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Abstract: Monthly runoff prediction is crucial for water resource allocation and flood prevention.
Many existing methods use identical deep learning networks to understand monthly runoff patterns,
neglecting the importance of predictor selection. To enhance predictive accuracy and reliability, this
study proposes an RFECV–SSA–LSTM forecasting approach. It iteratively eliminates predictors
derived from SSA decomposition and PACF using recursive feature elimination and cross-validation
(RFECV) to identify the most relevant subset for predicting the target flow. LSTM modeling is
then used to forecast flows 1–7 months into the future. Furthermore, the RFECV–SSA framework
complements any machine-learning-based runoff prediction method. To demonstrate the method’s
reliability and effectiveness, its outputs are compared across three scenarios: direct LSTM, MIR–LSTM,
and RFECV–LSTM, using monthly runoff historical data from Yangxian and Hanzhong hydrological
stations in the Hanjiang River Basin, China. The results show that the RFECV–LSTM method is
more robust and efficient than the direct LSTM and MIR–LSTM counterparts, with the smallest
number of outliers for NSE, NRMSE, and PPTS under all forecasting scenarios. The MIR–LSTM
approach exhibits the worst performance, indicating that single-metric-based feature selection may
eliminate valuable information. The SSA time–frequency decomposition is superior, with NSE values
remaining stably around 0.95 under all scenarios. The NSE value of the RFECV–SSA–LSTM method
is greater than 0.95 under almost all forecasting scenarios, outperforming other benchmark models.
Therefore, the RFECV–SSA–LSTM method is effective for forecasting highly nonlinear runoff series,
exhibiting high accuracy and generalization ability.

Keywords: monthly streamflow forecasting; time–frequency decomposition; long short-term memory
neural network; recursive feature elimination; cross-validation

1. Introduction

Accurate streamflow forecasting is of great significance for water resource manage-
ment and flood control dispatching. However, there exist nonlinear, periodic, and trend
characteristics in streamflow series which have made streamflow forecasting a great chal-
lenge for a long time [1]. These characteristics increase the complexity of streamflow
forecasting, making it challenging for any model to achieve high prediction accuracy and
stability unless it can simultaneously capture these multifaceted factors [2]. Extensive
experiments on streamflow forecasting have shown that physics-based prediction models
driven by hydrological processes require complex mathematical models, fluid physics
simulations, and more hydro-meteorological data. Such forecasting models have problems
like structural bias and a huge workload, resulting in low forecast accuracy and poor
practicality. On the other hand, the currently prevalent data-driven models can capture

Water 2024, 16, 3102. https://doi.org/10.3390/w16213102 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16213102
https://doi.org/10.3390/w16213102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0009-0008-2128-3472
https://orcid.org/0009-0009-0896-4430
https://doi.org/10.3390/w16213102
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16213102?type=check_update&version=1


Water 2024, 16, 3102 2 of 27

the latent information in streamflow series better, with fewer required forecasting factors,
easier data acquisition, and higher prediction accuracy [3,4].

Quite a few experiments have thus far adopted moving average (MA) models [3],
autoregressive (AR) models [5], autoregressive moving average (ARMA) models [6], and
seasonal autoregressive integrated moving average (SARIMA) models [7], alongside other
data-driven time series models to simulate and forecast streamflow [2,8,9]. Although these
models are widely applied to time series analysis, they are limited to handling linear
relationships and are unable to capture the complex nonlinear characteristics and patterns
underlying hydrological processes [10]. Due to the nonlinear, trend, and periodic com-
ponents commonly present in streamflow series, using these linear models for prediction
may lead to performance limitations and lower forecast accuracy. Moreover, these models
perform poorly when dealing with extreme climatic events or nonlinear dynamic changes,
further restricting their applicability in complex hydrological environments [11].

With the development of artificial intelligence, intelligent algorithms have been increas-
ingly applied to streamflow rolling forecasting, such as hierarchical clustering analysis [12],
principal component analysis [13], artificial neural networks [14], decision trees [15], and
support vector regression [16]. Compared with traditional regression forecasting models,
these machine learning methods have greatly improved prediction accuracy and effi-
ciency [17]. However, the capability of such models to handle streamflow series is limited,
and they tend to deliver a poor convergence performance, they belong to shallow learning,
and they are prone to getting stuck in local optima and to overfitting [18]. The long short-
term memory (LSTM) network is a special type of neural network proposed on the basis
of RNN. It is designed mainly to address the vanishing and exploding gradient problems
of neural networks during backpropagation. Compared with RNN, LSTM has greater
advantages in long sequence prediction [19]. Since LSTM models can better capture the
temporal correlations in sequences, approaches like removing or reducing the number
of neurons and increasing the regularization penalty can help control the overfitting of
LSTM models. Also, LSTM models have faster convergence and can more easily capture
the regularity of nonstationary sequences [20]. Therefore, LSTM models have been widely
applied to long-term streamflow sequence forecasting [21].

Streamflow series are affected by trend, seasonal, periodic, and error components as
well as by irregular noise disturbances [22,23]. A single machine learning model cannot
accurately predict highly nonlinear sequences with high-noise components [24]. Therefore,
it is necessary to preprocess the original sequence data, extract multiscale features that
are simpler than the original signal, and establish a decomposition–ensemble model that
combines time series preprocessing and machine learning to forecast streamflow [25]. In-
creasing research has shown that preprocessing data through appropriate time–frequency
decomposition techniques can further extract useful information hidden in time series,
greatly improving the prediction accuracy of data-driven models [26]. Discrete wavelet
transform (DWT) [27], empirical mode decomposition (EMD) [28], ensemble empirical
mode decomposition (EEMD) [29], complementary ensemble empirical mode decompo-
sition with adaptive noise (CEEMDAN) [30], singular spectrum analysis (SSA) [31], and
variational mode decomposition (VMD) [32] are commonly used time–frequency decompo-
sition methods. Among these decomposition methods, discrete wavelet transform (DWT)
has good time–frequency aggregation characteristics, but its decomposition effect depends
on the choice of basis functions and has poor adaptability [33]. Although time–frequency
decomposition algorithms can extract multiscale features of streamflow series, selecting the
feature subsets with the greatest impact on the forecast target from the high-dimensional
feature matrix is still key to improving the predictive performance. References [34,35] have
found that using recursive feature elimination and cross-validation (RFECV) can screen
out effective wetland classification features and achieve high-precision wetland mapping,
providing technical support to the ecological health of wetlands. Chen [36] used RFECV to
achieve the best results for the radiomics model, with radiomics outperforming the accuracy
of conventional analysis by 67% for STS grading. Reference [37] used RFECV, Pearson’s
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correlation coefficient, and mutual information to identify the molecular descriptors most
relevant to the kinematic viscosity of natural ester insulating oil, enabling efficient and
accurate prediction of kinematic viscosity. Therefore, solely relying on time–frequency
decomposition to extract multi-scale features is not enough. It is necessary to adopt appro-
priate feature selection methods to choose feature subsets that have more significant effects
on the prediction target. This plays a certain role in improving prediction performance. This
paper proposes an RFECV–LSTM model scheme for monthly streamflow forecasting. First,
the original streamflow series is decomposed into multiple IMFs by using time–frequency
decomposition algorithms (DWT, EMD, EEMD, CEEMDAN, VMD, SSA). Then, the optimal
lag for each subsignal is obtained using the partial autocorrelation function (PACF). Based
on the maximum lag operator, the feature factor input matrix is generated. To demonstrate
the superiority of the RFECV–LSTM forecasting scheme, LSTM models without feature
selection (direct LSTM), with mutual information (MIR) feature selection, and with RFECV
feature selection are compared. During training, Bayesian optimization is used to optimize
the hyperparameters of the LSTM model, resulting in the optimal RFECV–LSTM predic-
tion neural network model. To validate the excellent streamflow forecasting performance
of RFECV–LSTM, monthly streamflow data from Yangxian and Hanzhong hydrological
stations in China’s Hanjiang River Basin are used for experiments.

2. Study Area and Data

The Hanjiang River Basin extends over an area of 159,000 km2 and has a length
of 1532 km, making it the largest tributary of the Yangtze River. It originates from the
Zhong Mountain in Ningqiang County, between the Qinling and Micang Mountains in
the southwestern Shaanxi Province. After flowing out of the Danjiangkou Reservoir in
the southeast, it converges with the Yangtze River. As shown in Figure 1, the Hanzhong
and Yangxian hydrological stations in the upper reaches of the Hanjiang River Basin are
selected as the research sites. The Hanjiang River Basin belongs to the subtropical monsoon
climate zone, with abundant but unevenly distributed annual runoff and large interannual
variations. Accurately predicting runoff in this basin presents considerable challenges.
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Monthly streamflow data from January 1967 to December 2020 from the Yangxian
hydrological station (107◦54′ E, 33◦22′ N) and from May 2000 to December 2022 from
the Hanzhong hydrological station (107◦02′ E, 33◦05′ N) in the Hanjiang River Basin
were used to evaluate all predictive models in this study. The monthly streamflow time
series data were calculated from daily monitored streamflow data collected by the Shaanxi
Hydrological Information Center and Water Resources Survey Bureau. The first 80% of
the data from each monthly streamflow sequence was used as the training set, and the
remaining 20% was used as the validation and test sets. The original streamflow sequences
are shown in Figure 2.
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3. Research Methods
3.1. Decomposed Ensemble Model for Streamflow Forecasting

In this study, to validate the stability, generalization capability, credibility, and compu-
tational efficiency of the decomposed ensemble forecasting model, several decomposed
ensemble models were compared, including EMD–LSTM, EEMD–LSTM, CEEMDAN–
LSTM, DWT–LSTM, SSA–LSTM, and VMD–LSTM. The optimal lag time operator for
each decomposed subsignal was determined based on PACF to generate feature factor
samples. The forecasting targets of monthly streamflow were set to 1, 3, 5, and 7 months
into the future. Since the feature factors were directly used to train the LSTM model, this
scheme was termed direct LSTM. However, given the susceptibility of LSTM models to
overfitting and convergence issues, feature selection techniques were introduced to mitigate
these challenges.

Specifically, the feature factors were selected using mutual information (MIR) and
recursive feature elimination (RFECV), and the selected features were used as inputs to the
LSTM model, while the original monthly streamflow and its forecasts 1, 3, 5, and 7 months
into the future were used as the output. These models were termed MIR–LSTM and RFECV–
LSTM, respectively. By applying feature selection, the dimensionality of input features
was reduced, which, in turn, lowered the model’s complexity and mitigated the risk of
overfitting in the LSTM model. Additionally, this approach reduced the computational
resources required and enhanced both the computational efficiency and model convergence.
Furthermore, regularization and Bayesian optimization for hyperparameter tuning were
employed to enhance the robustness of the LSTM model.

To validate the performance of the aforementioned time–frequency decomposition
methods for streamflow forecasting, the EMD–LSTM, EEMD–LSTM, CEEMDAN–LSTM,
DWT–LSTM, SSA–LSTM, and VMD–LSTM decomposed ensemble schemes were com-
pared to identify the method best suited to streamflow sequences. Further, to evaluate
the effects of the two feature selection methods on model performance, feature subsets
selected by mutual information (MIR) and recursive feature elimination (RFECV) were
compared as LSTM inputs against the use of all predictive factors directly, i.e., MIR–LSTM,
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RFECV–LSTM, and direct LSTM. In this study’s experiments, forecasting 1, 3, 5, and
7 months into the future was performed for all the decomposed ensemble models.

The number of modes K for VMD was determined by observing the center frequency
spectrum. Extensive experiments have shown that the secondary penalty term (α) and
tolerance (ε) for VMD are optimal when set to 2000 and 1 × 10−9, respectively [26]. To
obtain uncorrelated VMD subsignals with low noise, the noise tolerance τ was set to
0 [38]. The number of decomposition levels L for SSA was also determined by inspecting
the center frequency spectrum. Compared to EMD, EEMD introduces two additional
parameters—the ensemble number (M) and the noise intensity (ε)—which improve the
endpoint effect and mode mixing problems of EMD. Based on previous studies, M and ε
were set to 100 and 0.2, respectively [39]. Relative to EEMD, CEEMDAN uses amplitude-
equivalent but phase-opposite noise ensembles during signal reconstruction to compute a
unique residue, effectively reducing reconstruction errors and avoiding mode mixing [40].

Discrete wavelet transform (DWT) decomposes the original streamflow series into
detailed subsequences representing high-frequency components of length L, and approxi-
mation subsequences representing low-frequency trends. There is no unified standard or
theory for selecting the wavelet mother function and decomposition levels for DWT. In this
study, the mother wavelets tested were: haar, db2, bior3.3, db5, coif3, db10, db15, db20,
db25, db30, db35, db40, and db45. The optimal mother wavelet was identified through
experiments, and the decomposition levels (L) were set to 1, 2, and 3 under each mother
wavelet to determine the optimal level.

The specific steps for the decomposed ensemble model for streamflow forecasting in
this study can be summarized as shown in Figure 3.
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Step 1: collect monthly streamflow time series data Q(t) (t = 1, 2, · · · , N, where N is
the data length).
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Step 2: decompose the entire data sequence into K intrinsic mode function (IMF)
components using the EMD, EEMD, CEEMDAN, DWT, SSA, or VMD decomposition
algorithms. The optimal decomposition levels (K) for SSA and VMD are determined by
inspecting the center frequency spectrum of the last subsignal.

Step 3: plot the partial autocorrelation (PACF) coefficients for each subsignal and
identify lags exceeding the 95% confidence interval as predictor variables. These lags will
be used as predictors to forecast the m step future streamflow, denoted as Q(t + m).

Step 4: based on the predictor variables and predictand identified in Step 3, construct
the input matrix for the training of the direct LSTM model using the training subsignals
generated in Step 2.

Step 5: based on the input matrix constructed in Step 4, perform feature selection
on the predictor variables to obtain two sets of feature subsets, one based on mutual
information (MIR) and one based on recursive feature elimination with cross-validation
(RFECV). These feature subsets form the input matrices for MIR–LSTM and RFECV–LSTM,
respectively.

Step 6: divide the sample matrices generated in Steps 4 and 5 into training, validation,
and test sets as follows: 80% of the samples should be kept for training, the next 10% for
validation, and the remaining 10% for testing.

Step 7: normalize each subsequence in the training, validation, and test sets using
min–max normalization (X′ = 2(X−min(X))

max(X)−min(X)
) to rescale the data to a range of [−1, 1]. This

addresses differences in scale across features, accelerates model convergence, and improves
predictive performance and generalization capability.

Step 8: using Gaussian process-based Bayesian optimization, perform hyperparameter
tuning for each LSTM model (MIR–LSTM, RFECV–LSTM, direct LSTM) based on the
corresponding sample matrices obtained in Step 7. This results in optimized LSTM models
with the best set of hyperparameters.

Step 9: using the optimized LSTM models from Step 8, make predictions on the
validation set and test set. Evaluate and compare the model performance of MIR–LSTM,
RFECV–LSTM, and direct LSTM based on relevant metrics like NSE, NRMSE, and PPTS.
Analyze the results to determine the best performing model.

3.2. Model Evaluation Criteria

Three error analysis criteria were adopted to evaluate the predictive performance of
the proposed and benchmark models: normalized root mean square error (NRMSE), Nash
efficiency coefficient (NSE) [41], and peak percentage of threshold statistics (PPTS) [42].
NRMSE directly reflects the normalized difference between predictions and observations,
with lower values indicating a better model performance. NSE is widely used in hydrologi-
cal modeling, with values closer to 1 denoting higher prediction accuracy. PPTS evaluates
peak flow predictive capability by comparing errors in peak discharge predictions.

NSE = 1 − ∑N
t=1 (x(t)− x̂(t))2

∑N
t−1 (x(t)− x(t))2 (1)

NRMSE =

√
∑N

t=1
(x(t)− x̂(t))2

N

∑N
t=1

x(t)
N

(2)

PPTS =
100
γ

1
N

G

∑
t=1

∣∣∣∣ x(t)− x̂(t)
x(t)

· 100
∣∣∣∣ (3)

where x(t) is the original streamflow sequence, x̂(t) is the predicted streamflow sequence,
x(t) is the mean of the original streamflow sequence, N is the length of the streamflow
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sequence, γ is the percentage of data chosen from the data sequence in descending order,
i.e., the threshold level, and G is the number of data points exceeding the threshold level.

3.3. Singular Spectrum Analysis (SSA) for Data Decomposition

Singular spectrum analysis (SSA) decomposes the original time series into a sum of
component series. Each decomposed component mainly consists of trend, periodic, noise,
and other constituents. This separation of the time series into interpretable components
enables noise reduction by reconstructing the original series without the noise components,
thereby improving forecasting accuracy. SSA involves four main steps:

Embedding: the analysis object of SSA is a one-dimensional time series of finite length
N. First, an appropriate window length L was selected to map the original time series into
a trajectory matrix by lagged copies of the series:

X1 X2 · · · XN−L+1
X2 X2 · · · XN−L+2
...

... · · ·
...

XL XL+1 · · · XN

 (4)

Generally, L < N/2 is taken. Let K = N − L + 1, then the trajectory matrix X is an
L × K matrix.

Decomposition: the trajectory matrix X was decomposed by performing singular
value decomposition (SVD). Specifically, SVD decomposes the trajectory matrix into the
following form:

X = UΣVT (5)

U is the left matrix, Σ is a singular value with values only on the diagonal and other
elements are zero, V is the right matrix, U and V are unit orthogonal matrices which meet
the requirements of UUT = I and VVT = I, respectively.

Since it is difficult to directly decompose the trajectory matrix, the covariance matrix
of the trajectory matrix was first computed:

S = XXT (6)

Then, the eigenvalues of S were obtained by eigenvalue decomposition λ1 > λ2 >
· · · > λL ≥ 0 and by the corresponding eigenvectors U1, U2, · · · , XL. At this point,
U = [U1, U2, · · · , UL],

√
λ1 >

√
λ2 > · · · >

√
λL ≥ 0 was the original sequence.

X =
L

∑
m=1

√
λmUmVT

m (7)

m = 1, 2, · · · , L (8)

Here, the eigenvector Ui corresponding to λi reflects the evolution of the time series
and is called the time empirical orthogonal function.

Grouping: all components were divided into nonoverlapping groups, representing
different trend components. The main components were then selected for reconstruction to
obtain the reconstructed sequence.

X = XL1 + · · ·+ XLC (9)

XL = ∑
m∈L

√
λmUmVT

m =

(
∑

m∈L
UmUT

m

)
X (10)
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Reconstruction: the projection of the hysteresis sequence Xi on Um was calculated:

am
i = XiUm =

L

∑
j=1

xi+jUm,j 0 ≤ i ≤ N − L (11)

where Xi represents the ith column of the trajectory matrix X and am
i is the weight of

the time evolution type reflected in the Xi, Xi+2, . . . , Xi+L period of the original sequence,
called the time principal component (TPC). The matrix formed by am

i is a right matrix
without normalization, that is,

√
λmVm.

The time series was then reconstructed using the time empirical orthogonal functions
and principal components through the following steps:

Xi =



1
L

i
∑

j=1
ak

i−jUK,j, 1 ≤ i ≤ L − 1

1
L

i
∑

j=1
ak

i−jUK,j, 1 ≤ i ≤ N − L + 1

1
N − i + 1

L
∑

j=i−N+L
ak

i−jEK,j, N − L + 2 ≤ i ≤ N

(12)

The sum of all the reconstructed sequences should be equal to the original sequence:

Xi =
L

∑
k=1

Xk
i , i = 1, 2, · · · , N (13)

Typically, with SSA, the goal is to extract the dominant components of the original
sequence, as in the case of denoising. In this case, only the first K(K ≤ L) components
that contributed the most variance needed to be retained for reconstructing the original
sequence, based on the singular values.

3.4. LSTM for Time Series Forecasting

Long short-term memory (LSTM) networks are a special type of recurrent neural
network (RNN) that can capture long-term dependencies in sequence data and mitigate
vanishing and exploding gradient problems to some extent [43]. LSTMs employ three main
gating structures: forget gates, input gates, and output gates to protect and control the cell
state [44]. A schematic of an LSTM network is shown in Figure 4.
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which includes various operations such as input modulation, gating mechanisms, and state updates.
It is responsible for maintaining and updating the hidden state and cell state across time steps).

The forgetting gate determines what information is discarded from the cell state.
Specifically, the forgetting gate takes as input the previous hidden state ht−1 and current
input Xt. It applies a sigmoid activation to produce a vector ft with values between 0 and 1,
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where 1 represents completely retaining and 0 represents completely forgetting. This vector
ft is then multiplied elementwise with the previous cell state Ct−1 to selectively discard
information. The calculation formula is presented below.

ft = σ(W f ·[ht−1, Xt] + b f ) (14)

The input gate determines what new information is stored in the cell state. First, a
sigmoid layer called the input gate layer decides what values should be updated, generating
the vector. Second, a tanh layer creates a new candidate value vector C̃t. This is added to
the cell state. The calculation formulas are presented below.

it = σ(Wi·[ht−1, Xt] + bi) (15)

C̃t = tanh(WC·[ht−1, Xt] + bC) (16)

The cell state refers to the process of updating from the old cell state Ct−1 to the new
Ct. First, the old cell state Ct−1 is multiplied by ft, discarding information that needs to be
forgotten. Then, the product of it and C̃t is added. C̃t represents a new candidate value
that determines how much each cell state should be updated. The calculation formula is
presented below.

Ct = ft·Ct−1 + it·C̃ (17)

The output gate determines the output value, which is the final filtered version. First,
a sigmoid layer decides which parts of the cell state Ot should be output. Next, the cell
state Ct passes through a tanh layer to obtain values between −1 and 1. This is multiplied
by the output from the sigmoid gate to obtain, ultimately, the cell output value ht. The
calculation formulas are presented below.

Ot = σ(W0[ht−1, Xt] + b0) (18)

ht = Ot·tanh(Ct) (19)

4. Case Study
4.1. Experimental Setup

The partial autocorrelation function (PACF) determined the optimal lag terms for the
intrinsic mode functions (IMFs) decomposed from the monthly flows. Two feature selection
methods were then applied to the generated feature subsets—mutual information (MIR)
and recursive feature elimination with cross-validation (RFECV)—forming two forecasting
approaches, namely MIR–LSTM and RFECV–LSTM, with their respective predictors. Along
with the direct LSTM without feature selection, three predictor sets were generated. All
three methods of MIR–LSTM, RFECV–LSTM, and direct LSTM targeted monthly flows
forecasted 1, 3, 5, and 7 months into the future.

First, the original data series were decomposed using EMD, EEMD, CEEMDAN, SSA,
DWT, and VMD time–frequency decomposition methods to reduce noise in the runoff
sequences and capture trends. PACF was then used to determine the optimal lag terms
for each IMF component, generating sample matrices with prediction targets of 1, 3, 5,
and 7 months into the future. Finally, MIR and RFECV were applied to perform feature
selection on the matrices composed of the forecast factors and prediction targets for the 1-,
3-, 5-, and 7-month lead times. The resulting selected forecast factors were combined with
the unfiltered forecast factors to form the input sample matrices for three LSTM predic-
tion frameworks: MIR–LSTM, RFECV–LSTM, and direct LSTM. In summary, the sample
matrices for these three decomposition–integration prediction schemes were constructed
through feature selection using MIR and RFECV on the lead time forecast factors.

The sample matrices were split into three parts: training set, validation set, and test
set. The LSTM was trained on the training set. The hyperparameters of the LSTM were
tuned by evaluating model performance on the validation set using metrics like MSE. The
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tuned LSTM was then evaluated on the test set. Bayesian optimization was used to select
the optimal hyperparameters for the LSTM model, including the learning rate, the number
of hidden layers, the number of hidden units, and the dropout rate. The search strategy for
the learning rate was logarithmic sampling in the range of [10−4, 10−1]. The search strategy
for the number of hidden layers was [1:1:3], indicating the start, step size, and end of the
search range. The search range for the number of hidden units was [16:16:64]. The dropout
rate was searched in the range of [0, 0.05, 0.5]. The activation function was set to ReLU. The
optimization method was Adam. The batch size was set to 32.

4.2. PACF for Optimal Lag Selection

The correlations among the modal components obtained through singular spectrum
analysis (SSA) of the monthly streamflow data should be analyzed prior to the overall
forecasting. The partial autocorrelation function (PACF) can determine the optimal lag
operators among the subsignal components. The PACF results can guide selection of input
feature vectors for the LSTM prediction model to capture different oscillation modes in the
streamflow across periods. Careful input feature engineering using PACF enables effective
LSTM modeling of the streamflow time series [4].

If the lagged autocorrelation coefficient of the partial autocorrelation function (PACF)
exceeded the upper and lower bounds of the 95% confidence interval ([− 1.96√

n , 1.96√
n ]), then

that lagged term was included as one of the input variables and incorporated into the
feature vector for the prediction model. If all the PACF coefficients were within the 95%
confidence interval, then the previous value was used as the input variable. The PACF
is described as follows. For a streamflow sequence, the lagged autocovariance of order k
(where k = 0 represents the variance), denoted as γk, is calculated as:

γ̂k =
1
n

n−k

∑
t=1

(xt − x̂)(xt+k − x), (k = 1, 2, · · · , M) (20)

Here, x denotes the mean of the streamflow sequence, M = n/4 is the maximum lag
order of the partial autocorrelation function (PACF), and k represents the lag length of the
PACF which can be expressed as:

ρ̂k = γ̂k/γ̂0 (21)

Based on the autocovariance, the PACF of lag order k(k = 1, 2, · · · , M) denoted as fkk
can be calculated as:

f̂k+1,k+1 =

f̂11 = ρ̂1
(ρ̂k+1 − ∑k

j=1 ρ̂
k+1−j

f̂kj)/(1 − ∑k
j=1 ρ̂j f̂k,j)

f̂k+1 = f̂kj − f̂k+1,k+1· f̂k,k−j+1

(j = 1, 2, · · · , k) (22)

4.3. Data Normalization

Data normalization was performed in the experiments, as it can effectively reduce
the difficulty of optimizing the objective function, improve the accuracy, stability, and
generalization ability of the model, and accelerate model convergence. All the prediction
factors and prediction targets were normalized to the range of [−1, 1]. The normalization
equation is as follows:

x′ = 2 × x − xmin

xmax − xmin
− 1 (23)

where x and x′ are the original and normalized values, respectively, and xmin and xmax
are the minimum and maximum values of the original sequence, respectively. In addition,
to ensure the validation and test sets have the same distribution as the training set, the
same maximum (xmax) and minimum (xmin) values from the training samples were used to
normalize the validation and test set samples. Since the decomposition results of VMD,
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EMD, EEMD, CEEMDAN, DWT, and SSA contain negative values, the data samples were
scaled to the range of [−1, 1].

4.4. Bayesian Optimization for Hyperparameter Tuning

The choice of model hyperparameters significantly impacts model performance. To
obtain the best predictive performance of LSTM and enhance its generalization capability,
hyperparameter tuning is required. During model training, the Bayesian optimization
algorithm (BOA) was utilized to optimize the hyperparameters. Compared to commonly
used optimization algorithms like grid search, random search, and halving grid search,
BOA can accelerate the convergence speed and enable more efficient hyperparameter opti-
mization [45]. Assuming the objective function is ft, and taking a set of hyperparameters
as input and outputting five-fold cross-validation results, the goal is to find the minimum
value of ft at the hyperparameter sample points. The Bayesian optimization process can be
briefly described as follows:

x∗ = argmin f (x)x∈X (24)

Here, X represents the hyperparameter space, with x∗ ∈ X being the set of hyperpa-
rameters that generate the minimal value.

The surrogate model and acquisition function are two key steps in Bayesian optimiza-
tion. In each iteration, the Bayesian optimization process constructs a surrogate function of
the objective using a Gaussian process (GP), then finds the optimal hyperparameters for
the surrogate via the acquisition function and uses those hyperparameters to sequentially
refine the surrogate model. The main steps of BOA are as follows [46]:

Step 1: define the hyperparameter space and construct the five-fold cross-validation
objective function.

Step 2: define the initial sample points using random sampling and the maximum
number of iterations.

Step 3: randomly select sample points within the defined hyperparameter space to
initialize the surrogate model.

Step 4: construct a surrogate model of the objective function.
Step 5: acquire the hyperparameters with optimal performance for the surrogate

model, apply these points to the objective function to generate results.
Step 6: refine the surrogate model by incorporating the new results.
Step 7: repeat steps 4–6 until the maximum number of iterations is reached.
Step 8: extract the optimized hyperparameters and build the model.

p(w|D) =
p(D|w)p(w)

p(D)
(25)

where p(D) denotes the marginal probability of the data, p(w) denotes the prior distribution
of the parameters w, p(w|D) denotes the posterior distribution, and p(D|w) denotes the
likelihood of the data D given the parameters w.

5. Results Analysis
5.1. Data Decomposition

The modeling process of the decomposition integration model involves data decompo-
sition, determining predictive factors and predictands, and streamflow forecasting in one
integrated process. In this study, the optimal decomposition window lengths for VMD and
SSA were determined based on the central frequency aliasing of the last component. Taking
the SSA decomposition of the data from the Yangxian hydrological station as an example,
window length values from 2 to 12 were evaluated, and central frequency aliasing occurred
at k = 9, as shown in Figure 5. The emergence of central frequency aliasing indicates that
the current window length had sufficiently extracted the information in the time series.
Further increasing the window length would only increase the energy of the noise modes
without obtaining more useful information. Thus, k = 9 − 1 = 8 was chosen as the SSA
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decomposition window length. The optimal number of modes for VMD was determined
in a similar manner. Figure 6 shows the results of the SSA decomposition into subsignal
components for the monthly runoff at Yangxian station.
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Following the introduction of EMD, EEMD, and CEEMDAN in Section 3.1, the monthly
streamflow data from Yangxian and Hanzhong were decomposed into seven and six subsig-
nals, respectively, by using EMD, eight and seven subsignals, respectively, by using EEMD,
and seven and six subsignals, respectively, by using CEEMDAN. When the decomposition
levels of DWT were set to 1, 2 and 3, 2, 3, four subsignals were decomposed from the
original streamflow data from Yangxian and Hanzhong, respectively.

5.2. Determining Input Variables Using PACF

As described in Section 4.2 for the determination of the temporal feature dimensions of
time series, PACF was used to determine the input variables for the model. When the PACF
was within the 95% confidence interval, the time series was linearly independent and could
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be used as an input variable. If multiple correlation coefficients were within the confidence
interval, then the lag term with the minimum correlation coefficient was chosen as the
optimal input variable. Taking the first subsignal sequence of SSA decomposition of the
data from the Yangxian hydrostation, i.e., IMF1, as an example, the process of determining
the input and output variables from Figure 7 through the partial autocorrelation function
is illustrated. When t was set to 8 months, the PACF within the 95% confidence interval
was 0.03, therefore t − 1 = 7 months was the optimal lag term for IMF1. As introduced
in Section 3.1, the monthly streamflow data from IMF1 from t − 7 months to t − 1 month
for seven consecutive months as well as the streamflow corresponding to the lag dates
determined by PACF for the other IMFs were used as input variables, and the monthly
streamflow data for the predicted periods of (t + 1) months, (t + 3) months, (t + 5) months,
and (t + 7) months were used as output variables. The generation of input data for the
Hanzhong hydrostation was the same as that for the Yangxian hydrostation. Figure 7 shows
the process of determining the input variables for Yangxian’s IMF1. The optimal input
variables for each IMF of Yangxian are shown in Table 1.
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Table 1. Optimal input variables for each intrinsic mode function decomposed from the Yangxian
time series data using singular spectrum analysis.

Decomposed IMFs Numbers of Input Input Variables

IMF1 7 x1(t − 1)(t − 2)(t − 3)(t − 4)(t − 5)(t − 6)(t − 7)

IMF2 4 x2(t − 1)(t − 2)(t − 3)(t − 4)

IMF3 5 x3(t − 1)(t − 2)(t − 3)(t − 4)(t − 5)

IMF4 6 x4(t − 1)(t − 2)(t − 3)(t − 4)(t − 5)(t − 6)

IMF5 5 x5(t − 1)(t − 2)(t − 3)(t − 4)(t − 5)

IMF6 4 x6(t − 1)(t − 2)(t − 3)(t − 4)

IMF7 5 x7(t − 1)(t − 2)(t − 3)(t − 4)(t − 4)(t − 5)

IMF8 5 x8(t − 1)(t − 2)(t − 3)(t − 4)(t − 4)(t − 5)

5.3. Mutual Information Method for Predictor Screening

Mutual information feature selection is an entropy-based method that can mine as-
sociations between different types of variables [47]. Entropy quantifies the amount of
information provided by the data. For continuous variables, entropy can be calculated as:

h(X) = −
∫

PX(x) ln PX(x)dx (26)
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where h(X) is the entropy of feature X and PX(x) is the probability density function of
feature X.

Before deriving the mutual information, another term from information theory must
be introduced, i.e., conditional entropy h(X|Y) , which can be computed as:

h(X|Y) = −
x

PXY(x, y) ln PX|Y(x
∣∣∣y)dxdy (27)

where PXY(x, y) is the joint probability density function of feature X and outcome Y and
PX|Y(x

∣∣∣y) is the conditional probability density function of feature X given the outcome Y.
The term h(X|Y) quantifies the uncertainty in feature X if the outcome Y is known.

The mutual information, denoted as I(X; Y), measures the reduction in uncertainty
about the outcome Y due to knowledge of the feature X. The mutual information can be
computed using the following formula:

I(X; Y) = h(X)− h(X|Y) (28)

This study employs mutual information (MI) to measure the importance of predictor
factors. Using the runoff series from Yangxian, the feature matrix generated based on
the SSA decomposition and PACF to determine the optimal lag operators was taken as a
predictor factor. Taking the prediction target of the monthly runoff forecast one month into
the future as an example, the optimal feature factors for the target flow were identified,
as shown in Figure 8. In Figure 8, the feature factors with an importance greater than the
median are: Periodic2{t − 1}, Periodic1{t − 3}, Periodic5{t − 1}, Periodic4{t − 2}, Periodic2{t
− 2}, Periodic2{t − 3}, Periodic2{t − 5}, TREND{t − 3}, Periodic1{t − 4}, Periodic0{t −
2}, Periodic4{t − 1}, Periodic1{t − 1}, TREND{t − 2}, TREND{t − 1}, and Periodic0{t − 1}.
The factors with an importance greater than the mean are: Periodic4{t − 2}, Periodic2{t
− 2}, Periodic2{t − 3}, Periodic2{t − 5}, TREND{t − 3}, Periodic1{t − 4}, Periodic0{t −
2}, Periodic4{t − 1}, Periodic1{t − 1}, TREND{t − 2}, TREND{t−1}, and Periodic0{t − 1}.
Since there is no universally accepted importance threshold, factors with an importance
greater than the mean were selected as predictors for the MIR–LSTM framework. In this
way, MI could be used to screen the feature factors identified based on EMD, EEMD,
CEEMDAN, DWT, SSA, and VMD decompositions, as well as PACF, to form predictors for
the MIR–LSTM frameworks of Yangxian and Hanzhong, respectively.

5.4. Predictor Selection via Recursive Feature Elimination and Cross Validation

Considering the high dimensionality of predictors in the training data, machine learn-
ing methods can easily overfit the training data, resulting in poor regression prediction
accuracy and weak generalization capability. In fact, not all sub-signals and lagged predic-
tor features determined by PACF positively contributed to prediction accuracy. Recursive
feature elimination (RFE) is an efficient feature selection method that reduces model com-
plexity by eliminating irrelevant predictive variables. Technically, RFE is a wrapper feature
selection algorithm that also uses filter-based feature selection internally; hence, different
machine learning algorithms can be easily combined with the RFE algorithmic core to
perform feature selection [48]. This study primarily combines the RFECV algorithm with
the CART regression tree model. First, all features in the training set were used to train
the CART model. Then, features were ranked according to importance (coefficients or
feature importance) and the weakest features were progressively eliminated, with the
model refitted at each iteration. Compared to RFE, RFECV adds a cross-validation step
after RFE. Also, RFECV does not necessarily prune features down to a specified dimension
but stops the iterations at or before the specified dimension is reached.

To prevent the overfitting of the CART regression tree, hyperparameter tuning via grid
search (GridSearchCV) was performed at each iteration of subset feature model refitting,
further enhancing the reliability of the RFECV feature selection results. The procedure for
RFECV is as follows:
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Step 1: initially train the CART regression tree on the full set of features (A1) to obtain
the model result r1 and the importance of each feature.

Step 2: eliminate the least important feature, i.e., the feature with the lowest importance
score, to obtain a subset of features (A2). Retrain the model on A2 to obtain the result r2
and recalculate the importance of the remaining features.

Step 3: if r2 is better than r1, keep A2 and further eliminate the least important feature
to obtain the subset A3. Retrain the model on A3 to obtain the result r3 and the importance
of features in A3, repeating this process iteratively. Otherwise, if r1 is better than r2, keep
A1 and stop the iterations. Alternatively, stop the iterations if the performance of any subset
is weaker than that of its parent set during the iterative process.

With regard to RFECV, the feature importance metric only serves to guide the model
toward the identification of relatively weaker features given the current dataset. The
final decision on whether to eliminate a feature is still based on the comparison of model
performance before and after the exclusion of the feature. As shown in Figure 9 using
monthly streamflow data from Yangxian as input, model performance deteriorated after
dropping one feature in the third iteration. Therefore, the iterations were stopped and the
third subset of features was retained as the optimal predictors for streamflow forecasting.
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5.5. Comparison of Model Performance Across Prediction Schemes

Monthly runoff data from the Yangxian and Hanzhong hydrological stations were used
to compare the model performance of the direct LSTM, MIR–LSTM, and RFECV–LSTM
prediction schemes trained on decompositions from different methods. The evaluation
metrics NSE, NRMSE, and PPTS were calculated for each scheme using the training and
validation sets. Heatmaps in Figures 10–12 illustrate these results. The x-axis indicates
the prediction scheme, station, lead time, and model stage (e.g., Direct_LSTM-YX-L1-T is
the training stage of the direct LSTM scheme predicting the streamflow at the Yangxian
station at 1 month lead time). The y-axis shows the various time–frequency decomposition
algorithms. Beyond CEEMDAN, EEMD, EMD, SSA, and VMD, the remaining methods
included DWT (e.g., bior 3.3-1 was DWT with bior 3.3 mother wavelet at decomposition
level 1). The black rectangles indicate the decomposition method delivering the best
performance for that prediction scheme, station, lead time, and stage. Together, the x-axis
and the y-axis represent the full decomposition–integration prediction model. For example,
the combination of Direct_LSTM-YX-L1-T (x-axis) and SSA (y-axis) refers to the evaluation
metrics from the SSA-decomposed direct LSTM model trained to predict Yangxian monthly
runoff at 1 month lead time.

As shown in Figures 10–12, the direct LSTM and RFECV–LSTM schemes exhibited
higher NSE values and lower NRMSE and PPTS values compared to the MIR–LSTM
scheme across all decomposition methods, stations, lead times, and model stages. This
indicates that the direct LSTM and RFECV–LSTM schemes exhibited a superior predic-
tion performance compared to that of th MIR–LSTM scheme, which directly discarded
forecast factors below the mutual information threshold, losing valuable information and
degrading the predictions. Under the same conditions, RFECV–LSTM achieved higher
NSE values and lower NRMSE/PPTS values than the direct LSTM. During the hyperpa-
rameter tuning experiments, RFECV–LSTM more easily reached the optimal validation
performance given the same upper and lower bounds, while the direct LSTM delivered
an unstable validation performance with overfitting and underfitting, requiring multiple
hyperparameter boundary adjustments to obtain a good performance. This suggests that
RFECV’s lagged screening of the predictors removed those with minor influence or pure
noise relative to the target flow. This improved model stability, generalizability, accuracy,
and convergence over the direct LSTM using all the predictors. Thus, RFECV feature selec-
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tion was effective for monthly runoff prediction. The SSA–LSTM model showed high NSE
values and low NRMSE/PPTS values across all combinations of schemes, stations, lead
times, and stages, suggesting that SSA decomposition generally improved LSTM runoff
prediction. Regardless of decomposition, scheme, station, or stage, NSE values decreased
while NRMSE/PPTS values increased with lead times, reflecting a worse performance for
longer lead times. Further, by ignoring wavelet type, scheme, station, lead time, and stage,
DWT–LSTM models with three levels of decomposition showed higher NSE values and
lower NRMSE/PPTS values compared to models with one or two levels. This shows that
increasing DWT decomposition levels enhanced prediction performance. With three levels,
the 1-month lead time NSE value exceeded 0.95, validating this approach as effective for
DWT–LSTM models. Among DWT–LSTM models, db20, db25, db30, db35, db40, and
db45 at three levels showed the best performance compared to other wavelets. However,
DWT exhibited poor validation, generalizability, and steep performance declines for longer
lead times. In summary, RFECV–LSTM demonstrated superior generalizability and op-
timization convergence, retaining a prediction accuracy close to that of the direct LSTM
despite the pruning of some factors. RFECV–LSTM showed better stability and lower
dimensionality compared to the all-factor direct LSTM. The MIR–LSTM scheme was less
reliable than the RFECV strategies. Comparing all decompositions, the RFECV–SSA–LSTM
model performed best in terms of training fit and validation accuracy. Thus, this study
recommends the RFECV–SSA–LSTM scheme for monthly runoff prediction.
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Horizontal comparison experiments were then conducted for the three models: direct
LSTM, MIR–LSTM, and RFECV–LSTM, as shown in Figure 13. In Figure 13a, it can be
seen that RFECV–LSTM had fewer NSE outlier whiskers than its direct LSTM counterpart
when using both validation and test sets, especially notable when using the validation set.
MIR–LSTM showed the most NSE outlier whiskers when using the test set, reflecting its
poor performance compared to the other models. Although MIR–LSTM had no outlier
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whiskers when ran on the validation set, the heatmaps revealed that its predicted NSE
values were generally low, thus concentrated at lower values without outliers. Due to the
large outlier values, the specific NSE values of the three models are unclear in Figure 13a.
However, based on the heatmaps, both the RFECV–LSTM and the direct LSTM models
achieved higher NSE values than MIR–LSTM across all scenarios. This demonstrates
RFECV–LSTM’s superior generalizability compared to the direct LSTM model, while MIR–
LSTM delivered the worst performance in terms of both model stability and accuracy. In
Figure 13b, the outlier whiskers of NRMSE for the RFECV–LSTM (val) model are shorter
than those associated with the direct LSTM (val) model, while they appear to be comparable
between the RFECV–LSTM (test) and the direct LSTM (test) models, with NRMSE clustered
around 1. The MIR–LSTM (test) model had the longest outlier whiskers, suggesting that
RFECV–LSTM performed best among the three models and was more stable than the
direct LSTM model, while MIR–LSTM delivered the worst performance. In Figure 13c, the
direct LSTM (val) model has longer outlier whiskers than those associated with the other
models, and both the direct LSTM and the RFECV–LSTM models exhibited PPTS around
5 and 50, while MIR–LSTM exhibited PPTs around 70, a value higher than the other two.
This indicates the better performance of the direct LSTM and RFECV–LSTM models over
MIR–LSTM, while RFECV–LSTM showed no PPTS outliers when using the validation and
test sets, yielding more stable and generalizable predictions.
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As the previous analyses showed that MIR–LSTM had the worst prediction accuracy
among the three models, the comparison here focuses on RFECV–LSTM and direct LSTM.
Based on the heatmaps, db35-3, db40-2, db45-3, VMD, and SSA were the best performing
decomposition algorithms. Box plots were generated to compare RFECV–LSTM and direct
LSTM across different model schemes and algorithms, as illustrated in Figure 14.
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In Figure 14a, both direct SSA and RFECV–SSA achieved high NSE values with
very small interquartile ranges close to 1, indicating that the SSA decomposition was
capable of the best runoff predictions among all the algorithms. Moreover, RFECV–SSA–
LSTM showed smaller interquartile ranges for NSE than the direct SSA–LSTM when using
training, validation, and test sets. This demonstrates RFECV–LSTM’s superior stability
and generalizability compared to the direct LSTM model, corroborated by the NRMSE and
PPTS box plots in Figure 14b,c.

Figure 14a also shows that RFECV–db45-3–LSTM exhibited markedly higher mean
NSE values and much smaller interquartile ranges than the direct db45-3–LSTM model
when using the training set. The NSE advantages persisted when using the validation
and test sets, suggesting substantial improvements in both the stability and the accuracy
of RFECV–db45-3–LSTM over that of the direct db45-3-LSTM. For VMD decomposition,
RFECV–LSTM exhibited a smaller NSE interquartile range than the direct LSTM when
using the training set, while the mean NSE value was comparable across training, validation,
and test sets, indicating improved stability but similar accuracy. However, as Figure 14a
shows, RFECV–LSTM delivered a worse performance than that of the direct LSTM model
on both validation and test sets when using db35-3, demonstrating that RFECV–LSTM
does not universally improve the direct LSTM model. Overall, RFECV–LSTM managed to
avoid overfitting and underfitting better than the direct LSTM model given the quality of
the data, leading to enhanced generalizability, convergence, and stability.

5.6. Comparison of Direct and RFECV Prediction Schemes

This study compares the performance of the direct SSA–LSTM, RFECV–SSA–LSTM,
direct VMD–LSTM, RFECV–VMD–LSTM, direct DWT–LSTM (db45-3), and RFECV–DWT-
LSTM (db45-3) schemes using data from both Yangxian and Hanzhong hydrological sta-
tions, with respect to predictions 1, 3, 5, and 7 months into the future using the test set,
as shown in Figures 15 and 16. In the plots, direct SSA–LSTM and RFECV–SSA–LSTM
exhibited similar predictions clustered around the ideal fitting line, with the smallest angle
between linear and ideal fittings. This indicates that the SSA decomposition delivered the
best performance and was the most suitable for monthly runoff predictions.



Water 2024, 16, 3102 21 of 27

Water 2024, 16, x FOR PEER REVIEW 22 of 28 
 

 

5.6. Comparison of Direct and RFECV Prediction Schemes 
This study compares the performance of the direct SSA–LSTM, RFECV–SSA–LSTM, 

direct VMD–LSTM, RFECV–VMD–LSTM, direct DWT–LSTM (db45-3), and RFECV–
DWT-LSTM (db45-3) schemes using data from both Yangxian and Hanzhong hydrologi-
cal stations, with respect to predictions 1, 3, 5, and 7 months into the future using the test 
set, as shown in Figures 15 and 16. In the plots, direct SSA–LSTM and RFECV–SSA–LSTM 
exhibited similar predictions clustered around the ideal fitting line, with the smallest an-
gle between linear and ideal fittings. This indicates that the SSA decomposition delivered 
the best performance and was the most suitable for monthly runoff predictions. 

Comprehensively analyzing the QQ plots of the direct VMD–LSTM, RFECV–VMD–
LSTM, direct DWT–LSTM, and RFECV–DWT–LSTM schemes shows the linear fittings 
commonly lying above the ideal fitting, suggesting that these models generally underes-
timated the original values, as it can also be observed for the direct SSA–LSTM and 
RFECV–SSA–LSTM models. At the Hanzhong station, RFECV–DWT–LSTM showed 
smaller angles between the true linear and ideal fittings compared to the direct DWT–
LSTM model overall, while the angle fluctuated more irregularly for the direct DWT–
LSTM model, as shown in Figure 16c1–c4. These results indicate minimal performance 
differences between the direct LSTM and the RFECV–LSTM schemes. However, RFECV 
feature selection played a major role in filtering out the less relevant factors and improving 
model performance when data quality was low, as evidenced by the db45-3 decomposi-
tion. 

 
Figure 15. QQ plots for direct and RFECV schemes during testing at the Yangxian (YX) station: (a1–
a4) direct SSA–LSTM and RFECV–SSA–LSTM, (b1–b4) direct VMD–LSTM and RFECV–VMD–
LSTM, (c1–c4) direct DWT–LSTM (db45-3), and RFECV–DWT–LSTM (db45-3). 

Figure 15. QQ plots for direct and RFECV schemes during testing at the Yangxian (YX) station:
(a1–a4) direct SSA–LSTM and RFECV–SSA–LSTM, (b1–b4) direct VMD–LSTM and RFECV–VMD–
LSTM, (c1–c4) direct DWT–LSTM (db45-3), and RFECV–DWT–LSTM (db45-3).
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LSTM, (c1–c4) direct DWT–LSTM (db45-3), and RFECV–DWT–LSTM (db45-3).
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Comprehensively analyzing the QQ plots of the direct VMD–LSTM, RFECV–VMD–
LSTM, direct DWT–LSTM, and RFECV–DWT–LSTM schemes shows the linear fittings
commonly lying above the ideal fitting, suggesting that these models generally underesti-
mated the original values, as it can also be observed for the direct SSA–LSTM and RFECV–
SSA–LSTM models. At the Hanzhong station, RFECV–DWT–LSTM showed smaller angles
between the true linear and ideal fittings compared to the direct DWT–LSTM model overall,
while the angle fluctuated more irregularly for the direct DWT–LSTM model, as shown in
Figure 16c1–c4. These results indicate minimal performance differences between the direct
LSTM and the RFECV–LSTM schemes. However, RFECV feature selection played a major
role in filtering out the less relevant factors and improving model performance when data
quality was low, as evidenced by the db45-3 decomposition.

6. Discussion

The superior performance of SSA-based LSTM models over other LSTM models using
VMD, DWT, CEEMDAN, EEMD, and EMD decompositions, as concluded in Section 5.5,
can be explained by the comparisons in Figures 17 and 18. Figure 17 shows heatmaps of
Pearson’s correlation coefficients between subsignals from SSA, VMD, and DWT decom-
positions. Figure 18 presents the spectra of the most difficult to predict subsignals, i.e.,
the last IMF for SSA and VMD and the first detail coefficient for DWT. As shown in the
heatmaps in Figure 17, the VMD and DWT subsignals exhibited weaker Pearson’s corre-
lations than SSA, indicating higher independency. However, as shown in Figure 18, the
most difficult SSA subsignal displayed very low noise levels in the low-frequency domain,
whereas much greater noise levels were observed for its VMD and DWT counterparts.
Although less correlated, the VMD and DWT subsignals contained more noise than the
SSA subsignals. Despite their inferior performance relative to SSA, VMD- and DWT-based
LSTM models remain powerful decomposition–ensemble forecasting frameworks. Our
experiments demonstrate that SSA decomposition is better at controlling mode mixing and
noise, lending superior applicability to streamflow forecasting.

As shown in Section 5.5, the RFECV–LSTM forecasting scheme demonstrated superior
maturity, reliability, and efficacy over the direct LSTM by incrementally pruning irrelevant
features to ensure high correlation between the predictors and the forecasting target. Further
removal of low-correlation predictors by RFECV after time–frequency decomposition
maximized the accuracy of streamflow forecasting. Moreover, reducing the dimension of
the predictors improved LSTM efficiency by lowering computational resource requirements
and model training time. The MIR–LSTM delivered the worst performance compared to
its RFECV–LSTM and direct LSTM counterparts, as MIR directly discarded predictors
with average mutual information below a threshold, omitting valuable information from
model training. Although pruning some features may reduce overfitting risks, forecasting
performance is paramount.

Section 5.6 demonstrates that the performance gap between the RFECV–LSTM and
the direct LSTM forecasting schemes was minor, except for superior RFECV–LSTM results
under DWT–(db45-3)–LSTM. This indicates that RFECV is an efficient feature selection
approach that can prune predictors with a weak correlation to the forecast target, while
preserving predictive capabilities, especially when the predictor set contains members
with weak correlation to the target or high dimensionality. In this study, three sample sets
were utilized to compare the direct LSTM, MIR–LSTM, and RFECV–LSTM schemes: the
training set for model training, the validation set for hyperparameter tuning and model
selection, and the test set for evaluating model performance and generalizability. To ensure
consistent distributions across the training, validation, and test sets for normalization,
the maximum and minimum values from the training set were used. Moreover, the test
samples were completely excluded from model training and hyperparameter optimization,
further ensuring the credibility of the experimental results.
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Although this study used Bayesian optimization to optimize the hyperparameters
of the LSTM model and achieved good results, Bayesian optimization has certain lim-
itations. First, in the hyperparameter search space with high dimensionality, Bayesian
optimization involves high computational complexity, and constructing and updating
the surrogate model increases computational overhead. Additionally, Bayesian optimiza-
tion is highly sensitive to the selection of initial sampling points, and poor initial points
may cause the optimization to fall into a local optimum, thus affecting the final outcome.
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Finally, Bayesian optimization is more suitable to small-to-medium-scale optimization
problems. If the search space is too large or the training process is very time-consuming, its
efficiency may be lower than that of other methods. Therefore, in practical applications,
it is necessary to comprehensively consider these factors to determine the suitability of
Bayesian optimization.

To address the “black-box” issue in machine learning models and enhance the inter-
pretability of streamflow forecasting, the integration of physics-based models with machine
learning models is essential. Physics-based models, grounded in the physical understand-
ing of hydrological and meteorological processes, offer interpretative constraints that
ensure that predictions adhere to natural laws. In contrast, machine learning models excel
at capturing complex nonlinear and high-dimensionality relationships. The combination of
these models not only enhances prediction accuracy, but also improves model transparency
and credibility by incorporating physical explanations. Furthermore, this integration offers
a framework for attribution analysis, allowing for the identification and quantification
of the contribution of various input variables to the prediction outcomes. This approach
enhances model interpretability and offers clear guidelines for model optimization. In
future studies, the fusion of physics-based and data-driven models will play a key role
in overcoming the limitations of current “black-box” models, facilitating more informed
decision-making and enhancing model reliability.

7. Conclusions

To enhance the performance, reliability, and efficiency of decomposition–integration
models for practical applications, this study proposes an RFECV–LSTM forecasting scheme
which iteratively prunes weakly correlated predictors via recursive feature elimination and
cross validation (RFECV) to reduce overfitting risks while improving model performance.
This lowers computational requirements and increases generalizability and efficiency. The
RFECV–LSTM scheme is combined with SSA time–frequency decomposition as RFECV–
SSA–LSTM to forecast streamflow 1, 3, 5, and 7 months into the future. To demonstrate
the performance of RFECV–SSA–LSTM, comparative analyses are conducted against the
direct LSTM and MIR–LSTM schemes based on VMD, CEEMDAN, EEMD, EMD, and DWT
decomposition. All comparison experiments utilize monthly streamflow records from 1967
to 2020 from the Yangxian station and from 2000 to 2022 from the Hanzhong station in
China’s Hanjiang River Basin. The main conclusions are:

1. The decomposition levels of SSA and VMD can be determined by observing central
frequency aliasing in the last subprocess to prevent frequency overlap across subcom-
ponents, minimize intercorrelation, and avoid spurious or redundant elements.

2. When using the db45-3 decomposition, RFECV–LSTM exhibits higher NSE values and
lower NRMSE and PPTS values compared to the direct LSTM model when applied to
data from the Hanzhong station, with the most pronounced performance gap across
all cases. This demonstrates that the recursive pruning of weakly correlated predictors
can further enhance predictive accuracy. With high predictor dimensionality and
weak correlation to the forecast target, RFECV–LSTM shows a superior forecasting
performance over its direct LSTM counterpart. MIR–LSTM performs much worse
than the other two schemes by directly removing predictors below the average mutual
information value, resulting in some loss of valuable predictive information.

3. Although VMD and DWT yield lower intercorrelation among subcomponents than
SSA, their most difficult to predict subcomponents have higher noise levels in the fre-
quency spectrum compared to SSA. Thus, SSA–LSTM achieves the best
predictive performance.

4. The proposed RFECV–SSA–LSTM model achieves NSE values greater than 0.9 across
all lead times of 1, 3, 5, and 7 months, outperforming the RFECV–LSTM, MIR–LSTM,
and direct LSTM forecasting models based on different decomposition methods. Thus,
RFECV–SSA–LSTM is a mature, reliable, and effective streamflow forecasting scheme.
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In summary, the empirical validation demonstrates that RFECV–SSA–LSTM is the
optimal decomposition–integration model and a highly reliable forecasting scheme for
predicting highly nonlinear monthly streamflow in the context practical applications. More-
over, RFECV–SSA–LSTM can be implemented to forecast other nonlinear processes such
as precipitation, evaporation, temperature, etc. By screening all predictors and selecting
those most strongly correlated with the forecast target, predictive accuracy can be further
enhanced. When applying the RFECV–SSA–LSTM forecasting model, the following criteria
should be met: (1) the decomposed subcomponents must satisfy orthogonality to avoid
spurious elements; the SSA decomposition level can be determined by observing central
frequency aliasing in the last subcomponent, (2) the data should be split into training, vali-
dation, and test sets to avoid using future information; the test set should not participate in
model training or hyperparameter tuning to ensure credible model evaluation, (3) min–max
normalization should be performed using the min–max values from the training set to
ensure the validation and test sets have identical distributions to the training set, (4) when
meteorological records are incomplete for the target watershed, RFECV–SSA–LSTM can
effectively forecast streamflow solely based on available historical flow data.
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