leaching of agrochemicals [10], which results from inefficient irri-
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gation technologies, improper fertilizer use, and unimplemented agricultural policies [134].
The government must protect inland aquaculture from runoff pollution and safeguard
water bodies in Ghana through improved agricultural practices. Outside the periphery
of Lake Volta, water availability throughout the year can be challenging. Through the
Ghana Irrigation Development Authority, 5% of national irrigation schemes are reserved
for aquaculture activities, potentially addressing land and water constraints for inland
production [135]. Additionally, the construction of additional water retention dams or
reservoirs to harvest rainwater, including boreholes and wells in the zoned areas across
the country can further alleviate these constraints. Likewise, pursuing innovations such as
IPRSs counteracts water availability crises for pond aquaculture through efficient water
use, improved yields, and reduced global gas emissions [103,136].

6. Conclusions

This paper highlighted the significant environmental, social, and economic challenges
posed by the expansion of cage aquaculture on Lake Volta, with particular emphasis on the
threats to local biodiversity and the long-term sustainability of the lake. In response, several
comprehensive strategies are recommended, ranging from capacity building to identifying
suitable inland aquaculture areas, coupled with stringent environmental impact assess-
ments to site eco-friendly holding units. The implementation of regulation and enforcement,
and the adoption of BMPs across the industry would ensure environmentally sustainable
aquaculture practices. This paper advocates for a collaborative, multi-stakeholder approach
involving the government, research institutions, private sector actors, and fish farmers to
ensure a successful transition from lake-based to land-based aquaculture. The future of
aquaculture in Ghana hinges on careful management and good governance for sustainable
production. By enforcing stricter pollution penalties and promoting education and research,
the government can drive the sector toward more sustainable practices. At the same time,
emergency preparedness, robust disease surveillance, and joint stakeholder engagement
will be crucial in mitigating unforeseen challenges. The ongoing pollution from illegal
mining in the Black Volta River, a tributary of Lake Volta, along with endemic diseases in
the lake, further compounds fish health and welfare issues. This underscores the urgent
need to implement inland transition strategies to protect the lake, mitigate disease spread,
and ensure safe fish food production.
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