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Abstract: Drought is a severe disaster, increasingly exacerbated by climate change, and poses
significant challenges worldwide, particularly in arid and semi-arid regions like Morocco. This
study aims to assess and monitor drought using a multi-index approach to provide a comprehensive
understanding of its spatio-temporal dynamics at both meteorological and agricultural levels. The
research focuses on the Upper Oum Er Rabia watershed, which spans 35,000 km2 and contributes
approximately a quarter of Morocco’s renewable water resources. We propose a methodology
that combines ERA5 temperature data from remote sensing with ground-based precipitation data
to analyze drought characteristics. Three meteorological indices were utilized: the Standardized
Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the
Reconnaissance Drought Index (RDI). Additionally, three remote-sensing indices were employed to
capture agricultural drought: the Normalized Difference Vegetation Index (NDVI), the Enhanced
Vegetation Index (EVI), and the Crop Water Stress Index (CWSI), with a total of 528 NDVI and EVI
images and 1016 CWSI images generated through Google Earth Engine (GEE), using machine-learning
techniques. Trend analyses were conducted to monitor drought patterns spatio-temporally. Our
results reveal that the three-month interval is critical for effective drought monitoring and evaluation.
Among the indices, SPEI emerged as the most effective for capturing drought in combination with
remote-sensing data, while CWSI exhibited the highest correlation with SPEI over the three-month
period, outperforming NDVI and EVI. The trend analysis indicates a significant precipitation deficit,
alongside increasing trends in temperature and evapotranspiration over both the short and long
term. Furthermore, all drought indices (SPI, SPEI, and RDI) demonstrate an intensification of drought
conditions. Adaptation strategies are essential for managing water resources in the Upper Oum
Er Rabia watershed under these evolving climate conditions. Continuous monitoring of climate
variables and drought indices will be crucial for tracking changes and informing future water
management strategies.
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1. Introduction

Drought is a major natural disaster that affects regions worldwide, regardless of
geographical location. While its occurrence is not confined to any specific climate zone, the
impact of drought varies significantly depending on regional conditions. Some regions are
less vulnerable, while others face heightened susceptibility to its effects [1]. According to the
United Nations Office for Disaster Risk Reduction, more than 130 countries are affected by
drought, the potential impact of which is comparable to the damage caused by the COVID-
19 pandemic on people’s livelihoods over the same period [2]. Due to the complexity and
variability of drought, there is no universal definition of the phenomenon [3,4]. As a result,
definitions are often revised [5] to better capture the diverse factors and consequences of
drought on both the environment and society, as well as the intricate interactions between
these two components.

Drought occurs when there is a prolonged decrease in precipitation relative to the
average [6]. In some regions, high evapotranspiration demand also plays a critical role
in triggering drought [7,8]. As a result of global warming, the frequency, severity, and
duration of droughts are increasing, affecting more people over a longer period than any
other natural disaster [9–12]. Drought is widely recognized as one of the most destructive
and significant weather-related hazards [13], profoundly impacting human health, well-
being, the environment, and economies [14,15]. It affects ecosystems and socioeconomic
activities directly and indirectly [16–18], disrupting ecosystems and leading to severe
consequences, such as river drying, oasis reduction, desertification, sandstorms, land
subsidence [19], and an increase in cases of widespread forest die-off [20]. In extreme cases,
drought can also increase fire risk [21,22].

The effects of drought on water resources are particularly severe, disrupting the water
balance and causing a reduction in soil moisture [12,23]. It is a major contributor to soil
degradation and environmental decline, as it limits vegetation growth [24]. Studies [25,26]
indicate that drought accounts for about 86% of global agricultural productivity loss, signif-
icantly hindering crop growth [20] and leading to crop failure, food shortages, malnutrition,
famine, mortality, and mass migration [27]. Moreover, drought can trigger political conflicts
between countries over shared water resources. Its multifaceted impact spans across social
security, economic stability, environmental health, and the agricultural sector [28].

In accordance with the varying effects of droughts, the authors of [29] have classified
them into four categories: meteorological drought, hydrological drought, agricultural
drought, and socio-economic drought. In addition to the four most common classes, [30,31]
have proposed the ecological drought as a fifth class. Flash drought has been introduced
as an additional category [32,33]. In addition to the aforementioned, the environmental
drought is suggested. This one encompasses meteorological, hydrological, and agricultural
drought [28]. The major challenge associated with drought is that all of these classes are
interconnected, making it challenging to identify the commencement and termination of
each class [28,34,35].

To date, drought indices have been used in numerous regions across the globe, with
numerous studies having been conducted on this topic. The World Meteorological Organi-
zation (WMO) has classified these indices into five categories:

- Meteorology, e.g., Standardized Precipitation Index (SPI) [36], Drought Area Index
(DAI) [37], Reconnaissance Drought Index (RDI) [38], Palmer Drought Severity Index
(PDSI) [39], and Standardized Precipitation Evapotranspiration Index (SPEI) [40].

- Soil moisture, e.g., Evapotranspiration Deficit Index, Soil Moisture Deficit Index (ETDI,
SMDI) [41], and Soil Water Storage (SWS) [42].

- Hydrology, e.g., Palmer Hydrological Drought Index (PHDI) [39], Streamflow Drought
Index (SDI) [43], and Standardized Snowmelt and Rain Index (SMRI) [44].

- Remote sensing, e.g., Enhanced Vegetation Index (EVI) [45], Normalized Difference
Vegetation Index (NDVI) [46,47], and Vegetation Drought Response Index (VegDRI) [48].
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- Composite or modeled values, e.g., Global Integrated Drought Monitoring and Pre-
diction System (GIDMaPS) [49], Global Land Data Assimilation System (GLDAS) [50],
and U.S. Drought Monitor (USDM) [51].

A number of statistical tools are available for the purpose of checking trends and
assessing changes in the various parameters used in climate change studies. The Mann–
Kendall non-parametric test [52,53], proposed by the World Meteorological Organization
(WMO), was used in this study to examine trends. Additionally, Sen’s Slope [54] was
employed to estimate the slope of these trends.

Morocco, situated in the North African region and bordered by the Mediterranean Sea,
is among the most susceptible to droughts due to its geographical location [18,55]. Over
the past few years, several drought-related studies have been conducted in Morocco. A
variety of techniques and indices based on ground-based and/or remotely sensed data
have been used to achieve this objective [56–61]. Accordingly, the application of trend
techniques has been the subject of several studies in different regions of Morocco [62–67].
The comprehensive drought analysis at both agricultural and meteorological levels is
lacking, particularly with regard to the spatio-temporal trends of the drought phenomena
in the Upper Oum Er Rabia watershed.

The objective of this study is to assess and monitor drought using a multi-index
approach, providing an in-depth understanding of the spatio-temporal propagation of
drought at both meteorological and agricultural levels within the Upper Oum Er Rabia
watershed. To achieve this, we propose a methodology that combines remote-sensing tem-
perature data (ERA5) with ground-based precipitation data to analyze the characteristics of
drought using three key meteorological indices: SPI, SPEI, and RDI. Each of these indices
provides unique insights into various aspects of drought conditions. The SPI focuses on
precipitation deficits, and the SPEI and the RDI integrate both precipitation and evapotran-
spiration to assess drought severity. By leveraging these indices, the study aims to offer
a comprehensive evaluation of drought patterns and intensities. Furthermore, the study
incorporates three remote-sensing indices to test their capability to capture agricultural
drought for 23 years, from 2000 to 2022: NDVI with 528 images, EVI with 528 images, and
CWSI with 1016 images generated through Google Earth Engine, using machine-learning
techniques. These indices offer valuable insights into vegetation health, productivity, and
water stress under drought conditions. To monitor the spatio-temporal trends of drought,
we employed trend tests such as the Mann–Kendall and Sen’s Slope tests to examine
various parameters across two distinct time steps: from 1979 to 2022 and from 2010 to 2022.

2. Data and Methods
2.1. Study Area

The Oum Er Rbia (OER) watershed is one of the largest in Morocco, encompassing an
area of approximately 35.000 km2. It occupies 7% of the Kingdom of Morocco’s area and is
responsible for a quarter of the country’s renewable water resources. This study focused
on drought in the upper part of the Oum Er Rbia basin. The area of study encompasses
3.560 km2, situated between latitudes 32◦32′ N–33◦13′ N and longitudes 5◦5′ W–5◦55′ W.

The Upper Oum Er Rbia (Upper OER) watershed is part of the Middle Atlas [68], and
is situated in three distinct geographical areas: the Western Meseta, the Middle-Atlasic Dir
and valleys, and the Middle-Atlasic cause [69]. This explains the varying altitudes, which
range from 600 m in the southwest to 2400 m in the northeast. This basin encompasses
four main wadis: Ouaoumana, Srou, Chbouka, and the most important, Oued Oum Er
Rbia. These wadis accumulate at the Ahmed El Hansali dam. The primary source of water
flow in this watershed is snowmelt, which significantly contributes to both surface and
groundwater recharge [70]. In this study, the Upper Oum Er Rbia basin was divided into
six sub-basins (Figure 1).
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Figure 1. Location of study area.

2.2. Data Sources
2.2.1. Precipitation Data

The Upper Oum Er Rabia (Upper OER) watershed data were provided by the Oum
Er Rabia Hydraulic Basin Agency (OERHBA) [71]. The dataset comprises a time series
of monthly rainfall from 1979 to 2022, recorded at six rainfall stations, namely: Ahmed
El Hansali (AEH), Taghzoute, Chacha N Amellah (ChachaNA), Aval El Heri (AEHeri)
Tarhat and Tamchachate. The Upper OER basin receives an average annual precipitation
of 559.3 mm. Among the sub-basins, the Tamchachate station records the highest rainfall
at 673.9 mm/year, while the ChachaNA station records the lowest at 485.5 mm/year. The
graph (Figure 2), displaying the monthly interannual rainfall variation at the sub-basin
level, indicates two distinct periods: wet and dry. The wet season spans from November to
April, while the remaining months are considered dry (May–October).
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2.2.2. Temperature Data

In 2019, the European Centre for Medium-Range Weather Forecasts (ECMWF) un-
veiled the ERA5 product as part of the Copernicus Climate Change Service [72]. ERA5 rep-
resents the fifth generation of ECMWF reanalysis products [73], following ERA-Interim [74],
ERA-40 [75], ERA-15 [76], and FGGE [77]. ERA5 encompasses the period from 1950 to
the present day, with a spatial resolution of 31 km and a temporal resolution of up to
one hour [73]. The used data were obtained from the ClimateEngine platform (https:
//app.climateengine.com/climateEngine, accessed on 13 December 2023) free of charge
and with a daily time step and a spatial resolution of 0.25◦ × 0.25◦. In order to align with
the observed data, the dataset was resampled with a monthly temporal resolution from
1979 to 2022. The graph (Figure 3) displays the average monthly temperatures and potential
evapotranspiration, highlighting two extreme periods: a cold period in December–January–
February and a hot period in July–August–September. Tamchachate station records the
lowest temperatures, while Ahmed El Hansali and Taghzoute stations record the highest.
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2.3. Methodology

As previously stated, there are numerous drought indices, which differ according to
their input data and applications. This study focuses on the analysis of drought in the
Middle Atlas, with a particular emphasis on the Upper Oum Er Rbia region.

In order to achieve this objective, data from meteorological stations was used to
calculate SPI, SPEI, and RDI, using RStudio 23.12. Build 402 and DrinC Version 1.7,
for a period of 44 years, from 1979 to 2022. These data comprised precipitation data
from meteorological stations and temperature data from ERA5 products. Remote-sensing
products were used to obtain NDVI, EVI, and CWSI data using Google Earth Engine
(https://earthengine.google.com, accessed on 28 March 2024) over the 2000–2022 period
(Figure 4). Subsequently, a series of statistical tests were applied to the various datasets,
including correlation tests and a trend analysis by Mann–Kendall and Sen’s Slope.

https://app.climateengine.com/climateEngine
https://app.climateengine.com/climateEngine
https://earthengine.google.com
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2.3.1. Meteorological Drought Indices

The SPI [36] and the SPEI [40] are two of the most commonly utilized drought in-
dices [78]. The SPI is an index based only on precipitation, which renders it more straight-
forward to employ than other indices [79]. In 2009, the World Meteorological Organiza-
tion (WMO) recommended the use of the SPI to monitor the evolution of meteorological
drought conditions [80]. The index’s efficacy and resilience permit its application to diverse
categories of drought [81]. SPEI, like SPI, is a highly versatile index that incorporates tem-
perature data. It is an index based on precipitation and potential evapotranspiration [82].
It is sensitive to changes in evaporation requirements, similar to the PDSI [39], and can
be calculated at different time scales [7]. The RDI is an index that integrates cumulative
precipitation and potential evapotranspiration [83]. It has been verified and utilized suc-
cessfully in numerous regions across the globe [84–87]. It is recommended that a series
of consecutive years of at least 30 years be used for the calculation of the SPI, SPEI, and
RDI [88,89].

• Standardized Precipitation Index (SPI)

The SPI is an index based on the probability of precipitation that employs the Gamma
distribution with two statistical parameters to adjust precipitation over a specified period
in relation to the average precipitation over the same period [36]. The calculation of SPI
is based solely on precipitation, with other variables, such as temperature and potential
evapotranspiration, being disregarded [40]. The index is calculated as follows:

SPI =
(

P − P
)

σP

where (P) is the precipitation for the period, (P) is the mean precipitation for the period,
and (σP) is the standard deviation of precipitation for the period.



Water 2024, 16, 3104 7 of 25

• Standardized Precipitation and Evapotranspiration Index (SPEI)

The SPEI is a probability-based index that employs the three-parameter log-logistic
distribution. The calculation of SPEI is analogous to that of the SPI, with a single notable
distinction; indeed, it incorporates potential evapotranspiration, as evidenced by the
demonstrated influence of precipitation and temperature on drought response [8,90]. The
SPEI employs the difference between precipitation and ETP to calculate the index, and it was
developed based on the water-balance concept of climatic water supply and atmospheric
evaporative demand [40]. The index is calculated as follows:

SPEI =
(

P − PET − D
)

σD

where (P) is the precipitation, (PET) is the potential evapotranspiration, (D) is the mean of
the difference (P—PET), and σD is the standard deviation of the difference (P—PET).

• Reconnaissance Drought Index (RDI)

The RDI [38] is similarly based on the ratio of precipitation and potential evapotran-
spiration factors [91]. The calculation of this index integrates the principal inputs and
outputs of a natural water system, rendering it highly pertinent for the estimation of water
availability [87]. The index is calculated as follows:

RDI =
(

P/PET − R
)

σR

where (P) is the precipitation, (PET) is the potential evapotranspiration, (R) is the mean of
the ratio (P/PET), and (σR) is the standard deviation of the ratio (P/PET).

2.3.2. Classification Criteria

In the current study, drought is defined as occurring when the value of the intensity of
SPI, SPEI, and RDI indices is equal to (−1) and ending when the intensity of those indices
reaches zero. SPI values are classified according to their intensities (Table 1) in a similar
way to SPEI and RDI.

Table 1. Classification of drought intensity according to [37].

SPI/SPEI/RDI Category

−0.99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 and less Extremely dry

2.3.3. Agricultural Remote Sensing Drought Indices

Agricultural drought reflects soil moisture status and crop health, indicating soil water
deficit relative to crop needs [92]. The use of remote-sensing techniques enables effective
monitoring and diagnosis of vegetation water status, accurately reflecting the physiological
condition of vegetation under water stress, and facilitates rapid drought detection and the
immediate implementation of irrigation measures [93–96].

The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI), as well as the Crop Water Stress Index (CWSI), are indices that enable spatio-temporal
assessment and monitoring of vegetation via remote sensing. They have been widely used
to monitor the occurrence of agricultural drought, for example, in [97–102].

In this study, the aforementioned indices were established using machine-learning tech-
niques. The first two indices utilized were derived from the MODIS MOD13Q1.006 Terra
Vegetation Indices product (https://doi.org/10.5067/MODIS/MOD13Q1.006, accessed on

https://doi.org/10.5067/MODIS/MOD13Q1.006
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7 October 2023), while the third index was derived from the MODIS MOD16A2GF Version 6.1
(https://doi.org/10.5067/MODIS/MOD16A2GF.061, accessed on 28 March 2024).

These indices have been pre-corrected, thereby eliminating undesirable effects such as
water, clouds, heavy aerosols, and cloud shadows. A total of 528 images were analyzed for
each index (NDVI and EVI), and 1016 images were analyzed for (CWSI), using the Google
Earth Engine platform. The dataset encompasses the period from 2000 to 2022, with 250 m
resolution images captured every 16 days for NDVI and EVI, and 500 m resolution images
captured every 8 days for CWSI.

• Normalized Difference Vegetation Index and Enhanced Vegetation Index

The Normalized Difference Vegetation Index (NDVI) quantifies the density and green
color of vegetation, while the Enhanced Vegetation Index (EVI) attenuates variations in the
canopy background while maintaining sensitivity to areas of dense vegetation.

• Crop Water Stress Index

The Crop Water Stress Index (CWSI) [103,104] is a widely accepted metric for assessing
plant hydration across various spatial scales. This index, based on the principles of energy
balance, enables the real-time monitoring of drought conditions by taking into account
soil moisture and farmland evapotranspiration [99]. Idso et al. [103] initially proposed the
CWSI by establishing an empirical correlation between canopy temperature and the air
vapor pressure deficit. Subsequently, Jackson [104] provided a theoretical interpretation
based on the energy balance of the canopy, leading to a refined calculation of the CWSI
(CWSI = 1 − ET/PET), where ET represents evapotranspiration and PET represents po-
tential evapotranspiration. The index ranges from zero (0) to one (1), with lower values
indicating wetter conditions and higher values indicating drier conditions. For the current
study, we specifically used 1-CWSI, so that lower values indicate drier conditions and
higher values indicate wetter conditions, aligning with other indices. This definition has
since been used in numerous studies [105–108].

2.3.4. Google Earth Engine (GEE)

Google Earth Engine is a cloud-based platform for geospatial analysis, which is
powered by Google’s supercomputers. It integrates multi-petabyte remote-sensing products
from over 40 years of data, including Sentinel 1, 2, 3, and 5P; Landsat 1–5, 4, 5, 7, 8, and 9;
Advanced Land Observing Satellite (ALOS) products; MODIS products; and others [109].
The GEE offers a large number of ready-to-use products, including Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which can be accessed via
an application programming interface (API). This API is executable via JavaScript from
Code Editor (https://earthengine.google.com, accessed on 28 March 2024). This study
required the use of machine learning since it may greatly improve remote-sensing research
by automating processes, increasing accuracy, and extracting valuable insights from vast
amounts of data.

2.3.5. Trend Tests

• Mann–Kendall test

The non-parametric Mann–Kendall statistical test [52,53] is one of the most widely
used tests in environmental studies for assessing the trend of desired data time series. This
test compares, sequentially, each data item in a time series with the remaining data.

• Sen’s Slope method

The Sen’s Slope method [54] is used in conjunction with the Mann–Kendall test, which
determines the magnitude of the trend resulting from the Mann–Kendall test and expresses
it as a slope (the change in the data examined per unit of time).

For this study, Mann–Kendall and Sen’s Slope are applied to precipitation, temperature,
evapotranspiration, SPI, SPEI, and RDI to examine trends, upward or downward, at the
level of the study area.

https://doi.org/10.5067/MODIS/MOD16A2GF.061
https://earthengine.google.com
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3. Results and Discussion

This investigation used ERA5 temperature data due to the limited availability of
weather stations in the study area. Indeed, only two weather stations exist: (1) Ahmed
El Hansali and (2) Tarhat, provided by (OERHBA) during (1985–1998 and 2009–2021)
and (1985–2021), respectively, in a monthly time step. In light of the limited number of
meteorological stations, we used correlation tests between both stations data (monthly,
minimum, and maximum temperatures) and the reanalysis products. The results of these
tests indicated a strong correlation between the variables (Figure 5), which reinforced the
decision to utilize ERA5 data for the analysis. This choice allowed us to overcome the
limitations posed by the sparse station coverage and leverage the comprehensive global
estimates provided by ERA5.
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3.1. Drought Characteristics Analysis
3.1.1. Drought Duration

The study of drought in the Upper Oum Er Rbia basin was conducted over a 44-year
period (1979–2022). Table 2 presents the duration, in months, of each event of the three
drought indices (SPI, SPEI, and RDI) for each sub-basin, according to the time step (1, 3,
6, and 12 months). Tamchachate, with a total of 96 months (19% of the total duration) for
the 1-month time step, is the sub-basin most affected by drought, followed by AEHeri
(82 months, 16%), Taghzoute (81 months, 16%), and then the other sub-basins. For the three-
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month time step, Taghzoute and Tamchachate exhibited the longest duration of drought
months, with (145 months, 28%) and (143 months, 28%), respectively. This was followed
by Tarhat with (136 months, 26%) and then the other sub-basins. The longest duration for
the six-month time step is that of the AEHeri sub-basin, with (159 months, 31%), followed
by the other sub-basins with very similar durations, except for Ahmed El Hansali. The
drought durations in the AEH, AEHeri, and Taghzoute sub-basins are (160 months, 32%),
(155 months, 31%), and (153 months, 30%), respectively. For monthly time steps of one,
three, six, and twelve months, the average number of dry months for all sub-basins is 78,
129, 146, and 141 months, respectively. For the Upper Oum Er Rbia watershed as a whole,
the number of dry months is nearly identical to the average for all sub-basins.

Table 2. Duration of drought at sub-basin level and Upper OER basin.

Time
Step

Ahmed El
Hansali Taghzoute Chacha N

Amellah Aval El Heri Tarhat Tamchachate Upper OER

1 month 75 81 59 82 72 96 76
3 months 109 145 116 123 136 143 132
6 months 131 147 144 159 149 147 151

12 months 160 153 122 155 125 128 147

3.1.2. Drought Intensity

In accordance with the categorization of drought severity into three classes (moderate,
severe, and extreme) and with a focus on the sub-basin level analysis, drought indices have
been computed at four time steps (1, 3, 6, and 12 months) and are presented in detail in
(Table 3). For all sub-basins, the highest number of months with moderate drought was
observed when the time step was set to 12 months. The majority of sub-basins exhibited
the highest number of months with severe drought when calculated using a 12-month time
step, with the exception of the Taghzoute sub-basin, where the 6-month time step yielded
the most months with severe drought. With regard to extreme drought, the results indicate
that the 3-month time step yielded the greatest number of dry months, with the exception
of the Ahmed El Hansali sub-basin, where the 6-month time step produced the greatest
number of months with extreme drought.

Table 3. Percentage of months with drought intensity per time step.

Ahmed El Hansali SPI1 SPEI1 RDI1 SPI3 SPEI3 RDI3 SPI6 SPEI6 RDI6 SPI 12 SPEI 12 RDI 12

Normal Drought 9.3 6.2 8.5 9.9 8.4 9.7 10.6 11.0 11.0 48.8 53.8 48.8
Moderate Drought 2.3 6.2 3.5 5.4 6.8 4.9 9.0 8.8 8.6 30.6 26.9 27.5

Severe Drought 1.6 1.7 2.1 2.7 4.9 4.7 3.1 4.5 3.1 16.3 15.6 18.8
Extreme Drought 1.4 0.4 0.2 3.1 1.2 1.4 2.5 1.4 2.7 4.4 3.8 5.0

Taghzoute SPI1 SPEI1 RDI1 SPI3 SPEI3 RDI3 SPI6 SPEI6 RDI6 SPI 12 SPEI 12 RDI 12

Normal Drought 10.7 8.1 10.1 13.8 13.4 13.6 11.4 11.7 10.4 12.3 12.3 10.3
Moderate Drought 2.5 5.8 4.7 8.2 8.6 9.1 10.8 12.1 12.1 13.5 12.3 14.3

Severe Drought 1.6 1.6 1.0 3.7 5.3 3.9 4.5 4.3 4.3 3.4 4.8 4.4
Extreme Drought 1.0 0.2 0.0 2.5 1.0 1.6 2.2 0.6 2.0 1.2 1.0 1.4

Chacha N Amellah SPI1 SPEI1 RDI1 SPI3 SPEI3 RDI3 SPI6 SPEI6 RDI6 SPI 12 SPEI 12 RDI 12

Normal Drought 6.4 4.8 7.2 10.7 8.4 12.5 12.9 10.8 17.6 5.1 5.7 13.7
Moderate Drought 2.5 5.0 2.7 6.6 9.7 5.4 10.4 11.7 5.1 13.3 11.1 4.8

Severe Drought 1.2 0.8 1.6 3.1 3.5 3.1 3.9 4.7 3.7 5.1 7.3 4.4
Extreme Drought 1.4 0.8 0.0 2.1 1.0 1.6 1.0 1.0 1.8 0.6 0.0 1.4

Aval El Heri SPI1 SPEI1 RDI1 SPI3 SPEI3 RDI3 SPI6 SPEI6 RDI6 SPI 12 SPEI 12 RDI 12

Normal Drought 9.9 8.5 11.2 10.7 10.1 10.9 16.4 15.3 15.7 16.0 12.1 14.1
Moderate Drought 3.3 5.0 2.7 8.0 8.8 8.6 10.0 9.8 10.2 8.9 12.3 10.3

Severe Drought 1.6 1.6 1.9 3.1 4.1 2.3 3.1 5.1 3.5 5.5 5.1 6.1
Extreme Drought 1.2 0.8 0.0 2.1 1.0 2.1 1.6 1.0 1.8 0.2 1.2 0.2
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Table 3. Cont.

Tarhat SPI1 SPEI1 RDI1 SPI3 SPEI3 RDI3 SPI6 SPEI6 RDI6 SPI 12 SPEI 12 RDI 12

Normal Drought 8.3 8.1 10.3 14.2 10.5 16.0 14.5 11.7 18.2 5.9 5.9 12.9
Moderate Drought 3.1 4.1 2.9 6.8 11.5 5.4 10.0 11.7 5.5 13.1 11.5 6.9

Severe Drought 1.9 1.2 0.8 3.3 3.5 2.3 3.7 4.7 4.3 5.1 7.3 4.6
Extreme Drought 0.6 0.6 0.0 2.1 1.0 2.7 1.0 1.0 1.2 0.6 0.0 0.4

Tamchachate SPI1 SPEI1 RDI1 SPI3 SPEI3 RDI3 SPI6 SPEI6 RDI6 SPI 12 SPEI 12 RDI 12

Normal Drought 12.6 8.9 13.2 14.4 11.9 13.8 13.3 11.5 11.7 5.9 6.3 5.5
Moderate Drought 2.5 6.6 4.7 7.8 11.5 8.8 10.6 11.5 12.3 13.7 11.7 11.5

Severe Drought 2.7 2.3 0.8 3.5 3.5 4.1 3.9 4.7 3.5 5.1 7.3 7.3
Extreme Drought 0.8 0.8 0.0 2.1 1.0 1.2 1.0 1.0 1.2 0.6 0.0 1.0

3.2. Multivariate Analysis of Precipitation, Drought Indices, and Remote-Sensing Indices

In this study, we used a dataset comprising precipitation and temperature records
spanning the period from 1979 to 2022. These data were used as the basis for calculating
three key drought indices: the Standardized Precipitation Index (SPI), the Standardized
Precipitation Evapotranspiration Index (SPEI), and the Reconnaissance Drought Index
(RDI). Furthermore, we incorporated remote-sensing data spanning the period from 2000
to 2022. In order to align with the available data, we established correlations at two
temporal scales.

3.2.1. Correlation Analysis at Sub-Basins Level

A correlation analysis of the data in (Table 4) revealed a strong correlation between the
drought indices SPI, SPEI, and RDI for the different time steps of 1, 3, 6, and 12 months and
annual, with a p-value less than 0.001. However, this correlation was not significant for the
Tarhat sub-basin, where RDI/SPI and RDI/SPIE exhibited a non-significant correlation. The
majority of sub-basins exhibited a moderate correlation between precipitation and drought
indices at the 1-month time step. However, at the Tarhat sub-basin level, the correlation
was non-significant. The strongest correlation between precipitation and drought indices
was observed at the annual time step.

However, our analysis of NDVI and drought indices at the annual time step revealed
no correlation, with the exception of the AEHansali sub-basin. In contrast, the remaining
sub-basins exhibited a positive correlation, although relatively weak. Nonetheless, the
analysis indicated that there was no correlation between drought indices and NDVI at any
given time step within the Tamchachate sub-basin. The AEHansali sub-basin exhibited the
most significant correlation results for both the annual and 6-month time steps. The corre-
lation coefficients for NDVI/SPI and NDVI/SPEI were 0.610 and 0.437, respectively, with
p-values of less than 0.01 and less than 0.001. The correlation between EVI, drought indices,
and precipitation is lower than that between NDVI and the latter. The best correlations are
obtained for the annual and 6-month time steps in the AEH sub-basin. The same applies to
the EVI/precipitation relationship, where the only correlation, but weak, was obtained in
the same sub-basin. The correlation between CWSI, drought indices, and precipitation is
notably stronger than that between NDVI and EVI and drought indices. The correlation
results with a three-month time step are the most relevant for CWSI (Figure 6). In addition,
the correlation between CWSI/SPEI shows better results than that between CWSI/SPI and
RDI. The correlation coefficients for these results range from 0.472 to 0.504 with a p-value
of less than 0.001. Furthermore, the correlation with the annual time step, as well as that
between CWSI/precipitation, still shows good results, with coefficients ranging from 0.661
to 0.806 and from 0.706 to 0.755, respectively, with a p-value of less than 0.001.
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Table 4. Correlation between precipitation, SPI, SPEI, RDI, NDVI, EVI, and CWSI with different time
steps: (a) Ahmed El Hansali, (b) Taghzoute, (c) Chacha N Amellah, (d) Aval El Heri, (e) Tarhat, and
(f) Tamchachate (*** p-value < 0.001, ** p-value < 0.01, and * p-value < 0.05).

Correlation (a) 1 3 6 12 Annual (b) 1 3 6 12 Annual

SPEI/SPI

19
79

–2
02

2

0.767
***

0.858
***

0.906
***

0.942
***

0.931
***

19
79

–2
02

2

0.782
***

0.868
***

0.934
***

0.945
***

0.940
***

RDI/SPI 0.871
***

0.962
***

0.990
***

0.995
***

0.995
***

0.845
***

0.956
***

0.991
***

0.995
***

0.996
***

RDI/SPEI 0.870
***

0.902
***

0.938
***

0.966
***

0.960
***

0.858
***

0.907
***

0.958
***

0.969
***

0.967
***

PRCP/SPI 0.680
***

0.460
***

0.363
***

0.271
***

0.990
***

0.682
***

0.458
***

0.364
***

0.237
***

0.992
***

PRCP/SPEI 0.685
***

0.457
***

0.352
***

0.239
***

0.915
***

0.681
***

0.450
***

0.341
***

0.202
***

0.925
***

PRCP/RDI 0.685
***

0.470
***

0.361
***

0.262
***

0.984
***

0.637
***

0.462
***

0.362
***

0.228
***

0.987
***

NDVI/SPI

20
00

–2
02

2

0.04 0.255
***

0.351
***

0.289
*** 0.610 **

20
00

–2
02

2

0.013 0.111 0.198 ** 0.263
*** 0.265

NDVI/SPEI 0.194 ** 0.358
***

0.437
***

0.294
*** 0.573 ** 0.062 0.153 * 0.226

***
0.260

*** 0.193

NDVI/RDI 0.085 0.280
***

0.364
***

0.287
*** 0.600 ** −0.098 0.085 0.193 ** 0.267

*** 0.242

NDVI/PRCP 0.392 *** 0.586 ** 0.321 *** 0.27

EVI/SPI 0.016 0.187 ** 0.305
***

0.262
*** 0.634 ** 0.049 0.088 0.134 * 0.249

*** 0.367

EVI/SPEI 0.12 0.271
***

0.389
***

0.261
*** 0.609 ** −0.017 0.056 0.152 * 0.254

*** 0.317

EVI/RDI 0.064 0.208
***

0.317
***

0.261
*** 0.627 ** −0.025 0.048 0.12 0.254

*** 0.346

EVI/PRCP 0.222 *** 0.602 ** −0.008 0.365

EVI/NDVI 0.911 *** 0.987
*** 0.680 *** 0.884

***

CWSI/SPI 0.301
***

0.384
***

0.356
*** 0.193 ** 0.702

***
0.356

***
0.383

***
0.383

***
0.217
***

0.692
***

CWSI/SPEI 0.482
***

0.504
***

0.427
*** 0.191 ** 0.719

***
0.464

***
0.477
***

0.428
*** 0.199 ** 0.721

***

CWSI/RDI 0.336
***

0.416
***

0.369
*** 0.187 ** 0.718

***
0.265

***
0.396

***
0.394

***
0.215

***
0.708

***

CWSI/PRCP 0.737 *** 0.697
*** 0.755 *** 0.715

***

CWSI/NDVI 0.732 *** 0.562 ** 0.491 *** 0.208

CWSI/EVI 0.538 *** 0.584 ** 0.055 0.32

Correlation (c) 1 3 6 12 Annual (d) 1 3 6 12 Annual

SPEI/SPI

19
79

–2
02

2

0.781
***

0.912
***

0.964
***

0.976
***

0.976
***

19
79

–2
02

2

0.812
***

0.913
***

0.953
***

0.960
***

0.960
***

RDI/SPI 0.889
***

0.664
***

0.722
***

0.764
***

0.767
***

0.872
***

0.978
***

0.997
***

0.996
***

0.996
***

RDI/SPEI 0.871
***

0.678
***

0.706
***

0.736
***

0.739
***

0.909
***

0.930
***

0.968
***

0.979
***

0.979
***

PRCP/SPI 0.675
***

0.359
***

0.304
***

0.194
***

0.749
***

0.686
***

0.483
***

0.404
***

0.297
***

0.982
***

PRCP/SPEI 0.680
***

0.354
***

0.281
***

0.173
***

0.700
***

0.695
***

0.473
***

0.375
***

0.269
***

0.926
***

PRCP/RDI 0.694
***

0.454
***

0.357
***

0.247
***

0.987
***

0.708
***

0.486
***

0.399
***

0.291
***

0.976
***
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Table 4. Cont.

Correlation (c) 1 3 6 12 Annual (d) 1 3 6 12 Annual

NDVI/SPI

20
00

–2
02

2

0.01 0.186 ** 0.246
***

0.217
*** 0.299

20
00

–2
02

2

0.006 0.172 ** 0.249
***

0.246
*** 0.247

NDVI/SPEI 0.087 0.236
***

0.265
***

0.214
*** 0.24 0.12 0.202

***
0.261
***

0.220
*** 0.14

NDVI/RDI −0.019 0.096 0.193 ** 0.260
*** 0.24 0.021 0.151 * 0.243

***
0.246

*** 0.217

NDVI/PRCP 0.289 *** 0.254 0.340 *** 0.218

EVI/SPI 0.002 0.118 0.225
***

0.213
*** 0.349 −0.009 0.1 0.177 ** 0.226

*** 0.265

EVI/SPEI −0.006 0.147 * 0.254
***

0.218
*** 0.314 0 0.097 0.207

***
0.220

*** 0.203

EVI/RDI −0.035 0.065 0.146 * 0.256
*** 0.342 −0.011 0.087 0.173 ** 0.235

*** 0.247

EVI/PRCP 0.018 0.333 −0.013 0.235

EVI/NDVI 0.815 *** 0.640 *** 0.858
***

CWSI/SPI 0.307
***

0.417
***

0.388
*** 0.116 0.704

***
0.303

***
0.402

***
0.410

***
0.240

***
0.733

***

CWSI/SPEI 0.467
***

0.489
***

0.400
*** 0.106 0.726

***
0.454

***
0.491
***

0.440
***

0.228
*** 0.743***

CWSI/RDI 0.325
***

0.359
***

0.354
*** 0.071 0.661

***
0.322

***
0.411
***

0.414
***

0.237
*** 0.743***

CWSI/PRCP 0.740 *** 0.671
*** 0.706 *** 0.745***

CWSI/NDVI 0.536 *** 0.286 0.670 *** 0.331

CWSI/EVI 0.182 ** 0.364 0.246 *** 0.411

Correlation (e) 1 3 6 12 Annual (f) 1 3 6 12 Annual

SPEI/SPI

19
79

–2
02

2

0.772
***

0.912
***

0.964
***

0.976
***

0.976
***

19
79

–2
02

2

0.771
***

0.912
***

0.964
***

0.976
***

0.976
***

RDI/SPI 0.032 0.696
***

0.772
***

0.822
***

0.836
***

0.844
***

0.958
***

0.996
***

0.995
***

0.996
***

RDI/SPEI 0.022 0.733
***

0.781
***

0.829
***

0.840
***

0.914
***

0.960
***

0.979
***

0.990
***

0.991
***

PRCP/SPI 0.014 0.469
***

0.389
***

0.265
***

0.989
***

0.522
***

0.363
***

0.297
***

0.184
***

0.743
***

PRCP/SPEI 0.03 0.467
***

0.372
***

0.244
***

0.954
***

0.541
***

0.360
***

0.278
***

0.168
***

0.708
***

PRCP/RDI 0.571
***

0.364
***

0.304
***

0.205
***

0.826
***

0.526
***

0.371
***

0.296
***

0.179
***

0.735
***

NDVI/SPI

20
00

–2
02

2

0.09 0.173 ** 0.214
*** 0.201 ** 0.299

20
00

–2
02

2

−0.026 −0.012 −0.005 0.059 0.023

NDVI/SPEI 0.155 * 0.220
***

0.223
***

0.205
*** 0.245 −0.035 −0.015 −0.019 0.072 −0.015

NDVI/RDI −0.008 0.094 0.211
***

0.269
*** 0.271 −0.096 −0.032 −0.024 0.064 0.002

NDVI/PRCP 0.311 *** 0.337 0.004 0.001

EVI/SPI 0.079 0.109 0.202
*** 0.197 ** 0.347 −0.048 0 0.049 0.101 0.174

EVI/SPEI 0.144 * 0.134 * 0.225
***

0.209
*** 0.323 −0.075 −0.007 0.047 0.117 0.149

EVI/RDI −0.032 0.07 0.164 ** 0.267
*** 0.373 −0.1 −0.022 0.028 0.106 0.157

EVI/PRCP 0.012 0.333 −0.101 0.158

EVI/NDVI 0.783 *** 0.928
*** 0.917 *** 0.936

***
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Table 4. Cont.

Correlation (e) 1 3 6 12 Annual (f) 1 3 6 12 Annual

CWSI/SPI

20
00

–2
02

2

0.176 ** 0.418
***

0.392
***

0.219
***

0.718
***

20
00

–2
02

2

0.360
***

0.402
***

0.357
*** 0.184 ** 0.666

***

CWSI/SPEI 0.242
***

0.493
***

0.406
***

0.213
***

0.743
***

0.472
***

0.472
***

0.365
*** 0.176 ** 0.696

***

CWSI/RDI 0.328
***

0.371
***

0.392
***

0.229
***

0.806
***

0.360
***

0.432
***

0.364
*** 0.184 ** 0.681

***

CWSI/PRCP 0.726 *** 0.707
*** 0.728 *** 0.696

***

CWSI/NDVI 0.510 *** 0.271 −0.109 −0.084

CWSI/EVI 0.163 ** 0.354 −0.245 *** 0.066
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Figure 6. Graph of monthly SPEI (3 months) and CWSI.

Taking a close look at the best correlation results obtained among SPEI/NDVI, SPEI/EVI,
and SPEI/CWSI, it is observed that the correlation between these variables across different
seasons is interesting (Table 5). For the SPEI6/NDVI correlation, the results during summer,
fall, and winter are 0.582, 0.577, and 0.572, respectively. These values suggest a moderate
correlation, substantiated by a p-value less than 0.05. Conversely, the spring season exhibits
a strong correlation of 0.739, supported by a p-value less than 0.001. In a similar vein, the
spring season also demonstrates a strong correlation of 0.746 for SPEI6/EVI, with a p-value
less than 0.001. The other seasons, however, display a moderate correlation that fluctuates
with the change in seasons: 0.556 for summer (p-value < 0.05), and 0.447 and 0.502 for fall
and winter, respectively (p-value < 0.1). Parallel results were discerned for the correlation
between SPEI3/CWSI. Here, the spring season outperformed the other seasons, exhibiting
a very strong correlation of 0.821 (p-value < 0.001) (Figure 7). The remaining seasons
also demonstrated a strong correlation: 0.610 and 0.632 for summer and fall, respectively
(p-value < 0.05). Winter, too, displayed a strong correlation, supported by a p-value less
than 0.001.

Table 5. Correlation between SPEI6/NDVI, SPEI6/EVI, and SPEI3/CWSI in different seasons
(*** p-value < 0.001, ** p-value < 0.01, and * p-value < 0.05).

Correlation Fall Spring Summer Autumn

SPEI6/NDVI 0.572 ** 0.739 *** 0.582 ** 0.577 **
SPEI6/EVI 0.502 * 0.746 *** 0.556 ** 0.447 *

SPEI3/CWSI 0.668 *** 0.821 *** 0.610 ** 0.632 **
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3.2.2. Correlation Analysis at Watershed Level

A correlation analysis of drought indices (SPI, SPEI, and RDI) at the Upper OER basin
level (Figure 8) revealed a consistently strong relationship at each time step (Table 6). The
correlation coefficient reached 0.996 with a p-value less than 0.001 between RDI and SPI at
the 3- and 6-month time steps. The relationship between drought indices and precipitation
is characterized by a strong and moderate correlation with a p-value less than 0.001 at
annual and 1-month time steps, respectively. For other time steps, the correlation is weak.
The 12-month time step shows no correlation.

However, the relationship between remote-sensing indices (NDVI, EVI, and CWSI) and
drought indices showed a non-significant-to-weak correlation. The best value was found
between NDVI/SPEI and EVI/SPEI (at a 6-month time step) and between CWSI/SPEI (at a
3-month time step), with values of 0.336, 0.302, and 0.335, respectively, with p-value less
than 0.001. Moreover, with an annual time step, the best correlation values were observed
between CWSI and SPI/SPEI/RDI (over 0.75 with a p-value less than 0.001).

Table 6. Correlation between precipitation, SPI, SPEI, RDI, NDVI, and EVI with different time steps
at Upper OER basin level (*** p-value < 0.001, ** p-value < 0.01, and * p-value < 0.05).

Correlation 1 Month 3 Months 6 Months 12 Months Annual

19
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SPEI/SPI 0.828 *** 0.900 *** 0.943 *** 0.949 *** 0.947 ***
RDI/SPI 0.940 *** 0.996 *** 0.996 *** 0.994 *** 0.995 ***

RDI/SPEI 0.875 *** 0.920 *** 0.964 *** 0.974 *** 0.974 ***
PRCP/SPI 0.657 *** 0.456 *** 0.377 *** 0.054 0.992 ***
PRCP/SPEI 0.681 *** 0.449 *** 0.350 *** 0.062 0.930 ***
PRCP/RDI 0.681 *** 0.459 *** 0.371 *** 0.056 0.985 ***
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NDVI/SPI 0.055 0.202 *** 0.294 *** 0.295 *** 0.421 *
NDVI/SPEI 0.137 * 0.270 *** 0.336 *** 0.279 *** 0.339
NDVI/RDI 0.067 0.198 ** 0.290 *** 0.298 *** 0.395
NDVI/PRCP 0.367 *** 0.481 *

EVI/SPI 0.011 0.150 * 0.253 *** 0.293 *** 0.419 *
EVI/SPEI 0.038 0.188 ** 0.302 *** 0.283 *** 0.462 *
EVI/RDI −0.001 0.144 * 0.249 *** 0.297 *** 0.454 *

EVI/PRCP 0.095 0.602 **
EVI/NDVI 0.829 *** 0.829 *** 0.829 *** 0.829 *** 0.930 ***
CWSI/SPI 0.201 ** 0.255 *** 0.251 *** 0.117 0.763 ***
CWSI/SPEI 0.328 *** 0.335 *** 0.276 *** 0.103 0.764 ***
CWSI/RDI 0.233 *** 0.278 *** 0.260 *** 0.111 0.773 ***
CWSI/PRCP 0.593 *** 0.768 ***
CWSI/NDVI 0.366 *** 0.365
CWSI/EVI −0.029 0.428 *
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3.3. Trend Analysis
3.3.1. Trend Analysis at Sub-Basins Level

• For the period between 1979 and 2022

The results of the analysis indicate that there is no statistically significant evidence to
suggest a change in precipitation patterns across the sub-basins in (Table 7). In fact, the
p-values for each sub-basin are greater than 0.1. The observed trends vary from negative
for AEHeri and Tarhat to positive for the other sub-basins. In contrast, temperature trends
indicate an increase for all sub-basins, rising from 0.4 to 0.47 ◦C per decade. Additionally,
potential evapotranspiration (PET) values increased in all sub-basins, with the greatest
increase observed in the Tarhat sub-basin (40.8 mm/10 years) and the lowest in the Tagh-
zoute sub-basin (29 mm/10 years). The trends in T and PET are highly significant, with a
p-value of less than 0.01.
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Table 7. Trend results for various parameters at sub-basin and Upper OER basin level (1979–2022)
(*** p-value < 0.01).

1979–2022 Ahmed El
Hansali Taghzoute Chacha N

Amellah
Aval El

Heri Tarhat Tamchachate Upper
OER

Precipitation Z Mann–Kendall 1.452 0.942 −0.188 0.544 −0.649 0.942 0.230
Sen’s Slope 3.458 1.650 −0.529 1.456 −1.567 1.650 0.547

Temperature Z Mann–Kendall 4.812 *** 4.730 *** 5.400 *** 5.274 *** 5.358 *** 5.086 *** 5.253 ***
Sen’s Slope 0.041 *** 0.040 *** 0.047 *** 0.045 *** 0.045 *** 0.044 *** 0.044 ***

PET
Z Mann–Kendall 4.357 *** 3.747 *** 4.877 *** 4.395 *** 4.919 *** 4.899 *** 4.625 ***

Sen’s Slope 3.936 *** 2.905 *** 3.866 *** 3.532 *** 4.083 *** 3.537 *** 3.626 ***

SPI
Z Mann–Kendall 1.452 0.931 −0.188 −0.649 −0.649 −0.649 0.230

Sen’s Slope 0.018 0.010 −0.003 −0.006 −0.006 −0.006 0.003

SPEI
Z Mann–Kendall 0.238 −0.460 −1.612 −1.507 −1.507 −1.507 −1.005

Sen’s Slope 0.004 −0.008 −0.021 −0.022 −0.022 −0.022 −0.015

RDI
Z Mann–Kendall 0.954 0.544 −0.754 0.293 −0.105 −0.963 −0.126

Sen’s Slope 0.019 0.007 −0.009 0.005 −0.002 −0.013 −0.003

With regard to the drought indices SPI, SPEI, and RDI, the trends are not significant
for all sub-basins. The values for increases or decreases remain very close to 0.

• For the period between 2010 and 2022

In this period, precipitation trends indicate a significant decline across all sub-basins
(Table 8).The decline in precipitation ranges from −29.2 mm/year for Taghzoute and
Tamchachate to −64.6 mm/year for the Tarhat sub-basin, with a p-value < 0.05. During this
period, temperatures exhibited an upward trend in all sub-basins. This increase is greater
than that observed over the entire study period, exceeding 1 ◦C/10 years for AEHeri and
ChachaNA, with a p-value of less than 0.05. The PET trends demonstrate a notable increase,
with values ranging from 76.6 mm/10-years to 102.4 mm/10-years for the Tamchachate
and AEH sub-basins, respectively. The observed increase is statistically significant, with a p-
value < 0.1. The downward trends in drought indices observed in all sub-basins indicate an
increase in the intensity of SPI, SPEI, and RDI. This intensity is of considerable significance,
exceeding −2/10-year for four sub-basins (AEH, ChachaNA, Tarhat, and Tamchachate) for
the three drought indices studied with a p-value of less than 0.05.

Table 8. Trend results for various parameters at sub-basin and Upper OER basin level (2010–2022)
(** p-value < 0.05, and * p-value < 0.1).

2010–2022 Ahmed El
Hansali Taghzoute Chacha N

Amellah
Aval El

Heri Tarhat Tamchachate Upper
OER

Precipitation Z Mann–Kendall −2.400 ** −1.525 −1.769 * −1.769 * 2.135 ** −1.525 −2.257 **
Sen’s Slope −48.723 ** −29.250 −38.088 * −34.125 * −64.666 ** −29.250 −44.835 **

Temperature Z Mann–Kendall 0.891 1.647 2.013 ** 2.013 ** 1.769 * −1.525 1.891 *
Sen’s Slope 0.047 0.092 0.106 ** 0.108 ** 0.077 * 0.080 0.078 *

PET
Z Mann–Kendall 1.851 * 1.647 1.891 * 1.891 * 2.013 ** 1.891 * 1.891 *

Sen’s Slope 10.245 * 7.717 9.279 * 9.133 * 9.659 ** 7.669 * 8.457 *

SPI
Z Mann–Kendall −2.400 ** −1.525 −1.769 * −2.135 ** −2.135 ** −2.135 ** −2.257 **

Sen’s Slope −0.228 ** −0.144 −0.165 * −0.225 ** −0.225 ** −0.225 ** −0.224 **

SPEI
Z Mann–Kendall −2.537 ** −1.891 * −2.257 ** −2.501 ** −2.501 ** −2.501 ** −2.501 **

Sen’s Slope −0.249 ** −0.188 * −0.200 ** −0.205 ** −0.205 ** −0.205 ** −0.246 **

RDI
Z Mann–Kendall −2.263 ** −1.647 −1.891 * −2.013 ** −2.135 ** −2.257 ** −2.379 **

Sen’s Slope −0.245 ** −0.152 −0.169 * −0.202 ** −0.172 ** −0.221 ** −0.234 **
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3.3.2. Trend Analysis at Upper OER Watershed Level

As shown in (Table 7), over the study period (44 years), precipitation (P), mean
temperature (Tmean), and potential evapotranspiration (PET) show an upward trend,
with 5 mm/10-year, 0.4 ◦C/10-year and 36.2 mm/10-year, respectively. This trend is not
statistically significant for precipitation, with a p-value greater than 0.1, in contrast to what
is found for Tmean and PET, with a p-value less than 0.01. The analysis of drought indices
revealed an increasing trend for SPI and a decreasing trend for SPEI and RDI. However,
these trends remain insignificant given the very high p-value.

For the period 2010–2022 (Table 8), all trends are statistically significant. Precipitation
exhibits an interesting downward trend with a rate of −44.8 mm/year, which is statistically
significant at the 0.05 level. In contrast, Tmean and PET show upward trends with rates
of 0.78 ◦C/10-year and 84.5 mm/10-year, respectively, which are statistically significant,
with a p-value less than 0.1. The SPI, SPEI, and RDI indices demonstrate a declining
trend within the Upper Oum Er Rbia watershed. The intensity of drought is −2.24/10-year,
−2.47/10-year, and −2.35/10-year, respectively, with a p-value <0.05 for SPI, SPEI, and RDI.

4. Discussion

In this study, we integrated multiple datasets and analytical techniques that, to the
best of our knowledge, have never been concurrently used in a study in Morocco. The
objective was to obtain a comprehensive and detailed understanding of the evolution of
drought in Morocco, especially in mountainous area, with the Upper Oum Er Rbia basin
serving as a case study.

In this investigation, actual precipitation data were used, whereas temperature data
were derived from the European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis (ERA5) dataset. The correlation between these datasets and the two stations
with data available was very good. The results of this study may prove useful in the future,
where measuring stations are absent, and further research may be conducted in this area.

In order to analyze the drought conditions in the Upper Oum Er Rbia watershed, a se-
ries of indices were applied, namely SPI (Standard Precipitation Index), SPEI (Standardized
Precipitation Evapotranspiration Index), and RDI (Reconnaissance Drought Index). How-
ever, drought indices have been demonstrated to be highly effective tools for monitoring
and tracking drought, due to their capacity to simplify the complex interactions between
diverse climatic parameters [110].

The indices demonstrate that the duration of drought varies between sub-basins and
according to the chosen time step. Tamchachate exhibited the longest duration of drought
at the 1-month time step, with 96 months. With a three-month time step, Taghzoute and
Tamchachate exhibited the greatest degree of drought impact, with 145 and 143 months,
respectively. With a duration of 159 months, AEHeri is the sub-basin that has experienced
the longest period of drought with the 6-month time step. The sub-basin most affected by
drought with a duration of 160 months by the 12-month time step is AEHansali. Conversely,
the sub-basin that experienced the shortest duration of drought is ChachaNA. In all the
sub-basins studied and with the different drought indices (SPI, SPEI, and RDI), the three-
month time step shows the highest number of months with high drought intensity (extreme
drought), indicating that the three-month time step is the most sensitive to drought.

In all of the sub-basins under examination, and with various drought indices (SPI,
SPEI, and RDI), the three-month time step consistently showed the highest number of
months with high drought intensity (extreme drought). The result of this analysis indicates
that the three-month time step is particularly sensitive in detecting drought conditions. The
frequent occurrence of extreme droughts during this time step highlights its effectiveness
in capturing short-term variations in water availability and stress.

The results of the correlation between the various drought indices SPI, SPEI, RDI,
NDVI, EVI, and CWSI and precipitation were carried out for all sub-basins. The analysis
demonstrated that the best correlation between drought indices was that between RDI
and SPI for the different time steps and at the level of the majority of sub-basins. Pre-
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cipitation exhibited a stronger correlation with SPEI and RDI at the 1-month time step,
yet the most notable correlation was that between precipitation and CWSI. At the annual
time step, the correlation between precipitation and the SPI, SPEI, and RDI indices was
particularly noteworthy.

In the majority of the sub-basins under investigation, the Standardized Precipitation
Evapotranspiration Index (SPEI) with a time step of six months exhibits the most pro-
nounced correlation with the two vegetation indices, namely the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). This observation is in
alignment with the research findings presented by [111]. However, it is noteworthy that
this correlation is generally categorized as weak. This pattern is mirrored in the research
conducted by [67], who reported similar results in the mountainous regions of their study
area. This region, which is located to the southwest of our basin, is characterized by a
subhumid climate and is composed of forests, dry grazing areas, and shrubs. The Upper
OER basin, which is also located at high altitudes and is predominantly forested, shows
an exception in the AEHansali sub-basin. Here, the highest correlation values were 0.437
and 0.389 between SPEI and NDVI and between SPEI and EVI, respectively, indicating a
moderate-to-weak positive relationship.

In the study of drought indices and their relationship with the Crop Water Stress Index
(CWSI), it has been observed that the strongest correlation exists between the CWSI and
the Standardized Precipitation Evapotranspiration Index (SPEI). This correlation is akin
to the one observed between the Normalized Difference Vegetation Index (NDVI) and the
Enhanced Vegetation Index (EVI). However, correlation coefficients are a notable distinction.
While CWSI and SPEI showed a moderate correlation in all sub-basins, the correlation
coefficients ranged from 0.472 to 0.504. These results demonstrated an improvement when
compared with those obtained with NDVI and EVI. The analysis revealed that the highest
correlation was identified in the AEH sub-basin. It is noteworthy that this correlation was
observed with a temporal resolution of three months, differing from the results obtained
previously. When the analysis was extended to an annual time step, encompassing all
sub-basins and drought indices, the correlation was found to be strong to very strong. This
suggests a robust relationship between these variables over an extended period.

It must be noted that this study used remote-sensing products, which have limited
applicability across all geographical terrains. It is noteworthy that regions with moun-
tainous topography present unique challenges. However, the AEHansali sub-basin has
shown optimal results. This can be attributed to its relatively minimal altitude variance in
comparison to other sub-basins.

Consequently, a comprehensive analysis of the correlation results at the sub-basin level
was required in order to examine the relationships between these indices, with a particular
focus on seasonal variations. The spring season demonstrated the most favorable outcomes,
as evidenced by the correlations between SPEI/NDVI, SPEI/EVI, and SPEI/CWSI, which
were 0.739, 0.746, and 0.821, respectively. These results were statistically significant, with a
p-value of less than 0.001, indicating a high level of confidence in the findings. The analysis
demonstrated an improvement in the ability of remote-sensing indexes to accurately capture
drought conditions.

The integration of Mann–Kendall and Sen’s Slope for the study of trends is a particu-
larly interesting approach, as it helps to understand the temporal evolution of the different
parameters used in this study.

The analysis of precipitation at the sub-basin level for the period 1979-2022 revealed a
decreasing trend at Tarhat and ChachaNA, while an increasing trend was observed at other
sub-basins. These trends, whether increasing or decreasing, remain unrepresentative due
to the p-value exceeding 0.1. The observed increase in precipitation in some sub-basins is
likely due to the presence of positive precipitation anomalies recorded in 1995-1996 and
2009-2010 in most regions of Morocco, as reported by [62].

As the temperature showed an increasing trend, with a p-value less than 0.01, in
the six sub-basins, the rise in temperature was noticeable, with an increase between
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0.4 ◦C/10 years and 0.47 ◦C/10 years at the level of the Taghzoute and ChachaNA sub-
basins, respectively. The same results were observed for the trends of potential evapo-
transpiration, where an increase was noted for all the sub-basins. The magnitude of this
increase varied between 29.05 mm/10 years and 40.83 mm/10 years for Taghzoute and
Tarhat, respectively.

Similarly, at the level of the Haut Oum Er Rbia basin, an increase in temperature and
potential evapotranspiration (PET) was observed, with 0.44 ◦C/10 and 36.26 mm/10 years,
respectively, with a p-value less than 0.01. Conversely, precipitation and drought indices
did not reveal any significant trends for this period.

Nevertheless, despite the availability of remote-sensing data from the year 2000 on-
ward, it was imperative for this study to analyze the trends of different parameters from
the hydrological year 2010–2011 onward, in order to avoid any confusion resulting from
the anomaly of 2009–2010.

In contrast to the preceding period, the trends of the various parameters during the
period 2010–2022 are statistically significant for the majority of them.

All sub-basins are suffering from a very significant lack of precipitation; during the last
13 years, precipitation has been strongly decreasing at all sub-basin levels, with a decrease
varying from −29.25 mm/year in Taghzoute to −64.66 mm/year in Tarhat.

The temperature trend in this period is more pronounced than in the period 1979–2022.
The sub-basins most affected by the increase in temperature are ChachaNA 1.08 ◦C/10 years
and AEHeri 1.06 ◦C/10 years.

PET is also on the rise, as precipitation has decreased, and temperature has increased;
the sub-basins that show the highest value of trends are AEH 102.45 mm/10 years and
Tarhat 96.59 mm/10 years.

All drought indices are demonstrating a downward trend, exceeding −0.2 per year,
which is a significant indicator. These indices serve as essential tools for assessing the impact
of drought on water resources. Upon closer examination, we find that the AEH sub-basin
has the lowest values for the drought indices SPI, SPEI, and RDI, with −0.228 per year,
−0.249 per year, and −0.245 per year, respectively. This indicates that this region is
particularly affected by drought. In contrast, the Taghzoute sub-basin shows less severe
values, with −0.144 per year for SPI, −0.188 per year for SPEI, and −0.152 per year for RDI.
Indeed, among the sub-basins under discussion, Taghzoute is the least affected by drought.

From an overall perspective, the Upper Oum Er Rbia basin has experienced a notable
shift in climatic patterns. A decrease in precipitation of −44.835 mm/year has been
observed, indicating a trend toward drier conditions. Concurrently, both temperature and
potential evapotranspiration have shown an increase, with a rate of 0.78 ◦C per decade and
84.57 mm per decade, respectively. This indicates a warming trend and an increase in the
potential for water loss from the land to the atmosphere. Furthermore, the drought indices
demonstrate a decreasing trend, with SPI, SPEI, and RDI at −0.224/year, −0.246/year, and
−0.234/year, respectively. These indices are used to quantify the severity and duration
of drought conditions. A negative trend indicates a worsening of drought conditions
over time.

These changes have significant implications for the management of water resources
in the Haut Oum Er Rbia basin. The observed decrease in precipitation and concurrent
increase in temperature and potential evapotranspiration indicate that water availability
may become relatively more limited in the future. The negative trends observed in the
drought indices serve to reinforce the conclusion that drought conditions are becoming
increasingly severe.

Previous studies suggest that integrating river-flow data is an effective method for eval-
uating the impact of watershed disturbances on hydrological drought conditions [112–114].
Incorporating river-flow data into future research could provide a more nuanced under-
standing of hydrological droughts. Combining these results with current findings will
provide a complete vision of environmental drought, encompassing meteorological, hydro-
logical, and agricultural aspects.
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Adaptation strategies will be needed to manage water resources under these changing
climate conditions. This could include measures to increase water-use efficiency, develop
alternative water sources, and implement sustainable land-management practices to reduce
evapotranspiration and conserve soil moisture. It is also important to monitor these climate
and drought indices regularly to track changes over time and adjust management strategies
as needed.

5. Conclusions

The findings of this study underscore the importance of the three-month time step as
a crucial interval for monitoring and evaluating drought conditions, providing essential
insights for effective water resource management and strategic planning. Among the
various indices analyzed, the Standardized Precipitation Evapotranspiration Index (SPEI)
emerges as the optimal choice for integration with remote-sensing products, offering a
comprehensive assessment of drought by accounting for both precipitation and evapotran-
spiration. Notably, the Crop Water Stress Index (CWSI) demonstrates a strong correlation
with SPEI at the three-month scale, surpassing the performance of NDVI and EVI. Seasonal
trends indicate that agricultural indices, particularly during the spring, align more closely
with meteorological indices, with CWSI maintaining the highest consistency in correlation
with SPEI-3. Furthermore, the analysis of climate trends from 2010 to 2022 reveals a signifi-
cant decrease in precipitation, alongside increasing temperatures and evapotranspiration
potential (ETP), which exacerbate drought conditions in the study area. Consequently, all
indices—including SPI, SPEI, and RDI—indicate an increase in drought intensity, highlight-
ing the urgent need for adaptive strategies to manage water resources effectively in light of
these changing climatic conditions.
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