Resilience Adaptation Through Risk Analysis for Wastewater Treatment Plant Operators in the Context of the European Union Resilience Directive
Abstract
:1. Introduction
2. Methods
3. How Is Resilience for a WWTP Defined?
- Affordability—data accessible/generated for reasonable cost/level of effort
- Availability—easy to collect and measure
- Reliability—consistent over time
- Simplicity—ease of comprehension by decision-makers
- Transparency—the data can be reproduced and verified
Current Implementation of Safety and Security Measures for WWTP in Germany
4. How to Move from Risk to Resilience
Procedure for Risk Analysis for a WWTP
- Which components are highly critical for system performance?
- To which stressor is the component exposed and vulnerable?
- Are previous safety measures sufficient?
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schopp, N.; Drews, K.; Eversheim, A. Bevölkerungsschutz. 2023, pp. 14–18. Available online: https://www.bbk.bund.de/SharedDocs/Downloads/DE/BSMAG_Artikel/2023-01/2023-01_07.pdf?__blob=publicationFile&v=3 (accessed on 18 August 2024).
- Schulte, C.; Abbas, B.; Engelke, C.; Fischer, H.; Henneberg, S.; Hentschel, H.; Jekel, H.; Jeske, R.; Pietsch, K.; Schöll, F. Fischsterben in der oder, August 2022; Umweltbundesamt: Dessau-Roßlau, Germany, 2022; p. 34. [Google Scholar]
- Rahman, A.; Belia, E.; Kirim, G.; Hasan, M.; Borzooei, S.; Santoro, D.; Johnson, B. Digital Solutions for Continued Operation of WRRFs during Pandemics and Other Interruptions. Water Environ. Res. 2021, 93, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
- Harvard Business Review. How the War in Ukraine Is Further Disrupting Global Supply Chains. 2022. Available online: https://hbr.org/2022/03/how-the-war-in-ukraine-is-further-disrupting-global-supply-chains (accessed on 8 March 2024).
- Leopoldina. Wie Sich Russisches Erdgas in der Deutschen und Europäischen Energieversorgung Ersetzen Lässt. Available online: https://www.leopoldina.org/publikationen/detailansicht/publication/wie-sich-russisches-erdgas-in-der-deutschen-und-europaeischen-energieversorgung-ersetzen-laesst-2022/ (accessed on 8 March 2024).
- European Union. European Union Directive (EU) 2022/2557 of the European Parliament and of the Council of 14 December 2022 on the Resilience of Critical Entities and Repealing Council Directive 2008/114/EC. 2022. Available online: https://eur-lex.europa.eu/eli/dir/2022/2557/oj (accessed on 23 January 2024).
- Pankow, N.; Chalupczok, S.; Krause, S.; Schaum, C. Approach for Risk Assessment of Water Resource Recovery Facilities. In Proceedings of the 7th JSWA/EWA/WEF Specialty Conference (2022), Sendai, Japan, 15–17 November 2022. [Google Scholar]
- Karidi, M.; Schneider, M.; Gutwald, R. (Eds.) Resilienz: Interdisziplinäre Perspektiven zu Wandel und Transformation; Springer: Wiesbaden, Germany, 2018; ISBN 978-3-658-19221-1. [Google Scholar]
- Gersonius, B.; Ashley, R.; Pathirana, A.; Zevenbergen, C. Climate change uncertainty: Building flexibility into water and flood risk infrastructure. Clim. Change 2013, 116, 411–423. [Google Scholar] [CrossRef]
- Juan-García, P.; Butler, D.; Comas, J.; Darch, G.; Sweetapple, C.; Thornton, A.; Corominas, L. Resilience theory incorporated into urban wastewater systems management. State of the art. Water Res. 2017, 115, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Yu, D.J.; Schoon, M.L.; Hawes, J.K.; Lee, S.; Park, J.; Rao, P.S.C.; Siebeneck, L.K.; Ukkusuri, S.V. Toward General Principles for Resilience Engineering. Risk Anal. 2020, 40, 1509–1537. [Google Scholar] [CrossRef]
- Brucherseifer, E.; Winter, H.; Mentges, A.; Mühlhäuser, M.; Hellmann, M. Digital Twin conceptual framework for improving critical infrastructure resilience. Automatisierungstechnik 2021, 69, 1062–1080. [Google Scholar] [CrossRef]
- Broß, L. Wasserversorgung in Notsituationen—Verfahren zur Beurteilung der Resilienz von Wasserversorgungssystemen unter Berücksichtigung der Ersatz- und Notwasserversorgung; Universität der Bundeswehr München: Neubiberg, Germany, 2020. [Google Scholar]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Mugume, S.N.; Gomez, D.E.; Fu, G.; Farmani, R.; Butler, D. A Global Analysis Approach for Investigating Structural Resilience in Urban Drainage Systems. Water Res. 2015, 81, 15–26. [Google Scholar] [CrossRef]
- US EPA Vulnerability Self-Assessment Tool (VSAT). Available online: https://vsat.epa.gov/vsat/ (accessed on 18 March 2022).
- Morley, K.M. Evaluating Resilience in the Water Sector: Application of the Utility Resilience Index (URI); George Mason University: Fairfax, VA, USA, 2012. [Google Scholar]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, Resilient and Sustainable Water Management: The Safe & SuRe Approach. Glob. Chall. 2017, 1, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Wassénius, E.; Crona, B.I. Adapting Risk Assessments for a Complex Future. One Earth 2022, 5, 35–43. [Google Scholar] [CrossRef]
- Holloway, T. An Evaluation of Dynamic Resilience for Analysing Water Resource Recovery Facilities. Ph.D. Thesis, University of Portsmouth, Portsmouth, UK, 2023. [Google Scholar]
- Walker, B.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function, 1st ed.; Island Press: Washington, DC, USA, 2012; ISBN 978-1-61091-231-0. [Google Scholar]
- Council of the European Union. Council Directive 89/391/EEC of 12 June 1989 on the Introduction of Measures to Encourage Improvements in the Safety and Health of Workers at Work (OSH Framework); European Agency for Safety and Health at Work: Bilbao, Spain, 1992. [Google Scholar]
- Federal Republic of Germany. Gesetz über Die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (ArbSchG); Bundesamt für Justiz: Bonn, Germany, 1996. [Google Scholar]
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. TRBS 1111 Gefährdungsbeurteilung; Technical Rules for Operational Safety (TRBS); Federal Institute for Occupational Safety and Health (BAuA): Berlin, Germany, 2018. [Google Scholar]
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. TRGS 400–Gefährdungsbeurteilung für Tätigkeiten mit Gefahrstoffen; Technical Rules for Hazardous Substances (TRGS); Federal Institute for Occupational Safety and Health (BAuA): Berlin, Germany, 2017. [Google Scholar]
- TRAS 310–Vorkehrung und Maßnahmen Wegen der Gefahrenquellen Niederschläge und Hochwasser; Technical Rules for Plant Safety (TRAS); Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV): Berlin, Germany, 2023.
- DWA-A 199-1; Dienst- und Betriebsanweisung für das Personal von Abwasseranlagen—Teil 1: Dienstanweisung für das Personal von Abwasseranlagen—November 2011—fachlich auf Aktualität geprüft 2017. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA): Hennef, Germany, 2011; ISBN 978-3-96862-020-6.
- DWA-A 199-4; Dienst- und Betriebsanweisung für das Personal von Abwasseranlagen—Teil 4: Betriebsanweisung für das Personal von Kläranlagen (August 2006). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA): Hennef, Germany, 2006; ISBN 978-3-96862-679-6.
- DWA-M 215-2; Empfehlungen zur Planung und Ausführung für Bau und Umbau von Abwasserbehandlungsanlagen—Teil 2: Systematik der Planung ab Variantenuntersuchung bis Inbetriebnahme. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA): Hennef, Germany, 2024; ISBN 978-3-96862-697-0.
- DWA-M 320; Sicherstellung der Abwasserentsorgung bei Stromausfall. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.; DWA: Hennef, Germany, 2024; ISBN 978-3-96862-685-7.
- European Union Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0060-20140101 (accessed on 18 July 2024).
- Federal Republic of Germany. Gesetz zur Ordnung des Wasserhaushalts (WHG); Bundesamt für Justiz: Bonn, Germany, 2023. [Google Scholar]
- AbwV Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer (Abwasserverordnung—AbwV). 2017. Available online: https://www.gesetze-im-internet.de/abwv/BJNR056610997.html (accessed on 26 September 2024).
- European Union Directive (EU) 2022/2555 of the European Parliament and of the Council of 14 December 2022 on Measures for a High Common Level of Cybersecurity across the Union (NIS 2 Directive). 2023. Available online: https://eur-lex.europa.eu/eli/dir/2022/2555/oj (accessed on 14 June 2024).
- Federal Ministry of the Interior. Germany Ordinance on the Determination of Critical Infrastructures Under the BSI Act (BSI Criticism Ordinance–BSI-KritisV); Federal Ministry of the Interior: Berlin, Germany, 2016. [Google Scholar]
- DVGW W 1001; Sicherheit in der Trinkwasserversorgung—Risiko- und Krisenmanagement. Deutscher Verein des Gas- und Wasserfaches e.V. (DVGW): Bonn, Germany, 2020; ISSN 0176-3504.
- DVGW W 1020; Empfehlungen und Hinweise für den Fall von Abweichungen von Anforderungen der Trinkwasserverordnung; Maßnahmeplan und Handlungsplan. Deutscher Verein des Gas- und Wasserfaches e.V. (DVGW): Bonn, Germany, 2018; ISSN 0176-3504.
- DVGW W 1050; Objektschutz von Wasserversorgungsanlagen. Deutscher Verein des Gas- und Wasserfaches e.V. (DVGW): Bonn, Germany, 2019; ISSN 0176-3504.
- DWA. DWA TSM—Technical Safety Management. Available online: https://en.dwa.de/en/tsm.html (accessed on 7 July 2022).
- European Commission Proposal for a Directive of the European Parliament and the Council on the Resilience of Critical Entities. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0829 (accessed on 31 January 2024).
- Aven, T. The Risk Concept—Historical and Recent Development Trends. Reliab. Eng. Syst. Saf. 2012, 99, 33–44. [Google Scholar] [CrossRef]
- Renn, O.; Laubichler, M.; Lucas, K.; Kröger, W.; Schanze, J.; Scholz, R.W.; Schweizer, P.-J. Systemic Risks from Different Perspectives. Risk Anal. Off. Publ. Soc. Risk Anal. 2022, 42, 1902–1920. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Sarmah, T.; Dabral, A.; Chatterjee, R.; Shaw, R. Unpacking Systemic, Cascading, and Compound Risks: A Case Based Analysis of Asia Pacific. Prog. Disaster Sci. 2023, 18, 100285. [Google Scholar] [CrossRef]
- Ritsema, J.; Lay, T.; Kanamori, H. The 2011 Tohoku Earthquake. Elements 2012, 8, 183–188. [Google Scholar] [CrossRef]
- Łój-Pilch, M.; Zakrzewska, A.; Zielewicz, E. Risk Assessment Analysis in a Municipal Wastewater Treatment Plant. Proceedings 2019, 16, 18. [Google Scholar] [CrossRef]
- Hauser, A.; Sathrugnan, K.; Roedler, F. Managing Risks in Advanced Wastewater Treatment Plants. Water Pract. Technol. 2015, 10, 305–311. [Google Scholar] [CrossRef]
- Tušer, I.; Oulehlová, A. Risk Assessment and Sustainability of Wastewater Treatment Plant Operation. Sustainability 2021, 13, 5120. [Google Scholar] [CrossRef]
- Wagner, M.; Strube, I. Risk Management in Wastewater Treatment. Water Sci. Technol. 2005, 52, 53–61. [Google Scholar] [CrossRef]
- Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (BBK). Sicherheit der Trinkwasserversorgung. Teil 1: Risikoanalyse; Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (BBK): Bonn, Germany, 2016. [Google Scholar]
- DIN ISO 31000:2018-10 Risikomanagement–Leitlinien (Risk Management—Guidelines). Beuth Verlag GmbH. Available online: https://www.dinmedia.de/de/norm/din-iso-31000/294266968 (accessed on 8 March 2024).
- LAWA. Analyse Zum Juli-Hochwasser 2021 und Ableitung von Konsequenzen aus Sicht des LAWA-AH; Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA): Berlin, Germany, 2022. [Google Scholar]
- Benford, D.; Halldorsson, T.; Hardy, A.; Jeger, M.J.; Knutsen, K.H.; More, S.; Mortensen, A.; Naegeli, H.; Noteborn, H.; Ockleford, C.; et al. Guidance to Develop Specific Protection Goals Options for Environmental Risk Assessment at EFSA, in Relation to Biodiversity and Ecosystem Services—2016. EFSA J. 2016, 14, e04499. [Google Scholar] [CrossRef]
- Lauwe, P.; Mayer, J.; Geenen, E.M.; Beerlage, I.; Mitschke, T.; Karutz, H.; Adam, B.; John-Koch, M.; Kestermann, C.; Genzwürker, H.; et al. Verhinderung und Vorbereitung. In Bevölkerungsschutz: Notfallvorsorge und Krisenmanagement in Theorie und Praxis; Karutz, H., Geier, W., Mitschke, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 129–223. ISBN 978-3-662-44635-5. [Google Scholar]
- BBK. Definition von Schutzzielen für Kritische Infrastrukturen: Forschungsstand, rechtlicher Rahmen und politische Entscheidungsfindung: Forschung im Bevölkerungsschutz: Wissenschaftlicher Abschlussbericht, BBK-Projekt-Nr.: FP 417, Abschlussdatum: 09/2019; Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (BBK): Bonn, Germany, 2021. [Google Scholar]
- BSI. Nutzung des branchenspezifischen Sicherheitsstandards Wasser/Abwasser (B3S WA) in Verbundunternehmen; Bundesamt für Sicherheit in der Informationstechnik (BSI): Bonn, Germany, 2018. [Google Scholar]
- Bundesministerium des Innern. Nationale Strategie Zum Schutz Kritischer Infrastrukturen (KRITIS-Strategie); Bundesministerium des Innern: Berlin, Germany, 2009. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015; 37p. [Google Scholar]
- Fekete, A. Critical Infrastructure and Flood Resilience: Cascading Effects Beyond Water. WIREs Water 2019, 6, e1370. [Google Scholar] [CrossRef]
- Trávníček, P.; Junga, P.; Kotek, L.; Vítěz, T. Analysis of Accidents at Municipal Wastewater Treatment Plants in Europe. J. Loss Prev. Process Ind. 2022, 74, 104634. [Google Scholar] [CrossRef]
- NRC. Improving the Nation’s Water Security; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10566-8. [Google Scholar]
- Beck, J.; Bertzbach, F.; Eller, M.; Geyler, S.; Hedrich, R.; Holländer, R.; Jansky, N.; Keber, H.; Krause, S.; Lux, A.; et al. Leitfaden NaCoSi—Der Weg zum Nachhaltigkeitscontrolling in der Siedlungswasserwirtschaft; Technische Universität Darmstadt: Darmstadt, Germany, 2016. [Google Scholar]
- UNDRR. Our World at Risk: Global Assessment Report on Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2022; 236p. [Google Scholar]
- Flaus, J.-M. Risk Analysis; ISTE: London, UK, 2013; ISBN 1-118-79002-2. [Google Scholar]
- Johansson, J. Risk and Vulnerability Analysis of Interdependent Technical Infrastructures. Ph.D. Thesis, Lund University, Lund, Sweden, 2010. [Google Scholar]
- Alex, M.; Muthukumar, K. Hazard Identification and Risk Assessment in Sewage Treatment Plant. Int. Res. J. Eng. Technol. (IRJET) 2021, 8, 2989–2994. [Google Scholar]
- Erdem, F. Risk Assessment with The Fuzzy Logic Method for Ankara OIZ Environmental Waste Water Treatment Plant. Turk. J. Eng. 2021, 6, 268–275. [Google Scholar] [CrossRef]
- DWA-M 103; Hochwasserschutz für Abwasseranlagen. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA): Hennef, Germany, 2013; ISBN 978-3-96862-320-7.
- Hochrainer-Stigler, S.; Schinko, T.; Hof, A.; Ward, P.J. Adaptive Risk Management Strategies for Governments under Future Climate and Socioeconomic Change: An Application to Riverine Flood Risk at the Global Level. Environ. Sci. Policy 2021, 125, 10–20. [Google Scholar] [CrossRef]
- Greener, I. Understanding NHS Reform: The Policy-Transfer, Social Learning, and Path-Dependency Perspectives. Gov. Int. J. Poilcy Adminstration Instituitions 2002, 15, 161–183. [Google Scholar] [CrossRef]
- OECD. The Nature of Policy Change and Implementation: A Review of Different Theoretical Approaches; Organization for Economic Cooperation and Development (OECD): Paris, France, 2013. [Google Scholar]
- McLaughlin, M.W. Learning from Experience: Lessons from Policy Implementation. Educ. Eval. Policy Anal. 1987, 9, 171–178. [Google Scholar] [CrossRef]
- Miceli, A.; Hagen, B.; Riccardi, M.; Sotti, F.; Settembre Blundo, D. Thriving, Not Just Surviving in Changing Times: How Sustainability, Agility and Digitalization Intertwine with Organizational Resilience. Sustainability 2021, 13, 2052. [Google Scholar] [CrossRef]
- Herbane, B.; Elliot, D.; Swartz, E.M. Business Continuity Management: Time for a Strategic Role? Long Range Plan. 2004, 37, 435–457. [Google Scholar] [CrossRef]
- BSI-Standard 200-4; Reguvis Fachmedien GmbH. Business Continuity Management: Köln, Germany, 2023.
Emergency Plans | Basic Coverage WWTP | Economic and Financial Protection |
---|---|---|
|
|
|
Explanation | Example for WWTP | |
---|---|---|
Protected good and protection goals | General protection goal | Population |
Strategic protection goal | Target area, Prevention/emergency planning Stakeholder groups; who defines the protection goal? | Treatment of wastewater |
Operationalized protection goal | Desired level of protection with subject areas or threshold values | Mechanical equipment of wastewater |
Actor | Responsibility for subsequent implementation of measures | Primarily operator and state |
Measure | Derivation of measures based on the formulated protection goal | Redundancy of equipment, supply with emergency power |
Stressor | Acute | Chronic | |
---|---|---|---|
Internal stressor | Human failure | Operational failure | Operational failure |
Organizational failure | Organizational failure | ||
Negligence | |||
Skill shortage | |||
Degree of Outsourcing | |||
Technical failure | System failure | ||
Software error | |||
Obsolete plant components | |||
External stressor | Natural hazard | Extreme weather events | |
Forest and heath fires | |||
Seismic events | |||
Epidemics/pandemics | |||
Human and technical failure | System failure | Urban creep | |
Operational failure | Operational failure | ||
Terrorism and crime | Sabotage | ||
Terrorism | |||
Other crimes | |||
Wars | |||
Other stressors | Market stress | Change of regulation | |
Financial stress | |||
Legal issues |
Subprocess in WWTP System | Components | |
---|---|---|
Structural and functional | Rain and wastewater drainage to the WWTP | Sewer system, pumping stations (other structures, stormwater retention structures, culverts) |
Wastewater drainage in WWTP | Pumps and pipes in WWTP | |
Wastewater treatment—mechanical | Rakes and sieves | |
Wastewater treatment—biological | Compressor, microbiology | |
Wastewater treatment—other | Filter, chemicals | |
Rainwater treatment | Stormwater retention basins, relief basins, mechanical treatment, biological treatment, advanced treatment | |
Sludge treatment | Digester, microbiology | |
Digester gas treatment | Combined heat and power unit | |
Organizational | Communication | Mobile, landline |
Logistics | Staff, operating resources |
Stress | Strategy |
---|---|
Organizational and hierarchical | Cross-training of staff, defining roles and responsibilities |
Structural | Asset management, redundancy, maintenance |
Functional (e.g., biological/chemical) | Process management, advanced process control, early warning systems (simulation and modelling) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pankow, N.; Krause, S.; Schaum, C. Resilience Adaptation Through Risk Analysis for Wastewater Treatment Plant Operators in the Context of the European Union Resilience Directive. Water 2024, 16, 3098. https://doi.org/10.3390/w16213098
Pankow N, Krause S, Schaum C. Resilience Adaptation Through Risk Analysis for Wastewater Treatment Plant Operators in the Context of the European Union Resilience Directive. Water. 2024; 16(21):3098. https://doi.org/10.3390/w16213098
Chicago/Turabian StylePankow, Nora, Steffen Krause, and Christian Schaum. 2024. "Resilience Adaptation Through Risk Analysis for Wastewater Treatment Plant Operators in the Context of the European Union Resilience Directive" Water 16, no. 21: 3098. https://doi.org/10.3390/w16213098
APA StylePankow, N., Krause, S., & Schaum, C. (2024). Resilience Adaptation Through Risk Analysis for Wastewater Treatment Plant Operators in the Context of the European Union Resilience Directive. Water, 16(21), 3098. https://doi.org/10.3390/w16213098