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Abstract: The process pump as turbine (PPAT) serves as a crucial component for recovering high-
pressure energy from mediums used in chemical and refining processes. Ensuring the long-term
safe and stable operation of PPAT in high-temperature and high-pressure environments is essential,
with pressure pulsation being one of its most significant external characteristic indicators. This
study investigates the evolution of vortex structure distribution and the generation and propagation
mechanisms of pressure pulsation in a two-stage PPAT operating in turbine mode. Results indicate
that the uniformity of the pressure coefficient (Cp) gradient distribution is poorer in the first stage
runner compared to the second stage, with a larger distribution area of high-strength vortices. In
the draft tube, vortex strength increases with rising flow rates, and the flow around the circular
cylinder on one side gradually develops to both sides. In the two-stage diffusers, the primary source
of pressure pulsation is the dynamic and static interference effect between the two impellers and
the corresponding diffuser tongue. The interstage interference with a frequency of n*15fn is most
pronounced in the inflow runner, gradually weakening along the flow direction, and ultimately
disappearing in the draft tube. In addition, more low-frequency signals with a frequency of 0.5fn are
captured in the draft tube under large flow conditions, which is mainly generated by the vortex band
in the draft tube. The low-frequency pulsation energy is high and the attenuation is slow, which has
a great destructive effect on the energy recovery system of the PPAT.

Keywords: pump as turbine; turbine mode; pressure pulsation; rotor–stator interaction; interstage interference

1. Introduction

The chemical process pump as turbine (PPAT) is a vital infrastructure component
for recovering high-pressure energy from mediums used in chemical and refining pro-
cesses [1,2]. When the impeller rotates forward, it functions as a pump, providing energy
for the flow of media within the chemical refining system. Conversely, when the impeller
rotates in reverse, it operates as a turbine, converting the system’s high-pressure residual
energy into electrical energy [3,4]. To ensure the safe operation of chemical process systems
in high-temperature and high-pressure environments, the PPAT must exhibit high relia-
bility and long-term stable performance [5]. Therefore, it is essential to conduct in-depth
research on the internal flow mechanisms and operational stability of the PPAT and provide
a theoretical basis for the optimal design and operation of the PPAT.

Many scholars have studied single-stage centrifugal [6–9] and axial-flow pumps as
turbines [10–12], but there are few relevant studies on two-stage or multi-stage pumps
as turbines. Massimiliano et al. [13] quantitatively analyze the energy conversion char-
acteristics of the PAT, and propose a model based on analytical equations, where the
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optimal efficiency point (BEP) of the PAT can be predicted. Derakhshan et al. [14] pro-
pose a procedure for selecting a suitable pump to work as a turbine in a small hydro-site.
Zhang et al. [15] used numerical and experimental measurements to evaluate the unsteady
flow in the PAT by analyzing the distribution of the pressure pulsations in the pump
condition. Feng [16] conducted a numerical simulation on a multistage centrifugal pump,
analyzed the unsteady characteristics of flow velocity, pressure and so on, and studied the
mechanism of rotor–stator interference in the multistage pump. Wang et al. [17] obtained
more reliable results by comparing different grid numbers, turbulence models, convergence
accuracy, and surface roughness, using appropriate setting methods, and ensuring the
integrity of the computational model. Yang et al. [18,19] used the CFD method to ana-
lyze the steady-state performance of PAT under different radial gaps and found that the
dynamic static interference between the rotating impeller and the stationary volute can
cause high-frequency unsteady pulsation inside the volute and low-frequency unsteady
pressure pulsation inside the impeller. Li et al. [5] studied the impact of timing effects on
the performance of PAT in the turbine condition and found that changing the sequence
position of the two-stage runner can improve the hydraulic efficiency of the PAT. He [20]
studied the hydraulic performance of the mixed-flow pump as turbine with forward curved
blades with wrap angles of 20◦, 35◦ and 50◦, respectively. Bi et al. [21] studied the effects of
the speed of the impeller and blade number of the diffuser on the hydraulic performance
of PAT and found that the variation trend of the external characteristic curve of the turbine
was basically the same at a different speed. Chen et al. [1] analyzed the effect of impeller
blade inlet angle on pressure pulsation and the hydraulic efficiency of PAT in the turbine
condition. Previous research has primarily focused on single-stage pumps as turbines
(PATs), with relatively little attention given to multi-stage PATs [22] and the mutual influ-
ence and interference mechanisms between stages. And these studies mainly analyzed the
influence of geometric parameters on the external characteristics of PAT.

This study addresses this gap by examining the internal flow mechanism and pressure
pulsation characteristics of a two-stage PPAT operating in turbine mode. While many
scholars have explored the transient flow characteristics of multi-stage pumps [23–25],
there is limited understanding of the transient flow mechanisms in multi-stage PATs
under turbine conditions. The hydraulic characteristics of a PAT working as a turbine are
significantly different from those when it operates as a pump. This study analyzes the
internal flow mechanism, pressure pulsation propagation, and phase superposition effects
between the two-stage impellers under turbine conditions. These insights will enhance
our understanding of PAT operational status and provide a theoretical foundation for
optimizing PAT design.

2. Materials and Methods
2.1. Research Object

In this study, a two-stage PPAT was used as the research object. When the PPAT works
as a pump, its design parameters are as follows: flow Qp = 300 m3/h, head Hp = 245 m,
speed np = 2980 r/min. When it is working as the turbine, its rotational speed remains
unchanged, but the direction of rotation is the opposite, that is, nt = −2980 r/min. Figure 1
shows the three-dimensional structure of the fluid domain of the PPAT. The PPAT is a
two-stage structure; the first-stage impeller has 3 blades and the second-stage impeller has
5 blades. The two-stage diffuser adopts spiral double outlet volute and spiral single outlet
volute, respectively. The main design parameters of the PPAT are shown in Table 1. From
published studies [26], for two-stage PATs with high head, there will be strong interference
between two impellers, especially the pressure pulsation characteristics under the turbine
mode. Therefore, the pressure pulsation characteristics of the PPAT need to be analyzed to
obtain the interference mechanism between the two-stage impellers. In this study, only the
unsteady flow characteristics and the pressure pulsation characteristics of the PPAT in the
turbine condition were studied.
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Table 1. Main parameters of the two-stage PPAT.

Impeller Parameters of First Stage Value Impeller Parameters of Second Stage Value

Impeller inlet diameter, mm 158 Impeller inlet diameter, mm 140
Impeller hub diameter, mm 80 Impeller hub diameter, mm 95

Impeller outlet diameter, mm 348 Impeller outlet diameter, mm 348
Impeller outlet width, mm 22.5 Impeller outlet width, mm 17

2.2. Numerical Calculation Settings

In order to obtain the pressure pulsation signal in the PPAT, the unsteady numerical
simulation method is used to monitor the pressure in the PPAT under the turbine condition.
The setting of the monitoring points on the PPAT is shown in Figure 2. In the first-stage
suction chamber, 6 monitoring points are arranged, P2–P7; in the first-stage diffuser, 3 mon-
itoring points are arranged, P8–P10; in the second-stage suction chamber, 2 monitoring
points are arranged, P11–P12; in the second-stage diffuser, 3 monitoring points are arranged,
P13–P15. By capturing the pressure pulsation signal of the above 15 monitoring points, the
unstable flow characteristics caused by the interference between the two-stage impellers
can be analyzed.
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The software ANSYS CFX was used for CFD calculations, and the software ICEM 14.0
was used to generate meshes. The CFD setting is shown in Table 2. The SST k-ω turbulence
model based the Eddy Viscosity Model was selected, and the dynamic–static interface
surface was set as the Frozen Rotor interface; the boundary conditions of total pressure
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inlet and static pressure outlet were set, respectively [27], and the rotation speed of the
two impellers was set to 2980 r/min. The grid independence is verified by calculating the
head and efficiency of the PPAT with different meshes under design condition. When the
number of cells is more than 5.25 million, the change of the head and efficiency of the PPAT
is less than 0.5% [26,28,29]. In order to ensure the accuracy and economy of the calculation,
the refined near-wall grid scale was used in this study to ensure that the y+ value of the
impeller can be kept within 200. In addition to the grid independence being checked,
plan IV was selected and the total number of grids was determined to be 5.25 million, as
shown in Table 3. In this study, the mesh of the impeller was hexahedral structure mesh,
while other flow components use tetrahedral unstructured meshes. The mesh quality of all
flow components was greater than 0.25. The total time for unsteady calculations is set to
10 rotation cycles, and every time step is set to ∆t = 60/2980/180 = 1.11857 × 10−4 s. The
last two cycles of the calculation results are used for analysis.

Table 2. Settings for numerical simulations.

Setting Value/Type

Turbulence model SST k-ω
Inlet boundary Total pressure inlet, different pressure

Outlet boundary Static pressure outlet, 10 kPa
Dynamic and static interface Transient rotor stator

Initial condition Steady calculation result

Table 3. Grid independence test under design condition.

First-Stage Impeller Second-Stage Impeller PAT

Number Maximum y+ Number Maximum y+ Number Head

Plan I 560,348 797 559,036 621 2,855,310 439.1
Plan II 763,289 570 760,424 502 3,686,331 445.7
Plan III 885,199 343 891,572 262 4,339,373 448.8
Plan IV 1,216,396 172 1,213,125 157 5,254,052 451.3
Plan V 1,548,656 96 1,564,722 83 6,513,677 451.5

2.3. Experimental Verification

In order to verify the accuracy of the numerical calculation, the operation data of the
residual pressure power generation process of the PPAT are collected on site, as shown in
Figure 3. The pressure transmitter is installed at the inlet and outlet of the PPAT to measure
the pressure at the inlet and outlet, with a test accuracy of ±0.1%. An electromagnetic
flowmeter is installed at the inlet pipeline to measure the real-time flow of the PPAT,
with a test accuracy of ±0.5%. The real-time output power of the PPAT is collected by
the generator. The signals of the flowmeter, pressure transmitter, and generator were
input to the computer through the EST2008 measurement system to calculate the head,
output power and efficiency of the PPAT. The inlet energy is adjusted by adjusting the inlet
valve, and the hydraulic performances of the PPAT at different operating conditions are
obtained [28,30,31]. Figure 4 shows the comparison between the test and CFD of PPAT,
which shows that the head deviation is less than 5% and the efficiency deviation is less
than 3%, indicating that the numerical calculation is accurate.
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3. Results and Discussion
3.1. The Performance of the Model PPAT

Figure 4 shows the performance curve of the PPAT and the comparison with the
experiment. From the efficiency curve, the highest efficiency under the turbine condition
occurs at 1.3Qp (Qp is the design flow of its pump condition). The efficiency zone is between
1.0Qp and 1.7Qp, with an efficiency range of 71.5%~76.1%. From the head curve, the head
of the PPAT gradually increases with the flow rate and is proportional to the square of
the flow as a whole. Compared with the pump mode, the flow ratio Qt/Qp and the head
ratio Ht/Hp under the optimal working conditions in turbine mode are 1.44 and 1.64,
respectively (Qt is the flow of turbine; Ht is the head of turbine). This indicates that the
increase in flow rate of PPAT during the turbine mode has a greater impact on the variation
of head. Pressure pulsation is actually a representation of head fluctuation. Since the head
range of the PPAT is 300~900 m, the hydraulic excitation force generated by the small head
fluctuation will also be a large value. Therefore, pressure pulsation is a very important
indicator for the safe operation of the PPAT.
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3.2. Analysis of Internal Flow Structure of the PPAT

The dimensionless parameter Cp was used to analyze the pressure distribution in the
middle section of the impeller. The definition is shown in the following formula.

Cp =
P − P
0.5ρu2 (1)

where P is the local pressure inside the section; P is the average pressure of the section; ρ is
the density of medium; u is the circumferential velocity at the impeller outlet.

Figures 5–7 show the distribution of Cp in the impeller, diffuser and the suction
chamber of each stage under different conditions. From Figure 5, the pressure gradually
decreases along the flow direction and reaches the minimum at the inlet of the impeller
(Figure 5b), and there is a local low-pressure zone (A-zone) near the suction side at the
inlet of the impeller. From the Cp distribution of each cross-section, the corresponding
∇Cp

(
∇Cp = Cpmax − Cpmin ) values under 0.9Qp, 1.3Qp and 2.0Qp conditions are 1.22,

1.56 and 3.37, respectively. According to the gradient distribution of Cp, the pressure
changes inside the impeller under the 1.3Qp flow condition are the most uniform, the
pressure gradient distribution under the 2.0Qp flow condition is the worst, and the Cp value
gradually increases from the suction side to the pressure side. It can also be found that
there was a local low-pressure zone (B-zone, Figure 5c) in the middle of the flow channel
under the 2.0Qp condition, representing the fact that there was a vortex area in the impeller
flow channel.
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From Figure 6, the Cp distribution in the first-stage impeller shows lack of uniformity,
especially at the rotor–stator interaction between the impeller outlet and the diffuser; the Cp
distribution presents a sawtooth shape. This is mainly due to the pressure change behind
the pressure surface caused by the impeller rotating blade sweeping over the diffuser
tongue. There is a high-pressure zone (C-zone, Figure 6a) near the inlet of the impeller
blade, where the pressure pulsation with the frequency of the blade frequency will be
generated. From the Cp distribution of each section, the corresponding ∇Cp under 0.9Qp,
1.3Qp and 2.0Qp conditions is 1.19, 1.89 and 3.79, respectively. The pressure changes inside
the impeller are the most uniform under the 1.3Qp condition, and the pressure gradient
distribution is less uniform under the 2.0Qp condition. From the Cp distribution of the
diffuser, the pressure in the diffusion section of the diffuser shows obvious asymmetry,
especially in the high-flow condition (D-zone, Figure 6c). It can also be found that high and
low pressures are distributed on both sides of the tongue, and this phenomenon is more
obvious with the flow rate increases.

In the turbine mode, the first-stage suction chamber is used as a draft tube. From
Figure 7, under low-flow conditions, there are obvious high-pressure and low-pressure
zones (E-zone and F-zone, Figure 7a) on both sides of the vortex tongue of the draft tube,
which should be caused by the flow around the cylinder occurring on one side of the central
circle of the draft tube. As the flow increases, the distribution of high and low pressures on
both sides of the vortex tongue gradually disappears, and it may be that the flow around
circular cylinder from one side develops into flow on both sides. Under the 0.9Qp condition,
the gradient change in Cp generally decreases along the flow direction, and this gradient
change law gradually weakens with the flow rate increase. When the flow rate of PPAT
reaches 2.0Qp, the cloud atlas of the whole cross-section shows an uneven distribution of
local high and low pressures. It can also be found that the ∇Cp change in draft tube is
significantly smaller than the cross-section where the impeller is located, and ∇Cp is only
0.587 when the flow rate reaches 2.0Qp.

Figures 8–10 show the vortex strength distribution of the water-passing components
under different flow conditions, respectively. From Figure 8, on the section where the
second-stage impeller is located, the large vortex is mainly distributed in the impeller
channel. Under the conditions of 0.9Qp and 1.3Qp, it is unevenly distributed in the five
channels of the impeller, and the large vortex fills the entire flow channel of the impeller.
The vortex strength of the impeller flow channel near the diffusion region of the diffuser
(H-zone, Figure 8a) is significantly greater than that of the impeller channel far away from
the diffusion region (I-zone, Figure 8a). This is primarily attributed to the fluid entering the
H-zone first before proceeding into the I-zone, and the extended diffusion section within
the I-zone effectively directs the flow within the flow field. Under the 2.0Qp condition, the
large vortex in the impeller channel mainly appears in the trailing edge of the blade and its
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wake region develops near the suction surface of the blade, which is mainly caused by the
flow separation.
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From Figure 9, the vortex distribution law of the section where the first-stage impeller
is located is similar to that of the second stage as a whole, and the vortex distribution
develops from filling the entire channel to a local high-intensity vortex within the impeller.
However, the distribution area of the high-intensity vortex on the first stage section is larger.
This is mainly due to the number of blades of the first-stage impeller being smaller, and
there is greater speed slip in the channel, which also means that the pressure pulsation
generated by the first-stage impeller may be stronger [32–34]. It can also be seen that
large-scale vortices caused by reverse flow are formed in the impeller channel when the
operating condition (0.9Qp and 2.0Qp) deviates from the optimal condition, and the scale of
some vortices almost blocks half of the area of a single channel, but not all channels of the
impeller are blocked.
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In order to better analyze the vortex distribution in the draft tube (first-stage suction
chamber), the draft tube is divided into three regions, J-Zone, K-Zone and L-Zone, as
shown in Figure 10. From Figure 10, the vortex strength in the draft tube increases with the
increase in flow, and the distribution area of the high-intensity vortex gradually extends
from the tongue position (J-zone) to the downstream K-Zone and L-Zone along the outer
spiral line. In low-flow conditions, after the fluid passes through the high-speed rotating
impeller, the water flow on the draft tube is far from the central axis. With the increase in
flow, the vortex band phenomenon of the draft tube is generated, and the inertial impact of
fluid here (streamline) will also be large, which will increase the low-frequency pressure
pulsation inside the PPAT. Under the 1.3Qp condition, the flow pattern in the K-zone is
disordered, and a large number of backflows and disorderly vortices appear, which is
caused by the displacement of the water flow by the vortex band, and an obvious high-
speed area appeared between the vortex band and the wall. With the increase in the flow
rate, the high-strength vortex gradually transfers to the outer wall in the 2.0Qp condition,
and it can be seen from the streamline of the K and L-Zone that the direction of fluid flow is
close to perpendicular to the outer wall of the draft tube, and the fluid has directly impacted
the wall, which will cause strong noise and pressure pulsation.

3.3. Pressure Pulsations in the First-Stage Diffuser and Second-Stage Diffuser

In order to more specifically express the fluctuation of transient pressure within
the PPAT and use the pressure pulsation amplitude to represent its periodic transient
results [35,36], the expression of the pressure amplitude ∆P is:

∆P = P − 1
n
· ∑n

i=1 Pi (2)

where ∆P is the difference between the monitoring pressure and the average pressure of
one cycle, Pa; Pi is the transient pressure value of monitoring point, Pa.

Figures 11 and 12 show the time domain diagram of pressure pulsation on the section
where the impeller is located under different flow conditions. Under turbine mode, the
second-stage diffuser is used as the inflow runner. Figure 13 shows the comparison of the
maximum amplitude for one cycle (∆Pmax − ∆Pmin) of the monitoring points under the
condition of 0.9Qp, 1.3Qp and 2.0Qp. From Figure 11, the pressure pulsations of P13 are
significantly higher than at the other two monitoring points, which is most obvious when
deviating from the optimal flow conditions. At the 0.9Qp condition, the pressure curve
of P13 has 11 peaks in one rotation period, including four large peaks and seven small
peaks, of which the two small peaks at 0.8T are caused by the superposition of the peaks
and valleys of the two different pressure waves. The pressure fluctuation pattern of P13
in the 0.6~1.0T cycle is completely different from the pressure pulsation in the first 1/2
cycle. It shows that the 0.6~1.0T is affected by the pressure fluctuations caused by the other
impeller. By comparing the peak wave, we can determine that the superposition of the
pressure fluctuations produced by other impeller occurs at this monitoring point. At the
1.3Qp condition, the pressure change curve of P13 has fifteen peaks in one rotation period,
including five large peaks and ten small peaks, which indicates that the pressure wave
generated by the first stage impeller (three blades) propagates upstream and interferes
with the second-stage impeller. Because the blade number of the first-stage impeller is 5
and the blade number of the second stage is 3, the fifteen amplitude troughs are mainly
caused by the interference between the first-stage and the second-stage blades, but the five
large peak troughs are caused because the monitoring point is closer to the impeller of
the five blades. At the 2.0Qp condition, the pressure change curve of P13 has five obvious
peaks, indicating that the interference effect of the first-stage impeller is weak. From the
above analysis, it can be seen that under optimal conditions, the pressure pulsation in the
second-stage diffuser is influenced by the joint influence of the first-stage impeller and
the second stage impeller, and when it deviates from the optimal conditions, it is mainly
affected by the rotor–stator interaction between the second-stage impeller and the tongue



Water 2024, 16, 3100 10 of 18

of the second-stage diffuser. From Figure 12, the pressure pulsation of P8, which is closer to
the impeller outlet, is significantly stronger than that of P9 and P11 on the diffusion section.
Under low-flow conditions, the pressure pulsation curves of P8–P11 are very disordered,
but with the increase in flow, the regularity of pressure pulsation becomes stronger. And the
peaks of the P8–P11 pressure curves are irregular sawtooth, which is mainly influenced by
the upstream pressure wave. From Figure 13, the maximum amplitude of the monitoring
points P8–P9 (∆Pmax − ∆Pmin) increases with the increase in the flow, while the maximum
amplitude of the monitoring points P11–P15 at the 1.3Qp condition is significantly lower
than that of 0.9Qp and 2.0Qp. The monitoring points P14 and P15 are located far away from
the impeller, and their amplitudes are significantly lower than those of other monitoring
points. Therefore, the dynamic and static interference between the impeller and the diffuser
tongue is the main reason for the strong pressure pulsation.
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In order to analyze the main factors causing pressure pulsation in PPAT and obtain
the frequency spectrum characteristics of pressure pulsation, the time domain signal of
pressure pulsation is subjected to FFT (fast Fourier transform) transformation, and the
frequency spectrum of the monitoring points P8–P15 is obtained, as shown in Figures 14–16.
From Figure 14, under the 0.9Qp condition, the dominant frequency of monitoring points
P11–P15 is the blade passing frequency fBPF2 (5fn) of the second-stage impeller, and the
harmonic frequencies of 2 fBPF2, 3 fBPF2, 4 fBPF2 and 5 fBPF2 can also be monitored. The
blade passing frequency is the most significant excitation frequency in rotating machinery.
In the low-frequency band, the significant components of 0.5fn and fn are also observed.
The dominant frequency of monitoring points P8–P9 is the blade passing frequency fBPF1
(3fn) caused by the first-stage rotor–stator interaction, but there are a large number of
n*5fn (n = 1, 2, 3. . .) in the frequency spectrum, indicating that there is pressure pulsation
generated by the upstream impeller. From Figure 15, under the 1.3Qp condition, the
dominant frequency of the monitoring points P11–P15 are the blade frequency of the
second-stage impeller and its multiplier, and the significant components of 0.5fn are also
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observed in the low-frequency band. The dominant frequency of the monitoring point
P8–P9 is the blade frequency fBPF1 of the first-stage impeller, and the amplitude generated
is 2–5 times that of the other monitoring points. From Figure 16, under the 2.0Qp condition,
the dominant frequency of the monitoring point P8–P9 is the blade frequency fBPF1 of the
first-stage impeller, and the dominant frequency of the monitoring points P11–P15 is the
blade frequency fBPF2 of the second-stage impeller. It can be found that with the increase
in flow, the harmonic component of the pressure pulsation gradually decreases, and the
low-frequency components of 0.5fn are more easily captured. Meanwhile, with the increase
in flow, the pressure pulsation amplitude of each monitoring point gradually increases,
and the pressure pulsation amplitude of each monitoring point is shown as P8 > P9 > P11
≈ P13 > P14 ≈ P15. The decrease in pressure pulsation amplitude along the flow direction
indicates that the pressure wave is propagating upstream and there is no superposition of
pressure waves.
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3.4. Pressure Pulsations in the Draft Tube

Figure 17 shows the time domain diagram of pressure pulsation in the first-stage
suction chamber of the PPAT under different flow conditions. Under the turbine mode,
the first-stage suction chamber is used as the draft tube. Figure 18 shows the comparison
of the maximum amplitudes of the monitoring points within one rotation cycle under
the conditions of 0.9Qp, 1.3Qp and 2.0Qp. From Figure 17, the pressure curves of the
monitoring points P1–P7 at the 0.9Qp condition are close to overlapping, but as the flow
increases, the pressure curves of P1–P7 gradually separate. Combined with Figure 10,
it can be seen that as the flow rate increases, the flow state and vortex distribution in
the tailpipe undergo significant changes, which is the main reason for the separation of
the monitoring line. Under the conditions of 0.9Qp and 1.3Qp, the pressure curves of
monitoring points P1–P7 in one rotation cycle show irregular fluctuation laws, which may
be due to a large value of flow separation and reverse flow under low-flow conditions.
Under the 2.0Qp condition, the pressure curve of P1–P7 gradually showed a periodic
fluctuation law, including five peaks and troughs in one rotation cycle. From Figure 18, the
maximum amplitudes (∆Pmax − ∆Pmin) of each monitoring point are basically the same.
The maximum amplitude under the 2.0Qp condition is twice that of the 1.3Qp condition,
which is mainly caused by the large angle of attack when the fluid enters the impeller when
the operating conditions deviate from the optimal condition.
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Figures 19–21 show the pressure pulsation frequency domain diagrams of monitoring
points P1–P7 under different flow conditions. From Figure 19, under the 0.9Qp condition,
the dominant frequency of the monitoring points P1–P7 is the blade frequency fBPF2 of
the second-stage impeller. Meanwhile, there are a large number of pressure pulsations
with a frequency of n*fn (n = 1, 2, 3. . .) in its spectrum, indicating that the rotational
frequency fn is also the main factor affecting its pressure pulsation. From Figure 20, under
the 1.3Qp condition, the dominant frequency of the monitoring points P1–P7 are 5*fn (fBPF2)
and 6*fn (2* fBPF1), indicating that the blade passing frequency of the first-stage impeller
and the second-stage impeller are both the main factor that produces pressure pulsation.
In the low-frequency band, the significant components of 0.5*fn are captured, and the
corresponding amplitude increases with distance from the impeller, which is likely to be
caused by the vortex band in the draft tube. Under the 2.0Qp condition, the dominant
frequency of the monitoring points P1–P7 is 6*fn (2* fBPF1), and the other sub-frequencies
that affect pressure pulsations are 5*fn, 3*fn, and 0.5*fn in turn. Combining Figures 19–21,
it can be found that with the increase in flow, the pressure pulsation amplitude of P1–P7
gradually increases, and the maximum pulsation amplitude at the condition of 2.0Qp is
twice that of 0.9Qp and 1.3Qp. In addition, under different flow conditions, there are a
large number of large-amplitude harmonic signals with a frequency of n*fn in the pulsation
spectrum of the draft tube. With the increase in flow, the relative amplitude of the harmonic
signal gradually decreases, which also explains the irregular fluctuation of pressure curves
in Figure 17.
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Figure 19. Frequency domain diagram of monitoring points P1, P3, P5, P7 under 0.9Qp condition. 

0

10

20

30

40

50

0.5fn
0.5fn

0.5fn

Pr
es

su
re

 (k
Pa

)

 P1

0.5fn

 P3

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50
 P5

0 5 10 15 20 25 30 35 40
 f/fn f/fn

 P7

 
Figure 20. Frequency domain diagram of monitoring points P1, P3, P5, P7 under 1.3Qp condition. 
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3.5. Analysis of Interstage Interference Between Two-Stage Impellers

Through the above analysis, it can be seen that there is obvious interstage interference
between the two-stage impellers. Figure 22 shows the main frequency distribution of
monitoring points P8–P15 under the conditions of 0.7Qp, 1.0Qp and 1.3Qp. Figure 23 shows
the amplitude distribution of the corresponding frequencies. From Figure 22, before the
fluid enters the impeller (P13–P15), the main frequencies of the pressure pulsation are
distributed at 5fn, the second-order frequency distribution at 0.5fn (4 times), 3fn (2 times),
10fn (1 time), 15fn (4 times) and 20fn (1 time), the third-order frequency is distributed
at 0.5fn (3 times), 10fn (2 times), 15fn (3 times) and 20fn (1 time), and the fourth-order
frequency is distributed at 0.5fn (2 times), 15fn (1 time), 20fn (2 times), and 25fn (4 times). It
can be seen that before the fluid enters the impeller, the main factor affecting the pressure
pulsation in the second-stage diffuser is the rotor–stator interaction between the second-
stage impeller and the tongue of the second-stage diffuser. The interstage interference
frequency n*15fn between the two-stage impellers appears 4 times in the statistics of the
second-order frequency and 3 times in the statistics of the third-order frequency.
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the monitoring points.

Combined with Figure 23, the amplitude of the second-order and third-order frequency
exceeds 50% of the amplitude of the main frequency, so the interstage interference between
the two-stage impellers has already produced a strong pressure pulsation in the second-
stage diffuser. After the fluid flows into the second-stage impeller and before it flows into
the first-stage impeller (P8–P11), the main frequencies of pressure pulsation are distributed
at 3fn (6 times), 5fn (2 times) and 10fn (1 time), the second-order frequencies are distributed
at 3fn (2 times), 5fn (3 times), 6fn (1 time), 9fn (1 time) and 10fn (1 time), the third-order
frequencies are distributed at 5fn (2 times), 6fn (1 time), 10fn (3 times), 15fn (2 times) and
20fn (1 time), and the third frequency is distributed at 0.5fn (2 times), fn (1 time), 6fn (1 time),
9fn (2 times), 10fn (1 time), 12fn (1 time), 15fn (1 time), and 20fn (1 time). 15fn represents the
presence of dynamic and static interference between the primary and secondary impellers.
It can be seen that in the fluid domain of the first-stage diffuser, the interstage interference
frequency n*15fn between the two-stage impellers only occurs 2 times and 1 time in
the statistics of the third-order frequency and the fourth-order frequency, respectively.
Therefore, the interstage interference between the two-stage impellers is relatively small in
this flow domain. When the fluid flows out of both impellers into the draft tube (P1–P7), the
main frequency of pressure pulsation is distributed at 5fn (4 times), 6fn (8 times), the second-
order frequency is distributed at 5fn (8 times) and 10fn (4 times), the third-order frequency
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is distributed at 0.5fn (2 times), 1.5fn (1 time), 3fn (5 times) and 12fn (4 times), and the
fourth-order frequency is distributed at 0.5fn (4 times), 3fn (1 time), 10fn (3 times), and 20fn
(4 times). 5fn and its harmonics represent the propagation of pressure pulsation generated
by the first-stage impeller to the draft tube. It can be seen that when the fluid flows out
of the two impellers, in the low-flow condition, the blade frequency of the second-stage
impeller that is farther away is the dominant frequency, and in the large-flow condition, the
blade passing frequency of the first-stage impeller that is closer is the dominant frequency.
The interstage interference frequency n*15fn between the two-stage impellers does not
appear in the spectrum, so the interstage interference between the two-stage impellers
will not cause pressure pulsation in the draft tube. Under large-flow conditions, more
low-frequency signals with a frequency of 0.5fn are captured in the draft tube. The low-
frequency signals in the draft tube are mainly generated by the vortex band. Combined
with Figure 23, the amplitude of pressure pulsation generated by this frequency is as high
as 40 kPa. The energy attenuation of low-frequency pulsation is very slow and can even
spread throughout the pipeline, so it is necessary to add a suitable diversion device in the
draft tube to eliminate the vortex band.
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4. Conclusions

Based on the CFD simulations, the internal flow mechanism and pressure pulsation
characteristics of a two-stage PPAT in turbine mode are studied. The PPAT has a wider
flow operating range, and the pressure pulsation interference effect among the two-stage
impellers and the propagation relationship of pressure pulsation under multiple turbine
conditions is analyzed, which is helpful for understanding the operating state of the PPAT
and providing a theoretical basis for the optimal design and operation of the PPAT.

1. There is a high-pressure area near the blade inlet of the first-stage impeller; the
pressure distribution in the diffusion section of the first-stage diffuser shows the
asymmetry. The high and low pressures are distributed separately on both sides of
the diffuser tongue, and this phenomenon is more obvious with the increase in flow.
There are high- and low-pressure areas on both sides of the vortex tongue of the draft
tube caused by the flow around the cylinder occurring on one side of the central circle
under the low-flow condition. With the increase in flow, the high- and low-pressure
distribution on both sides of the vortex tongue gradually disappears.
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2. In the second-stage fluid domain (inflow runner), the large vortex fills the entire
flow channel of the impeller under the low-flow conditions. As the flow increases,
the large vortex in the impeller channel mainly appears in the trailing edge of the
blade and its wake region near the suction surface of the blade, which is mainly
caused by the flow separation. The distribution area of high-intensity vortex on the
second-stage section is larger when the operating condition deviates from the optimal
condition, and the scale of some vortices almost blocks half of the area of a single
channel. With the increase in the flow, the vortex band in the draft tube is generated,
and this phenomenon will have a direct impact on the outer wall of the draft tube,
which will cause strong noise and pressure pulsation.

3. The interstage interference frequency n*15fn between the two-stage impellers also
produces a strong pressure pulsation in the inflow runner. In the fluid domain between
the two impellers, the main factor affecting the pressure pulsation is the rotor–stator
interference effect, and the interstage interference between the two impellers is small.
The interstage interference between the two-stage impellers will not cause pressure
pulsation in the draft tube, and more low-frequency signals with a frequency of 0.5fn
are captured in the draft tube under large-flow conditions, which are mainly generated
by the vortex band.

Future research on multi-stage pump as turbines may focus on transient operating
conditions and inter-stage interference.
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