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Abstract: Traditional single prediction models struggle to address the complexity and nonlinear
changes in water quality forecasting. To address this challenge, this study proposed a coupled predic-
tion model (RF-TVSV-SCL). The model includes Random Forest (RF) feature selection, dual signal
decomposition (Time-Varying Filtered Empirical Mode Decomposition, TVF-EMD, and Sparrow
Search Algorithm-Optimized Variational Mode Decomposition, SSA-VMD), and a deep learning pre-
dictive model (Sparrow Search Algorithm-Convolutional Neural Network-Long Short-Term Memory,
SSA-CNN-LSTM). Firstly, the RF method was used for feature selection to extract important features
relevant to water quality prediction. Then, TVF-EMD was employed for preliminary decomposition
of the water quality data, followed by a secondary decomposition of complex Intrinsic Mode Function
(IMF) components using SSA-VMD. Finally, the SSA-CNN-LSTM model was utilized to predict the
processed data. This model was evaluated for predicting total phosphorus (TP), total nitrogen (TN),
ammonia nitrogen (NH3-N), dissolved oxygen (DO), permanganate index (CODMn), conductivity
(EC), and turbidity (TB), across 1, 3, 5, and 7-d forecast periods. The model performed exceptionally
well in short-term predictions, particularly within the 1–3 d range. For 1-, 3-, 5-, and 7-d forecasts, R2

ranged from 0.93–0.96, 0.79–0.87, 0.63–0.72, and 0.56–0.64, respectively, significantly outperforming
other comparison models. The RF-TVSV-SCL model demonstrates excellent predictive capability
and generalization ability, providing robust technical support for water quality forecasting and
pollution prevention.

Keywords: feature selection; secondary decomposition; SSA; LSTM; water quality prediction

1. Introduction

With the rapid development of the global economy and industrialization, water
pollution has become increasingly severe. The deterioration of river water quality has
become a focus of global attention. Water pollution not only threatens the safety of drinking
water for humans but also leads to significant degradation of aquatic ecosystems, affecting
biodiversity and ecological balance. Given the complexity and widespread nature of water
pollution, relying solely on post-event remediation is insufficient to control the resulting
damage effectively. Therefore, establishing an effective water quality prediction system
is essential. By conducting long-term forecasts of water pollutants, potential risk areas
can be identified in a timely manner, thereby reducing the impact of water pollution on
the environment and human health. This is of critical importance for the sustainable
management of global water resources and environmental protection.

To understand future trends in water quality changes, a lot of research has been done
on methods for predicting water quality. Traditional water quality prediction models, like
the Autoregressive Moving Average (ARMA) and the Autoregressive Integrated Moving
Average (ARIMA), perform well when dealing with short-term linear data. However, they
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struggle when facing non-linear or complex systems [1,2]. Additionally, these models often
rely on a large amount of hydrological data, increasing the burden of data collection and
computation. They are also quite sensitive to missing data, which can lead to increased
forecast errors [3,4]. In recent years, with the rapid advancement of artificial intelligence
and machine learning technologies, deep learning neural network models have shown new
potential in long-term water quality forecasting. Many researchers have begun to apply
techniques such as Long Short-Term Memory networks (LSTM) [5–8], Gated Recurrent
Units (GRU) [9–11], and Temporal Convolutional Networks (TCN) [12,13] to construct
water quality prediction models.

However, due to the complex nonlinear relationships among various factors influenc-
ing water quality, including meteorological conditions, geological features, and pollution
sources, traditional single models have shown clear limitations in dealing with this complex-
ity and are often unable to accurately capture the changes in time series data. Multi-feature
prediction models that combine Convolutional Neural Networks and Long Short-Term
Memory networks (CNN-LSTM) have been successfully applied in water quality forecast-
ing due to their advantages in feature extraction, long-term dependency capture, fault
tolerance, and prediction accuracy [14–17]. For example, in a study on water quality at
the Beilun Estuary in Guangxi, China, Yang et al. (2021) used a CNN-LSTM model to
predict pH and ammonia nitrogen (NH3-N), demonstrating the model’s excellent perfor-
mance in handling nonlinear time series predictions and effectively capturing long-term
dependencies through the attention mechanism [17]. Additionally, Barzegar et al. (2020)
applied a CNN-LSTM model to predict dissolved oxygen (DO) and chlorophyll-a (Chl-a)
concentrations in Small Prespa Lake, Greece, and compared it with traditional machine
learning models like support vector regression and decision tree [14]. The results showed
that the CNN-LSTM hybrid model excelled in capturing both high and low concentrations
of water quality variables, particularly outperforming other models in DO prediction.

Nevertheless, relying solely on neural network models still presents certain limita-
tions, especially in terms of long-term forecasting capabilities, which urgently need further
optimization. By combining signal decomposition methods such as Empirical Mode De-
composition (EMD), Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN), Variational Mode Decomposition (VMD), and Time-Varying Filtered
Empirical Mode Decomposition (TVF-EMD) with neural network models to construct
an ensemble model, prediction accuracy can be significantly improved. Among these
methods, EMD may produce mode mixing problems when handling nonlinear and nonsta-
tionary signals [18]. Although CEEMDAN alleviates this issue to some extent by adding
white noise, it has higher computational complexity and is sensitive to outliers [19,20].
In contrast, TVF-EMD and VMD methods are computationally simpler and less prone to
mode mixing during decomposition, making them more effective in improving model
performance [21–23].

However, existing studies [18,24,25] mainly focus on single signal decomposition,
which, although it improves the prediction performance of the model to some extent, still
leaves the Intrinsic Mode Function (IMF) components containing a large amount of complex
signals. Directly using these IMFs for prediction may weaken the model’s predictive ability.

To address this issue, this study proposes a coupled prediction model that integrates
multi-level decomposition and deep learning techniques, including RF, TVF-EMD, VMD,
Sparrow Search Algorithm (SSA), CNN, and LSTM. The model aims to effectively resolve
the incomplete decomposition problem in traditional models and enhance water quality
prediction accuracy. Specifically, the study first employs Random Forest (RF) [26] for
feature selection, followed by initial signal decomposition of water quality data using
TVF-EMD. The most complex IMF components, with the highest noise, are then subjected
to a secondary decomposition using VMD. Finally, the CNN-LSTM model is applied to
predict the high and low-frequency decomposed data, with the parameters of VMD and
CNN-LSTM optimized using the SSA [27]. This paper evaluates the prediction performance
and generalization capability of the proposed model using the total Phosphorus (TP), total
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Nitrogen (TN), ammonia nitrogen (NH3-N), DO, permanganate index (CODMn), electrical
conductivity (EC), and turbidity (TB) indicators from the Sheshui River in the Yangtze
River Basin, across different lead times of 1, 3, 5, and 7 days.

2. Materials and Methods
2.1. Data Source

The water quality data utilized in this study were obtained from the Shekou moni-
toring station (Figure 1), located on the Sheshui River in Wuhan, China. The dataset, pro-
vided by the China National Environmental Monitoring Centre (https://szzdjc.cnemc.cn:
8070/GJZ/Business/Publish/Main.html), covers the period from 1 January 2019 to 31
December 2021. The monitored water quality indicators encompass nine parameters: tem-
perature (Temp), pH, DO, EC, TB, CODMn, NH3-N, TP, and TN. A total of 1050 daily data
entries were collected, with 80% of the data used for model training and the remaining 20%
used for model testing to evaluate performance. To better assess the model’s generalization
ability, this study focused on predicting seven key water quality indicators: TP, TN, NH3-N,
DO, CODMn, EC, and TB. The statistical characteristics of these indicators are presented in
Table 1.
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Table 1. Statistical characteristics of each indicator sequence.

Indicator Sequence
Length/d Maximum Minimum Mean Standard

Deviation

TP (mg/L) 1050 0.20 0.01 0.07 0.02
TN (mg/L) 1050 8.45 0.49 1.60 1.05

NH3-N (mg/L) 1050 3.93 0.05 0.52 0.51
CODMn (mg/L) 1050 6.70 2.16 4.07 0.83

DO (mg/L) 1050 15.54 0.76 7.00 2.99
EC (µS/cm) 1050 407.83 108.00 244.12 54.83
TB (NTU) 1050 125.00 6.32 30.94 17.94

https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html
https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html
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The Sheshui River, a tributary of the Yangtze River, originates from Sanjiao Mountain
in Dawu County, Hubei Province, and flows through Dawu County, Hong’an County,
and Huangpi District before merging into the Yangtze River near Wuhan. The Sheshui
River is 142.14 km long and has a watershed area of 2312 km2. As a crucial drinking water
source, the Sheshui River supplies potable water to approximately 700,000 people along
its banks. Therefore, predicting the temporal variations in water quality indicators in the
Sheshui River is of significant importance for understanding water quality dynamics and
supporting regional economic development.

2.2. Feature Selection Based on Random Forest (RF)

In complex water quality prediction tasks, selecting appropriate features is crucial
for improving the predictive performance of the model. RF is widely used for feature
selection due to its advantages in handling high-dimensional data and capturing complex
relationships between variables [28,29]. RF is a simple and efficient ensemble learning
method based on decision trees, and its feature importance calculation module can deter-
mine the importance of each feature and rank them, providing the advantage of reduced
risk of overfitting during the prediction process [30]. Compared to boosting techniques
(such as LightGBM, XGBoost, and CatBoost), RF utilizes its out-of-bag (OOB) evaluation
mechanism, which more effectively avoids model bias, making the feature selection results
more representative. Additionally, RF can identify the contribution of each feature to the
overall model prediction, and this approach is more stable than other gradient boosting
methods, especially in cases where water quality data are commonly imbalanced and noisy.

By using RF, the importance of other water quality indicators relative to the target
indicator can be calculated, enabling the identification and utilization of the most contribu-
tive features for water quality prediction, thereby laying a solid foundation for subsequent
model construction [31]. The implementation steps of the RF algorithm are as follows.

Step 1: Randomly sample with replacement from dataset NNN, selecting n (n < N)
samples for a total of k iterations to generate k training sets, with the remaining data forming
the OOB dataset.

Step 2: Construct and train a decision tree for each of the k training sets, resulting in K
decision trees, and calculate the voting results of each decision tree on its corresponding
OOB dataset.

Step 3: Sequentially shuffle the features Xi (i = 1, 2, 3, . . ., M, where M is the number
of features in the dataset) in the OOB dataset to create new OOB samples, then use the
established RF model to vote on the new OOB samples and obtain the voting results.

Step 4: Calculate the importance score IMPi for each feature Xi according to Equation (1)
and select features with IMPi > 0.1 as the input variables.

IMPi =
1
K

K

∑
k=1

(Sk + Sk,i) (1)

where IMPi is the importance score, K is the number of decision trees, Sk is the voting result
of each decision tree on its corresponding OOB dataset, and Sk, i is the voting result after
the features have been randomly shuffled in the OOB dataset [32].

2.3. Time-Varying Filtered Empirical Mode Decomposition (TVF-EMD)

In the preprocessing of water quality data, issues such as signal non-stationarity and
noise often lead to a decline in prediction accuracy. The TVF-EMD offers an effective
solution for handling these complex time series data. TVF-EMD effectively addresses the
challenges of mode mixing and low efficiency at low sampling rates encountered in the
traditional Empirical Mode Decomposition (EMD) process [33,34]. It does not require
manual setting of the mode function K and can filter signals during the decomposition
process. The TVF-EMD method utilizes non-uniform B-spline approximations as time-
varying filters to select the cutoff frequencies, improves the stopping criteria, and offers
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complete adaptability [35]. It is suitable for analyzing linear and non-stationary signals
and has gradually been applied to the decomposition of water quality data. The steps for
implementing TVF-EMD are as follows.

Step 1: Use B-spline approximations to calculate the local cutoff frequencies, which
can be expressed as:

φ′
bis(t) =

φ′
1(t) + φ′

2(t)
2

(2)

where φ′
bis(t) is the cutoff frequency, and φ′

1(t) and φ′
2(t) represent the instantaneous

frequency components. To address the mode mixing issue, the local cutoff frequencies
φ′

bis(t) need to be adjusted.
Step 2: Reconstruct the signal φ′

bis(t), obtaining a new signal g(t), and further filter
the input signal using time-varying filters to derive the local mean function.

Step 3: Check whether the residual signal meets the stopping criterion. When the
stopping criterion θt (Equation (3)) is less than or equal to the set threshold ε, an IMF can
be determined, indicating that the stopping condition is satisfied.

θt =
BLoughlin(t)

φavg(t)
(3)

where BLoughlin(t) represents Loughlin’s instantaneous bandwidth, and φavg(t) is the
weighted average of the instantaneous frequencies.

2.4. Sparrow Search Algorithm (SSA)

The SSA, as an emerging swarm intelligence optimization algorithm, has gained
significant attention due to its performance in global search and local optimization [36].
The core concept of SSA is to divide the sparrow population into three roles: discoverers,
joiners, and scouters. Each role has different tasks within the algorithm, and they work
together to complete the optimization process [37–39].

The primary task of the discoverers is to search for food, providing foraging areas
and food sources for the entire sparrow population. In each iteration of the algorithm,
discoverers continuously explore new solutions by updating their positions. The position
update is as shown in Equation (4).

Xt+1
i,j =

{
Xt

i,j· exp(− i
αtmax ) i f R2 < ST

Xt
i,j + QL i f R2 ≥ ST

(4)

where Xt
i,j represents the position information of the j-th dimension of the i-th sparrow in

the t-th iteration; tmax is the maximum number of iterations; α is a random number in the
range [0, 1]; ST is a constant within the range [0.5, 1], representing the safety threshold; R2
is a random value within the range [0, 1], representing the alert value. When R2 < ST, the
environment is safe for foraging, and the searchers continue searching for food. Conversely,
when R2 ≥ ST, the scouters issue an alert, and the searchers stop searching and immediately
flee to a safe area; Q is a random number following a normal distribution, and L is a 1 × d
matrix where all elements are 1 [40].

The main task of the joiners is to follow the discoverers to obtain food and adjust their
positions during the process to seek the optimal solution. The position update for joiners is
as shown in Equation (5).

Xt+1
i =

 Q· exp(
Xt

worst−Xt
i,j

i2 ) i f i > n
2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣·A+·L i f i ≤ n
2

(5)

where Xt
worst is the worst individual in the t-th iteration; Xt

p is the position of the best
searcher in the (t + 1)-th iteration; A is a 1 × d matrix with elements randomly assigned as
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1 or −1; A+ is a matrix that satisfies A+ = AT(AAT)−1; n is the number of joiners. When
i > n/2, it indicates that the current sparrow position is poor and it needs to fly farther to
forage. When i ≤ n/2, it indicates that the current sparrow position is good, and it only
needs to move closer to the best-positioned sparrow [21].

The task of the scouters is to issue alerts when the group is in danger and lead the
entire group to safety. The movement of the scouters is as shown in Equation (6).

Xt+1
i,j =


Xt

best + β
∣∣∣Xt

i,j − Xt
best

∣∣∣ i f fi > fg

Xt
i,j + K

( ∣∣∣Xi
i,j−Xi

worst

∣∣∣
f i− f w+ε

)
i f fi = fg

(6)

where Xt
best represents the position of the best individual in the t-th iteration; β is a random

number following a normal distribution with a mean of 0 and a standard deviation of
1; K is a random number in the range [−1, 1], where the sign indicates the direction of
the sparrow’s movement and the magnitude controls the step size; fi is the fitness value
of the current individual; fg is the maximum fitness value in the current group; and fw
is the minimum fitness value in the current group; ε is a small constant to prevent the
denominator from being zero [41,42].

2.5. Variational Mode Decomposition (VMD)

VMD is an adaptive and fully non-recursive method for decomposing modes, pri-
marily used to process complex, nonlinear, and non-stationary time series signals. VMD
adaptively determines the number of modes to be decomposed, effectively separating the
signal components and reducing the non-stationarity of the signal. The performance of the
decomposition mainly depends on the number of modes K and the penalty factor α [43].

The primary task of VMD is to decompose the original signal into multiple mode
components, each corresponding to a specific frequency range. VMD achieves this by
formulating a variational problem, with the steps as follows (Equations (7) and (8)).

min
{uk},{wk}

{∑
k

∥∥∥∂t[(δt + j/πt) ∗ uk(t)]e−jwkt
∥∥∥2

2
} (7)

s.t.
K

∑
K=1

uk(t) = f (t) (8)

where K is the number of modes to be decomposed; uk(t) is the k-th mode component after
decomposition; wk is the center frequency of the k-th mode component; δt is the Dirac delta
function; ∗ denotes the convolution operator; f (t) is the original signal; [(δt + j/πt) ∗ uk(t)]
is the analytic signal of the original signal; e−jwkt shifts the spectrum to the base frequency
band, and j is the imaginary unit [44].

To obtain the optimal solution to the VMD problem, the Lagrange multiplier λ and
penalty factor α are introduced, transforming the constrained variational problem into
an unconstrained variational problem. The augmented Lagrangian function is shown in
Equation (9). On this basis, the Alternating Direction Method of Multipliers (ADMM)
is used to iteratively update the mode components and center frequencies, as shown in
Equations (10) and (11).

L({uk, wk, λ) = α∑
k

∥∥∥∂t[(δt + j/πt) ∗ uk(t)]e−jwkt
∥∥∥2

2
+

∥∥∥∥∥ f (t)− ∑
k

uk(t)

∥∥∥∥∥
2

2

+ ⟨λ(t), f (t)− ∑
k

uk(t)⟩ (9)

∧
u

n+1

k (t) = IFFT


∧
f (w)− ∑ i ̸= k

∧
ui(w) +

∧
λ(w)

2
1 + 2α(w − wk)

2

 (10)
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wn+1
k (t) =

∫ ∞
0 w

∣∣∣∧uk(w)
∣∣∣2dw∫ ∞

0

∣∣∣∧uk(w)
∣∣∣2dw

(11)

where
∧
u

n+1

k (w) is the Wiener filter of the residual signal; w is the frequency; IFFT is the

inverse Fourier transform;
∧
f (w) and

∧
λ(w) are the Fourier transforms of the original signal

and the k-th mode component, respectively [45].
A key limitation of VMD lies in its sensitivity to the selection of initial parameters,

such as the number of modes and penalty factors, which directly affect the quality of the
decomposition results. To address this issue, we employed the SSA to optimize VMD
parameters. As an optimization algorithm based on swarm intelligence, SSA has strong
global search capabilities, effectively avoiding local optima and ensuring the discovery of
the globally optimal parameter combination for VMD, thus improving the accuracy of the
decomposition. Additionally, the automated parameter optimization process using SSA
reduces the subjectivity and limitations of manual tuning, further enhancing the accuracy
and robustness of the model.

2.6. Neural Networks (CNN)

CNN has become a crucial tool in the field of deep learning due to their outstanding
performance in image recognition and time series processing. In water quality prediction,
CNN can enhance model accuracy by extracting local features [8]. The convolutional
and pooling layers in a CNN model are specially designed data processing layers that
alternate to better extract local features from the data and reduce the dimensionality of
the features [46]. The principle of CNN is illustrated in Figure 2, and the convolution
calculation formula is as shown in Equation (12).

T(i, j) =
n

∑
k=1

(Xk, Wk)(i, j) (12)

where T represents the time feature sequence after convolution; n is the length of the input
data; Xk, and Wk is the convolution kernel function sequence [17].
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2.7. Long Short-Term Memory (LSTM)

LSTM is a special type of Recurrent Neural Network (RNN) with excellent perfor-
mance in capturing long-term dependencies in time series data. Compared to traditional
RNNs, LSTM introduces three gating units (forget gate, input gate, and output gate) and a
cell state, which effectively address the issues of vanishing and exploding gradients, allow-



Water 2024, 16, 3099 8 of 21

ing the network to maintain stable training performance over longer time sequences [47].
The structure of the LSTM hidden layer is shown in Figure 3.
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The forget gate determines which information to discard from the cell state. It reads
the previous output ht-1 and the current input xt, then generates a vector ft through a
Sigmoid function, with values ranging from 0 to 1. Each value in this vector represents
the degree to which the information is retained, where values closer to 0 indicate more
information is discarded, and values closer to 1 indicate more information is retained. This
vector is then multiplied by the cell state Ct−1 to determine which information should be
forgotten. The forget gate calculation is expressed by Equation (13).

ft = σ(W f ·[ht − 1, xt] + b f ) (13)

where Wf is the weight matrix of the forget gate, b f is the bias vector of the forget gate, and
σ denotes the Sigmoid activation function.

The input gate determines how new information will be updated into the cell state. It
consists of two parts: the first part is a Sigmoid layer, called the “input gate layer,” which
decides which values will be updated; the second part is a tanh layer, which generates

a new candidate value vector
∼
C(t) that will be added to the cell state. The input gate

calculation process is shown in Equations (14) and (15):

it = σ(Wi·[ht−1, xt] + bi) (14)

∼
Ct = tanh(Wc·[ht−1, xt] + bc) (15)

where Wi and Wc are the weight matrices for the input gate and the candidate values,
respectively; bi and bc are the corresponding bias vectors; and tanh represents the hyperbolic
tangent activation function.

The cell state is the key to LSTM, as it carries the accumulated information from a
sequence of time steps. The new cell state Ct is derived by multiplying the previous cell
state Ct−1 by the forget gate’s output f t, and then adding the result of the input gate’s

output it multiplied by the candidate value
∼
C(t). This represents the memory update at

the current time step, as expressed by Equation (16).

Ct = ft·Ct − 1 + it·
∼
Ct (16)

The output gate determines the content of the hidden state ht at the current time
step. It first computes the output based on the current cell state, then passes it through a
Sigmoid layer to decide which parts of the information will be output. Finally, the cell state
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is processed by a tanh function and multiplied by the output of the Sigmoid layer to obtain
the final output ht . This process is described by Equations (17) and (18).

ot = σ(Wo[ht−1, xt] + bo) (17)

ht = ot·tanh(Ct) (18)

where WO is the weight matrix of the output gate, and bO is the bias vector of the output
gate [48].

In this study, CNN was first employed to process the data and extract important local
feature relationships, reducing the dimensionality of the features. The processed data was
then input into LSTM for time-series prediction. Additionally, SSA was used to optimize
the parameters of LSTM, further enhancing the ability of the CNN-LSTM combination
to handle complex nonlinear data. This approach improves adaptability and robustness,
making the model capable of coping with dynamic water quality environments.

2.8. Evaluation Metrics and Model Workflow

To describe the accuracy of the model’s predictions, regression model evaluation
metrics were used: the coefficient of determination R2 (goodness of fit), mean absolute
error (MAE), and root mean square error (RMSE) (Equations (19)–(21)).

R2 = 1 −
∑
i
(y′ i − yi)

2/n

∑
i
(yi − yi)

2/n
(19)

MAE =

m
∑

i=1

∣∣yi − y′i
∣∣

m
(20)

RMSE =

√√√√√ m
∑

i=1
(y′ i − yi)

2

m
(21)

where yi, yi
′ and yi represent the actual value, the predicted value and the mean of the

actual values, respectively; i is the sample index, and n is the number of samples.
The water quality prediction coupled model developed in this study consists of three

parts: feature selection (RF), dual signal decomposition (TVF-EMD and SSA-VMD), and
prediction (SSA-CNN-LSTM), referred to as RF-TVSV-SCL. The workflow of the model is
illustrated in Figure 4, covering all stages of data processing, model training, and evaluation.
The specific steps are as follows: First, RF is used for feature selection to extract key features
relevant to water quality prediction. Then, in the data preprocessing stage, TVF-EMD is
applied to initially decompose the water quality data. The resulting IMF components, which
may contain complex signals, are further decomposed using the SSA-VMD. Finally, the
SSA is used to optimize the CNN-LSTM to predict the data processed in the previous step.
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3. Results and Discussion

All models in this study were run on a Windows 11 operating system with an Intel
Core i5 processor and 8GB of RAM, using Python 3.6 and the PyTorch machine learning
library for model predictions.

3.1. RF Feature Selection Results

Before training the model, we used the RF algorithm to calculate the importance of
various features in relation to the target variable [49]. In the feature selection process, the
number of decision trees (n-estimators) was set to 200, the maximum number of features
(max-features) was set to 8, the minimum number of samples required to split a node (min-
samples-split) was set to 2, and the minimum number of samples required for each leaf
node (min-samples-leaf) was set to 1, with all other hyperparameters set to default values.

Based on the importance evaluation, features that were irrelevant or redundant to the
target variable were removed, and those with an importance value greater than 0.1 were
selected as the optimal input feature set for the model. The results of the feature selection
are shown in Table 2.

3.2. TVF-EMD Decomposition and Dimensionality Reduction

The target sequence was decomposed using the TVF-EMD algorithm. This algorithm
adaptively decomposes the target sequence into IMFs of different frequencies. During the
decomposition, the B-spline order was set to 26, the smoothing factor α was set to 0.5, and
the tolerance sift-tol was set to 10−5, with all other parameters kept at their default values.
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Table 2. Feature selection results.

Indicator Optimal Feature Set

TP CODMn, EC, NH3-N, TN, TP
TN EC, NH3-N, TN

NH3-N EC, TN, NH3-N
CODMn Temp, EC, TP, CODMn

DO Temp, pH, DO
EC NH3-N, TP, pH, EC
TB NH3-N, DO, TB

Sample entropy is an algorithm used to characterize the complexity of a signal’s time
series [50]. A sample entropy value closer to 0 indicates that the time series is simpler
and more regular. A larger sample entropy value indicates that the time series is more
prone to change, meaning it is more complex, less stationary, and less predictable. After the
TVF-EMD decomposition, the sample entropy of the IMFs generated for each indicator was
calculated, with the results shown in Table 3. The complexity of the IMFs for each indicator
gradually decreased and eventually stabilized. To improve the efficiency of the prediction
model and reduce the total number of prediction sequences, dimensionality reduction was
performed. Based on the entropy values, IMFs obtained from IMF5 to IMF8 (or IMF5 to
IMF7) were reconstructed into Co-IMF5. The decomposition results of the indicators after
signal dimensionality reduction are shown in Figure 5.

Table 3. Sample entropy values.

IMF Component TP TN NH3-N CODMn DO EC TB

IMF1 0.972 0.726 0.891 1.055 1.044 0.863 0.871
IMF2 0.594 0.511 0.460 0.592 0.723 0.522 0.508
IMF3 0.514 0.180 0.321 0.454 0.551 0.444 0.504
IMF4 0.414 0.135 0.257 0.289 0.418 0.195 0.305
IMF5 0.098 0.061 0.093 0.097 0.091 0.086 0.096
IMF6 0.076 0.032 0.048 0.018 0.046 0.022 0.053
IMF7 0.029 0.003 0.026 0.004 0.008 0.002 0.022
IMF8 0.001 - 0.001 - - - 0.006

3.3. SSA-VMD Decomposition Results

As shown in Table 3, among the IMFs generated by the decomposition of each indicator,
IMF1 has the highest entropy value, indicating the highest complexity in the signal. To
improve the predictive performance of the model and reduce the complexity of the time
series, IMF1 was subjected to a secondary decomposition using SSA-VMD to reduce its
entropy value [51]. The minimum sample entropy of each IMF was used as the fitness
function to optimize the VMD parameters, including the penalty factor α and the number
of IMF components k, through the SSA.

The main parameter settings were as follows: the SSA algorithm used a population
size of 20 and 50 iterations; the VMD algorithm had a penalty factor α range of [500, 3000],
k was set to [3, 12], the noise tolerance τ was set to 0, the direct current component was set
to 0, the initial modal center frequency was set to 1, and the control error tolerance was set
to 10−7. Using SSA-VMD, IMF1 of all indicators was further decomposed into 5 IMFs. The
decomposition results are shown in Figure 6.
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3.4. RF-TVSV-SCL Prediction Results

The water quality indicators after feature selection, dual decomposition and normal-
ization, were input into the SSA-CNN-LSTM (SCL) model to predict for forecast periods of
1 d, 3 d, 5 d, and 7 d. In the CNN part of the SCL model, the fully connected layer had an
output dimension of 64, the activation function was Relu, and the convolution kernel size
was 9. In the LSTM part, the LSTM network and fully connected layer were used for time
series data modeling, with the loss function set to Huber and the optimizer to Adam. For
the SSA part, the population size was set to 20, and the maximum number of iterations was
set to 300. The training loss parameters for the CNN-LSTM models of each indicator are
shown in Table 4, and the hyperparameter ranges for the SSA-optimized LSTM model are
provided in Table 5.

Table 4. Training loss parameters for CNN-LSTM models of each indicator.

Indicarors TP TN NH3-N DO CODMn EC TB

Training loss
threshold 0.0015 0.001 0.2 0.3 0.04 0.5 0.4

Table 5. SSA-Optimized LSTM model parameters.

Model Modal
Component

Count of
Neurons Dropout Rate Batch Size Learning

Rate
Maximum Number of

Training Iterations

TVF-EMD
(IMF1)

S-VMD1 [32, 256] [0, 0.3] [8, 32] 0.001 200
S-VMD2 [32, 256] [0, 0.3] [8, 32] 0.001 200
S-VMD3 [32, 256] [0, 0.3] [8, 32] 0.005 150
S-VMD4 [32, 256] [0, 0.3] [8, 32] 0.005 150
S-VMD5 [32, 256] [0, 0.3] [8, 32] 0.005 150

TVF-EMD
(IMF2) IMF2 [32, 256] [0, 0.3] [8, 32] 0.005 100

TVF-EMD
(IMF3) IMF3 [16, 128] [0, 0.3] [8, 32] 0.01 100

TVF-EMD
(IMF4) IMF4 [16, 128] [0, 0.3] [8, 32] 0.01 100

TVF-EMD
(Co-IMF5) Co-IMF5 [16, 128] [0, 0.3] [8, 32] 0.01 100

Table S1 in Supplementary Information summarizes the predictive performance of
different models on various indicators across different forecast periods. The proposed
RF-TVSV-SCL model achieved R2 values of 0.93–0.96 for 1-d, 0.79–0.87 for 3-d, 0.63–0.72
for 5-d, and 0.56–0.64 for 7-d forecast periods across different water quality indicators.
The MAE and RMSE values also showed similar trends, indicating that as the forecast
period increases, the model’s predictive accuracy gradually decreases (with increasing
error). Generally, an R2 value of 0.7 or above is considered acceptable in water quality
prediction. Therefore, it is evident that the model performs exceptionally well in water
quality predictions for 1–3 day forecast periods, with high predictive accuracy. The high R2

values indicate that the model effectively captures water quality variations at these time
scales. However, the model shows certain limitations in water quality predictions for 5-d
and 7-d forecast periods.

3.5. Comparison of Model Performance

To fully validate the performance of the RF-TVSV-SCL model, five comparison models
(TVSV-SCL, RF-SCL, RF-TV-SCL, RF-SV-SCL, and RF-CE-SCL) were established. In these
model names, RF, TVSV, and SCL represent the Random Forest feature selection mod-
ule, dual decomposition module based on TVF-EMD and SSA-VMD, and the prediction
module based on SSA-CNN-LSTM, respectively. TV, SV, and CE represent TVF-EMD, SSA-
VMD, and CEEMDAN, each being a single decomposition module. The parameters for
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CEEMDAN were set as follows: standard deviation threshold = 0.2, iteration count = 500,
maximum iteration count = 5000, with all other parameters set to default. All other models
retained their parameter settings the same as those of the RF-TVSV-SCL model. Taking TP
as an example, Figures 7 and 8 illustrate the test set predictions of different models for 1,
3, 5, and 7-day forecast periods. The prediction results for other indicators (TN, NH3-N,
DO, CODMn, EC, and TB) are presented Figures S1–S6 and Table S1 in Supplementary
Information.
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3.5.1. Validating the Effectiveness of Feature Selection

To reduce the training difficulty, the RF module was first used to select features
from the original water quality indicators before signal decomposition and prediction.
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To validate the effect of RF feature selection on improving model prediction accuracy, a
comparison was conducted between the RF-TVSV-SCL model and the TVSV-SCL model.

As shown in Figure 7, it is evident that the TP prediction curve of the RF-TVSV-SCL
model more closely matches the actual observation values. Additionally, as shown in
Figure 8, the RF-TVSV-SCL model, after feature selection, achieved significantly higher
prediction accuracy for the TP indicator at a 1-d forecast period (R2 = 0.95, MAE = 0.004,
RMSE = 0.005) compared to the TVSV-SCL model without feature selection (R2 = 0.848,
MAE = 0.007, RMSE = 0.008). The RF-TVSV-SCL model also performed better at 3-d, 5-d,
and 7-d forecast periods. This demonstrates that RF feature selection effectively improves
model prediction accuracy by removing irrelevant or redundant features.

3.5.2. Validating the Effectiveness of Dual Decomposition

To validate the effectiveness of dual decomposition, the RF-TVSV-SCL model was
compared with models containing single decomposition (RF-TV-SCL, RF-SV-SCL, and
RF-CE-SCL) and a model without decomposition (RF-SCL). Overall, the TP prediction
accuracy was ranked as follows: dual decomposition models > single decomposition
models > no decomposition model. Compared to RF-SCL, the RF-TVSV-SCL model’s R2

values improved by 7.72%, 11.87%, 25.89%, and 45.43% for 1-d, 3-d, 5-d, and 7-d forecast
periods, respectively. Among the single decomposition models, the prediction accuracy
for TP was ranked as follows: RF-TV-SCL > RF-SV-SCL > RF-CE-SCL. This indicates that,
in terms of signal decomposition, TVF-EMD performed the best, followed by SSA-VMD,
with CEEMDAN performing the weakest. TVF-EMD excels in handling nonlinear and non-
stationary signals, making it the most effective in extracting information relevant to water
quality prediction, leading to the highest prediction accuracy. Although SSA-VMD also has
good decomposition capabilities, its performance may be affected by over-decomposition
or computational complexity. While CEEMDAN provides a basic decomposition method,
its weaker noise resistance and mode separation capabilities result in relatively lower
prediction accuracy.

The RF-TVSV-SCL model, with dual decomposition, combines TVF-EMD and SSA-
VMD, enabling more comprehensive feature extraction, effective noise suppression, and
the capture of complex nonlinear relationships, thereby enhancing the model’s robustness.
These advantages make it significantly superior to single decomposition models and the
no decomposition model in terms of prediction accuracy.

Figure 9 shows the distribution of standardized residuals for the RF-TVSV-SCL model
in predicting TP across different forecast periods. In all four forecast periods, more than
95% of the residuals fell within the confidence interval of [−2, 2] (i.e., the area between the
two red dashed lines in Figure 9), indicating that the model performed well in all forecast
periods. However, the model demonstrates higher accuracy and stability in short-term
forecasts (1–3 d). As the forecast period extends, while the majority of residuals remain
within the confidence interval, the errors gradually increase, and the model’s predictive
stability declines, particularly in the 5-d and 7-d forecast periods.

Furthermore, based on the comparison of predicted and actual observation values in
Figures S1–S6 and the prediction accuracy shown in Table S1 in Supplementary Information,
the RF-TVSV-SCL model exhibited the best prediction performance among all tested models
for the other six water quality indicators (TN, NH3-N, DO, CODMn, EC, and TB). It also
excelled in water quality predictions for 1–3 day forecast periods. Specifically, for the 1-d
forecast period, the R2 values for these six indicators were 0.951, 0.958, 0.949, 0.953, 0.930,
and 0.941, respectively; for the 3-d forecast period, the R2 values were 0.810, 0.798, 0.836,
0.820, 0.786, and 0.870, respectively; and for the 5-d forecast period, the R2 values exceeded
0.7 for all indicators except DO and EC.
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Thus, the RF-TVSV-SCL model developed in this study demonstrates strong gener-
alization capabilities, making it suitable for predicting most conventional water quality
indicators and providing reliable decision support for water pollution prevention in forecast
periods of at least 3 days.

3.6. Discussion

The RF-TVSV-SCL model developed in this study demonstrated excellent performance
in water quality prediction, particularly in short-term forecasts (1-d and 3-d periods). It
significantly outperformed other models in predicting key water quality indicators such as
TP, TN, NH3-N, DO, CODMn, EC, and TB. The model’s superior performance in short-term
forecasts can be attributed to several key factors.

First, the RF feature selection module effectively eliminated redundant or irrelevant
features, simplifying the data and reducing noise interference [28]. This improved the
model’s training efficiency and prediction accuracy. As water quality data tends to exhibit
more stability over short periods, the RF feature selection enabled the model to identify the
most relevant variables associated with the prediction target, ensuring high accuracy in
short-term forecasts.

Second, the dual signal decomposition methods (TVF-EMD and SSA-VMD) signif-
icantly enhanced the model’s noise resistance and decomposition accuracy. TVF-EMD
adaptively decomposed the nonlinear and non-stationary water quality data to extract key
features [52], while SSA-VMD further optimized the decomposition results, reducing mode
mixing and noise interference [53]. This dual decomposition approach effectively captured
the complex relationships within the water quality data, allowing the model to maintain
high prediction accuracy in the short term.
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However, the model’s performance declined in the 5-d and 7-d forecast periods, which
may be attributed to the increasing unpredictability of external environmental factors
(e.g., climate change, pollution inputs, fluctuations in river flow) as the forecast period
extends. These factors have a greater impact on water quality variability over longer
timeframes, reducing the model’s prediction accuracy in long-term forecasts. Additionally,
the performance of the signal decomposition methods in long-term forecasts presents
certain limitations. As the time series extends, the increasing nonlinearity and complexity
of the data may lead to decreased decomposition accuracy or over-decomposition, thereby
affecting prediction precision.

To further enhance long-term prediction performance, future research could incor-
porate additional external environmental data, such as meteorological data, watershed
hydrological data and watershed pollution sources, to improve the model’s ability to
capture long-term trends. Moreover, continued optimization of the signal decomposition al-
gorithms would help reduce noise interference and further improve the model’s long-term
prediction accuracy.

4. Conclusions

To address the nonlinearities and complexities in time-series water quality data, this
paper proposes a hybrid model, RF-TVSV-SCL, to enhance the accuracy of surface water
quality predictions. TP, TN, NH3-N, DO, CODMn, EC, and TB data from the Sheshui River in
the Yangtze River Basin were used for 1, 3, 5, and 7-d forecast periods, and the results were
compared with five other hybrid models. The comparison reveals the following advantages
and features of the proposed model: (1) The RF feature selection module effectively elimi-
nates irrelevant or redundant features, improving the prediction accuracy of TP by 11.9%,
26.0%, 18.8%, and 19.7% for 1, 3, 5, and 7-day forecast periods, respectively, compared to
models without feature selection. (2) The dual signal decomposition process enhances the
model’s noise resistance, decomposition accuracy, and reduces the risk of mode mixing,
resulting in an increase in TP prediction accuracy by 7.72%, 11.87%, 25.89%, and 45.43%.
(3) The model precisely captures short-term water quality changes, demonstrating superior
prediction performance for the 1-d and 3-d forecast periods. (4) The model is applicable
to multiple water quality indicators, showing excellent generalization performance. This
model compensates for the limitations of single algorithms in water quality prediction and
demonstrates strong adaptability and application potential, providing valuable decision
support for pollution control and water environment planning.

However, the model still has some limitations, such as slightly weaker long-term
forecasting ability (5 and 7-d periods). The nonlinearities and complexities in water qual-
ity data are relatively stable in the short term, but as the forecast period extends, more
unpredictable external factors (e.g., climate change, pollution sources) may arise, making
it difficult for the model to capture these changes, which leads to decreased prediction
accuracy over the long term. In the future, external environmental factors, such as meteoro-
logical, hydrological, and pollution sources, could be incorporated as input variables to
enhance the model’s ability to identify long-term trends. Further optimization of signal
decomposition algorithms would also help reduce noise and improve accuracy.
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