Comprehensive Control of Water Quality Deterioration in Building Water Supply Systems: A Review on Configuration, Purification and Regulation
Abstract
:1. Introduction
2. Pollution of BWSSs: Identifying the Key Control Targets
2.1. Physicochemical Pollution
2.2. Biological Pollution
2.2.1. Microbe Count
2.2.2. Microbial Community Characteristic
2.2.3. Opportunistic Pathogen Distribution
3. Configuration of BWSSs: Reducing Pollution Risks at the Source
3.1. Characteristics of Facility Material
3.1.1. Water Tank
3.1.2. Pipeline
3.2. Design and Layout Form
3.2.1. Water Tank
3.2.2. Pipeline
4. Purification of BWSSs: Improving Water Quality by Introducing Treatment Technology
4.1. Ultrafiltration
4.2. Disinfection
4.2.1. Chlorine
4.2.2. Chloramine
4.2.3. UV Irradiation
4.2.4. Combined Chlorine and UV Disinfection
5. Regulation of BWSSs: Ensuring Water Quality During Operation and Maintenance
5.1. Contingency Event Handling
5.1.1. Exogenous Pollution
5.1.2. Water Supply Interruption
5.2. System Periodic Maintenance
5.2.1. Pipeline Aging
5.2.2. Water Tank Cleaning and Pipeline Flushing
5.3. Intelligent Monitoring and Management
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 3rd ed.; World Health Organization (WHO): Geneva, Switzerland, 2004. [Google Scholar]
- World Health Organization (WHO). Global Status Report on Water Safety Plans: A Review of Proactive Risk Assessment and Risk Management Practices to Ensure the Safety of Drinking-Water; World Health Organization (WHO): Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization (WHO). Water Safety Plan Manual—Step by Step Risk Management for Drinking Water Suppliers, 2nd ed.; World Health Organization (WHO): Geneva, Switzerland, 2023. [Google Scholar]
- Gunnarsdottir, M.J.; Gardarsson, S.M.; Elliott, M.; Sigmundsdottir, G.; Bartram, J. Benefits of water safety plans: Microbiology, compliance, and public health. Environ. Sci. Technol. 2012, 46, 7782–7789. [Google Scholar] [CrossRef] [PubMed]
- Jayaratne, A.; Steele, M.; Stevens, M.; van Lieshout, K.; Curran, L.; Higginbotham, M.; Prosser, T.; Dickson, L.; Mosse, K.; McManemin, A. Operationalising water safety plans for Melbourne—A large city case study. J. Water Health 2023, 21, 1812–1833. [Google Scholar] [CrossRef] [PubMed]
- Fanaei, F.; Shahryari, T.; Mortazavi, M.; Nasseh, N.; Pourakbar, M.; Barikbin, B. Hazard identification and integrated risk assessment of drinking water supply system from catchment to consumer based on the World Health Organization’s Water Safety Plan. Desalin. Water Treat. 2023, 286, 257–273. [Google Scholar] [CrossRef]
- Li, C.; Wang, G. Analysis of the water quality deterioration in secondary water-supply systems. In Proceedings of the 2014 International Conference on Computer Science and Electronic Technology, Shenzhen, China, 27–28 December 2014; pp. 120–123. [Google Scholar]
- Liu, G.; Bakker, G.; Li, S.; Vreeburg, J.; Verberk, J.; Medema, G.; Liu, W.; Van Dijk, J. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: An integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ. Sci. Technol. 2014, 48, 5467–5476. [Google Scholar] [CrossRef]
- Liu, Y.; Shan, R.; Chen, G.; Liu, L. Linking flow velocity-regulated EPS production with early-stage biofilm formation in drinking water distribution systems. Water Sci. Technol. Water Supply 2020, 20, 1253–1263. [Google Scholar] [CrossRef]
- Bertelli, C.; Courtois, S.; Rosikiewicz, M.; Piriou, P.; Aeby, S.; Robert, S.; Loret, J.F.; Greub, G. Reduced chlorine in drinking water distribution systems impacts bacterial biodiversity in biofilms. Front. Microbiol. 2018, 9, 2520. [Google Scholar] [CrossRef]
- Hu, D.; Hong, H.; Rong, B.; Wei, Y.; Zeng, J.; Zhu, J.; Bai, L.; Guo, F.; Yu, X. A comprehensive investigation of the microbial risk of secondary water supply systems in residential neighborhoods in a large city. Water Res. 2021, 205, 117690. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Tang, W.; Yang, Y.; Zhao, J.; Xia, S.; Zhang, W.; Wang, H. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers. Water Res. 2018, 136, 160–168. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Water Safety in Buildings; World Health Organization (WHO): Geneva, Switzerland, 2011. [Google Scholar]
- GB5749-2022; Standards for Drinking Water Quality. The Ministry of Health of the P.R. China (MOH): Beijing, China, 2022.
- Li, M.; Liu, Z.; Chen, Y. Tap water microbiome shifts in secondary water supply for high-rise buildings. Environ. Sci. Ecotechnol. 2024, 20, 100413. [Google Scholar] [CrossRef]
- Kilb, B.; Lange, B.; Schaule, G.; Flemming, H.C.; Wingender, J. Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int. J. Hyg. Environ. Health 2003, 206, 563–573. [Google Scholar] [CrossRef]
- Miyagi, K.; Sano, K.; Hirai, I. Sanitary evaluation of domestic water supply facilities with storage tanks and detection of Aeromonas, enteric and related bacteria in domestic water facilities in Okinawa Prefecture of Japan. Water Res. 2017, 119, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qiang, Z.; Bolton, J.R.; Li, W.; Chen, P. UV disinfection of secondary water supply: Online monitoring with micro-fluorescent silica detectors. Chem. Eng. J. 2014, 255, 165–170. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.L.; Li, X.; Xiang, K.; Zhao, L. Effect of shock chlorine and chloramine disinfection on biofilm disinfection in pipe system of secondary water supply. J. Harbin Inst. Technol. 2017, 49, 71–77. [Google Scholar]
- Zhao, L.; Liu, Y.W.; Li, N.; Fan, X.Y.; Li, X. Response of bacterial regrowth, abundant and rare bacteria and potential pathogens to secondary chlorination in secondary water supply system. Sci. Total Environ. 2020, 719, 137499. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Li, X.; Zeng, J.; Xiao, X.; Zhao, W.; Zhang, J.; Yu, X. Hidden risks: Simulated leakage of domestic sewage to secondary water supply systems poses serious microbiological risks. Water Res. 2023, 244, 120529. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, Y.; Dai, Z.; Ren, A.; Fang, J.; Li, X.; van der Meer, W.; Medema, G.; Rose, J.B.; Liu, G. Building water quality deterioration during water supply restoration after interruption: Influences of premise plumbing configuration. Water Res. 2023, 241, 120149. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, Z.; Wang, Y.; Liu, S.; Niu, Z.; Lu, P.; Wang, J.; Gu, J.; Chen, C. A red water occurrence in drinking water distribution systems caused by changes in water source in Beijing, China: Mechanism analysis and control measures. Front. Environ. Sci. Eng. 2014, 8, 417–426. [Google Scholar] [CrossRef]
- Su, Z.; Liu, T.; Men, Y.; Li, S.; Graham, N.; Yu, W. Understanding point-of-use tap water quality: From instrument measurement to intelligent analysis using sample filtration. Water Res. 2022, 225, 119205. [Google Scholar] [CrossRef]
- Ye, C.; Xian, X.; Bao, R.; Zhang, Y.; Feng, M.; Lin, W.; Yu, X. Recovery of microbiological quality of long-term stagnant tap water in university buildings during the COVID-19 pandemic. Sci. Total Environ. 2022, 806, 150616. [Google Scholar] [CrossRef]
- Hu, D.; Lin, W.; Zeng, J.; Zhang, H.; Wei, Y.; Yu, X. To close or open the tank input water valve: Secondary water-supply systems with double tanks will induce a higher microbial risk. Sci. Total Environ. 2023, 874, 162301. [Google Scholar] [CrossRef]
- Wang, G.; Chen, H. Water quality deterioration after roof-top storage: Implications on their maintenance and management. Water Sci. Technol. Water Supply 2006, 6, 39–45. [Google Scholar] [CrossRef]
- Evison, L.; Sunna, N. Microbial regrowth in household water storage tanks. J. Am. Water Works Assoc. 2001, 93, 85–94. [Google Scholar] [CrossRef]
- Cai, X.; Hu, Y.; Zhou, S.; Meng, D.; Xia, S.; Wang, H. Unraveling bacterial and eukaryotic communities in secondary water supply systems: Dynamics, assembly, and health implications. Water Res. 2023, 245, 120597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, L.; Huang, T.; Yan, M.; Liu, K.; Miao, Y.; He, H.; Li, S.; Sekar, R. Combined effects of seasonality and stagnation on tap water quality: Changes in chemical parameters, metabolic activity and co-existence in bacterial community. J. Hazard. Mater. 2021, 403, 124018. [Google Scholar] [CrossRef]
- Novak Babič, M.; Gunde-Cimerman, N. Water-transmitted fungi are involved in degradation of concrete drinking water storage tanks. Microorganisms 2021, 9, 160. [Google Scholar] [CrossRef]
- Setty, K.E.; Enault, J.; Loret, J.F.; Serra, C.P.; Martin-Alonso, J.; Bartram, J. Time series study of weather, water quality, and acute gastroenteritis at Water Safety Plan implementation sites in France and Spain. Int. J. Hyg. Environ. Health 2018, 221, 714–726. [Google Scholar] [CrossRef]
- Dion-Fortier, A.; Rodriguez, M.J.; Sérodes, J.; Proulx, F. Impact of water stagnation in residential cold and hot water plumbing on concentrations of trihalomethanes and haloacetic acids. Water Res. 2009, 43, 3057–3066. [Google Scholar] [CrossRef]
- Huang, C.K.; Weerasekara, A.; Bond, P.L.; Weynberg, K.D.; Guo, J. Characterizing the premise plumbing microbiome in both water and biofilms of a 50-year-old building. Sci. Total Environ. 2021, 798, 149225. [Google Scholar] [CrossRef]
- Proctor, C.R.; Reimann, M.; Vriens, B.; Hammes, F. Biofilms in shower hoses. Water Res. 2018, 131, 274–286. [Google Scholar] [CrossRef]
- Wang, H.; Bédard, E.; Prévost, M.; Camper, A.K.; Hill, V.R.; Pruden, A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Res. 2017, 117, 68–86. [Google Scholar] [CrossRef]
- Cai, X.; Hu, Y.; Zhou, S.; Meng, D.; Zhang, Y.; Zhao, R.; Wang, H. Nitrifier assemblages and dynamics in secondary water supply systems: Predominance of comammox nitrospira in tank biofilm and sediment. ACS Environ. Sci. Technol. Water 2023, 3, 1007–1018. [Google Scholar] [CrossRef]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank, D.N.; Harris, J.K.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 2009, 106, 16393–16399. [Google Scholar] [CrossRef]
- Zhou, X.; Kong, D.G.; Li, J.; Pang, B.B.; Zhao, Y.; Zhou, J.B.; Zhang, T.; Xu, J.Q.; Kobayashi, N.; Wang, Y.H. An outbreak of gastroenteritis associated with GII. 17 norovirus-contaminated secondary water supply system in Wuhan China 2017. Food Environ. Virol. 2019, 11, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Falkinham III, J.O.; Hilborn, E.D.; Arduino, M.J.; Pruden, A.; Edwards, M.A. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ. Health Persp. 2015, 123, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Donohue, M.J.; O’connell, K.; Vesper, S.J.; Mistry, J.H.; King, D.; Kostich, M.; Pfaller, S. Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ. Sci. Technol. 2014, 48, 3145–3152. [Google Scholar] [CrossRef]
- Barna, Z.; Kádár, M.; Kálmán, E.; Szax, A.S.; Vargha, M. Prevalence of Legionella in premise plumbing in Hungary. Water Res. 2016, 90, 71–78. [Google Scholar] [CrossRef]
- Schmidt, I.; Rickert, B.; Schmoll, O.; Rapp, T. Implementation and evaluation of the water safety plan approach for buildings. J. Water Health 2019, 17, 870–883. [Google Scholar] [CrossRef]
- Fan, X.; Tang, W.; Wang, J. Application guide of PE-INNER environmental protection combined water tank in secondary water supply reconstruction. Water Purif. Technol. 2015, 34, 128–131. [Google Scholar]
- Pang, Y. Comparative on water quality of water tank with different materials under different water ages. Water Purif. Technol. 2021, 40, 326–331. [Google Scholar]
- Shan, L.; Xu, S.; Pei, Y.; Zhu, Z.; Xu, L.; Liu, X.; Yuan, Y. Effect of domestic pipe materials on microbiological safety of drinking water: Different biofilm formation and chlorination resistance for diverse pipe materials. Process Biochem. 2023, 129, 11–21. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Miettinen, I.T.; Keinänen, M.M.; Kekki, T.K.; Laine, O.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004, 38, 3769–3779. [Google Scholar] [CrossRef]
- Learbuch, K.; Smidt, H.; Van Der Wielen, P. Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm. Water Res. 2021, 194, 116922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, Y.; Li, X.; Liu, Y.; Zhao, L. Evaluation of biofilm development on various pipelines in the domestic hot water system. Water Sci. Technol. Water Supply 2018, 18, 638–647. [Google Scholar] [CrossRef]
- Proctor, C.R.; Dai, D.; Edwards, M.A.; Pruden, A. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. Microbiome 2017, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.L.; Li, C.; Lin, Q.F.; Duan, H.J. Effect of pipe materials on disinfection by-products and bacterial communities during sulfamethazine chlorination in a pilot-scale water distribution system. Environ. Chem. Lett. 2019, 17, 1039–1044. [Google Scholar] [CrossRef]
- Ersan, M.S.; Liu, C.; Amy, G.; Karanfil, T. The interplay between natural organic matter and bromide on bromine substitution. Sci. Total Environ. 2019, 646, 1172–1181. [Google Scholar] [CrossRef]
- Ye, X.Y.; Wang, P.Y.; Wu, Y.C.; Zhou, Y.; Sheng, Y.F.; Lao, K.J. Microplastic acts as a vector for contaminants: The release behavior of dibutyl phthalate from polyvinyl chloride pipe fragments in water phase. Environ. Sci. Pollut. Res. 2020, 27, 42082–42091. [Google Scholar] [CrossRef]
- He, G.L.; Li, C.; Dong, F.L.; Zhang, T.Q.; Chen, L.; Cizmas, L.; Sharma, V.K. Chloramines in a pilot-scale water distribution system: Transformation of 17β-estradiol and formation of disinfection byproducts. Water Res. 2016, 106, 41–50. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yang, X.; Cizmas, L.; McDonald, T.J.; Luque, R.; Sayes, C.M.; Yuan, B.L.; Dionysiou, D.D. Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination. Chem. Eng. J. 2017, 317, 777–792. [Google Scholar] [CrossRef]
- Eslami, A.; Ghafari, M.; Sohbatloo, V.; Fanaei, F. Safety assessment of Zanjan drinking water system using water safety plan. J. Hum. Environ. Health Promot. 2017, 2, 138–146. [Google Scholar] [CrossRef]
- Yan, X.S.; Lin, T.; Wang, X.X.; Zhang, S.S.; Zhou, K.M. Effects of pipe materials on the characteristic recognition, disinfection byproduct formation, and toxicity risk of pipe wall biofilms during chlorination in water supply pipelines. Water Res. 2022, 210, 117980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Nie, X.; Li, C.; Gu, J.; Zhang, C. Molecular analysis of bacterial communities in biofilms of a drinking water clearwell. Microbes Environ. 2012, 27, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, C.; Zheng, X.; Zhao, J.; He, G.; Zhang, T. Effect of pipe materials on chlorine decay, trihalomethanes formation, and bacterial communities in pilot-scale water distribution systems. Int. J. Environ. Sci. Techinol. 2017, 14, 85–94. [Google Scholar] [CrossRef]
- Vargas, I.T.; Anguita, J.M.; Pastén, P.A.; Pizarro, G.E. Chlorine reduction kinetics and its mass balance in copper premise plumbing systems during corrosion events. Materials 2019, 12, 3676. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, K.; Boon, N.; Wang, Y.; Egli, T.; Hammes, F. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res. 2010, 44, 4868–4877. [Google Scholar] [CrossRef]
- DVGW. Technical Rules Water Distribution Systems; DVGW: Karlsruhe, Germany, 2015. [Google Scholar]
- VDI DVGW. Hygiene in Drinking-Water Installations-Requirements for Planning, Execution, Operation and Maintenance (6023-2013); VDI DVGW: Berlin, Germany, 2013. [Google Scholar]
- Hu, H.; Xu, F.; Wang, R.; Zhou, C.; Li, N.; Shao, S. Achieving zero fouling in the ultrafiltration for secondary water supply systems in the absence of residual chlorine. Water Res. 2024, 253, 121281. [Google Scholar] [CrossRef]
- Wang, H.; Hu, H.; Chen, S.; Schwarz, C.; Yin, H.; Hu, C.; Li, G.; Shi, B.; Huang, J. UV pretreatment reduced biofouling of ultrafiltration and controlled opportunistic pathogens in secondary water supply systems. Desalination 2023, 548, 116282. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Wen, D.; Qiang, Z. Development of economical-running strategy for multi-lamp UV disinfection reactors in secondary water supply systems with computational fluid dynamics simulations. Chem. Eng. J. 2018, 343, 317–323. [Google Scholar] [CrossRef]
- Wang, D.S.; Jiang, F.C.; Liu, H.B.; Xiang, H. Safety guarantee technologies of water pressure and water quality: A case study in secondary water supply for high-rise buildings. Desalin. Water Treat. 2020, 184, 395–407. [Google Scholar] [CrossRef]
- Liao, Z.; Nguyen, M.N.; Wan, G.; Xie, J.; Ni, L.; Qi, J.; Li, J.; Schäfer, A.I. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. J. Hazard. Mater. 2020, 397, 122779. [Google Scholar] [CrossRef]
- Jørgensen, M.K.; Deemter, D.; Städe, L.W.; Sørensen, L.G.; Madsen, L.N.; Oller, I.; Malato, S.; Nielsen, T.T.; Boffa, V. High performance ultra-and nanofiltration removal of micropollutants by cyclodextrin complexation. Chem. Eng. Res. Des. 2022, 188, 694–703. [Google Scholar] [CrossRef]
- Yasui, N.; Suwa, M.; Minamiyama, M. Infectious risk assessment of reclaimed water by UF membrane treatment process focusing attention on norovirus. Water Sci. Technol. Water Supply 2018, 18, 270–278. [Google Scholar] [CrossRef]
- Yu, H.; Huang, H.; Zhong, L.; Wu, S.; Yang, H.; Rong, H.; Liang, H.; Qu, F.; Ma, J. Evaluation of front-face fluorescence for assessing cyanobacteria fouling in ultrafiltration. Environ. Sci. Technol. 2023, 57, 17649–17658. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process. Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Peter-Varbanets, M.; Zurbrügg, C.; Swartz, C.; Pronk, W. Decentralized systems for potable water and the potential of membrane technology. Water Res. 2009, 43, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.; Kim, M.K.; Lee, Y.M.; Sohn, E.J.; Choi, G.Y.; Chae, S.H.; Zoh, K.D. Removal characteristics of 53 micropollutants during ozonation, chlorination, and UV/H2O2 processes used in drinking water treatment plant. Chemosphere 2024, 352, 141360. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Felipe-Sotelo, M.; Bond, T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review. Water Res. 2019, 162, 492–504. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, L.; Liu, S.; Wang, X.; Chen, C.; Jiang, Y. Research on residual chlorine degradation in Changzhou communities. Water Wastewater Eng. 2020, 46, 98–103. [Google Scholar]
- Li, X. Development and Application of Residual Chlorine Replenishment Device in Secondary Water Supply System. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2020. [Google Scholar]
- Xiang, P.; Li, Y.; Zhang, Z.; Chen, H. Application of intelligent sodium hypochlorite chlorination equipment in secondary water supply. China Water Wastewater 2022, 38, 43–48. [Google Scholar]
- Abkar, L.; Moghaddam, H.S.; Fowler, S.J. Microbial ecology of drinking water from source to tap. Sci. Total Environ. 2024, 908, 168077. [Google Scholar] [CrossRef]
- Inkinen, J.; Jayaprakash, B.; Siponen, S.; Hokajärvi, A.M.; Pursiainen, A.; Ikonen, J.; Ryzhikov, I.; Täubel, M.; Kauppinen, A.; Paananen, J. Active eukaryotes in drinking water distribution systems of ground and surface waterworks. Microbiome 2019, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Bian, W.; Li, J.; Zhao, B.; Zhang, S. Collaborative effect of secondary chlorination and organic matter content on biological safety in secondary water supply system. Desalin. Water Treat. 2017, 85, 154–160. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Li, X.; Bian, W. Treatment, Impact of organic matter on biofilm growth and microbial community diversity. Desalin. Water Treat. 2017, 66, 10–16. [Google Scholar] [CrossRef]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, R.; Fish, K.E.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef]
- Fang, W.; Hu, J.; Ong, S.L. Effects of phosphorus on biofilm disinfections in model drinking water distribution systems. J. Water Health 2010, 8, 446–454. [Google Scholar] [CrossRef]
- Lee, W.H.; Wahman, D.G.; Bishop, P.L.; Pressman, J.G. Free chlorine and monochloramine application to nitrifying biofilm: Comparison of biofilm penetration, activity, and viability. Environ. Sci. Technol. 2011, 45, 1412–1419. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Ariss, R.W.; Coburn, K.M.; Behbahani, M.; Xue, Z.; Seo, Y. The role of biofilms on the formation and decay of disinfection by-products in chlor (am) inated water distribution systems. Sci. Total Environ. 2021, 753, 141606. [Google Scholar] [CrossRef]
- Hozalski, R.M.; LaPara, T.M.; Zhao, X.; Kim, T.; Waak, M.B.; Burch, T.; McCarty, M. Flushing of stagnant premise water systems after the COVID-19 shutdown can reduce infection risk by Legionella and Mycobacterium spp. Environ. Sci. Technol. 2020, 54, 15914–15924. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gomez-Smith, C.K.; Jeon, Y.; LaPara, T.M.; Waak, M.B.; Hozalski, R.M. Effects of chloramine and coupon material on biofilm abundance and community composition in bench-scale simulated water distribution systems and comparison with full-scale water mains. Environ. Sci. Technol. 2018, 52, 13077–13088. [Google Scholar] [CrossRef]
- Waak, M.B.; Hozalski, R.M.; Hallé, C.; LaPara, T.M. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. Microbiome 2019, 7, 87. [Google Scholar] [CrossRef]
- Li, W.; Tan, Q.; Zhou, W.; Chen, J.; Li, Y.; Wang, F.; Zhang, J. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing. Chemosphere 2020, 242, 125310. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Li, S.; Ding, G.; Wang, K.; Zhuang, T.; Huang, X.; Wang, X. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking. Water Res. 2020, 185, 116290. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Sun, T.; Li, G.; An, T. Traditional and emerging water disinfection technologies challenging the control of antibiotic-resistant bacteria and antibiotic resistance genes. ACS Environ. Sci. Technol. Eng. 2021, 1, 1046–1064. [Google Scholar] [CrossRef]
- Pullerits, K.; Ahlinder, J.; Holmer, L.; Salomonsson, E.; Öhrman, C.; Jacobsson, K.; Dryselius, R.; Forsman, M.; Paul, C.J.; Rådström, P. Impact of UV irradiation at full scale on bacterial communities in drinking water. NPJ Clean Water 2020, 3, 11. [Google Scholar] [CrossRef]
- Nocker, A.; Shah, M.; Dannenmann, B.; Schulze-Osthoff, K.; Wingender, J.; Probst, A.J. Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. J. Microbiol. Meth. 2018, 149, 89–95. [Google Scholar] [CrossRef]
- Tian, Y.M.; Si, Y.J.; Li, H.; Wu, M.F. Evaluation and optimization of secondary water supply system renovation. J. Zhejiang Univ.-Sci. A 2007, 8, 1488–1494. [Google Scholar] [CrossRef]
- The Ministry of Health of the P.R. China (MOH). Technical Specification for Secondary Water Supply Engineering; The Ministry of Health of the P.R. China (MOH): Beijing, China, 2010. [Google Scholar]
- Souza, B.S.; Dantas, R.F.; Agulló-Barceló, M.; Lucena, F.; Sans, C.; Esplugas, S.; Dezotti, M. Evaluation of UV/H2O2 for the disinfection and treatment of municipal secondary effluents for water reuse. J. Chem. Technol. Biot. 2013, 88, 1697–1706. [Google Scholar] [CrossRef]
- Penru, Y.; Guastalli, A.R.; Esplugas, S.; Baig, S. Disinfection of seawater: Application of UV and ozone. Ozone-Sci. Eng. 2013, 35, 63–70. [Google Scholar] [CrossRef]
- Qiang, Z.; Li, M.; Bolton, J.R. Development of a tri-parameter online monitoring system for UV disinfection reactors. Chem. Eng. J. 2013, 222, 101–107. [Google Scholar] [CrossRef]
- Yin, R.; Ling, L.; Shang, C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Res. 2018, 142, 452–458. [Google Scholar] [CrossRef]
- Yin, R.; Shang, C. Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption. Water Res. 2020, 185, 116297. [Google Scholar] [CrossRef] [PubMed]
- Neu, L.; Hammes, F. Feeding the building plumbing microbiome: The importance of synthetic polymeric materials for biofilm formation and management. Water 2020, 12, 1774. [Google Scholar] [CrossRef]
- Achak, M.; Bakri, S.A.; Chhiti, Y.; Alaoui, F.E.M.; Barka, N.; Boumya, W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 2021, 761, 143192. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Drinking Water Distribution Systems: Assessing and Reducing Risks; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Viglione, G. As Lockdowns Lift, New Hazards Lurk in the Water. Nature 2020. Available online: https://www.nature.com/articles/d41586-020-01286-9 (accessed on 1 April 2024).
- Sunny, I.; Husband, P.; Boxall, J. Impact of hydraulic interventions on chronic and acute material loading and discolouration risk in drinking water distribution systems. Water Res. 2020, 169, 115224. [Google Scholar] [CrossRef] [PubMed]
- Jenks, B.; Pecci, F.; Stoianov, I. Optimal design-for-control of self-cleaning water distribution networks using a convex multi-start algorithm. Water Res. 2023, 231, 119602. [Google Scholar] [CrossRef]
- Qureshi, N.; Shah, J. Aging infrastructure and decreasing demand: A dilemma for water utilities. J. Am. Water Works Ass. 2014, 106, 51–61. [Google Scholar] [CrossRef]
- Inkinen, J.; Kaunisto, T.; Pursiainen, A.; Miettinen, I.T.; Kusnetsov, J.; Riihinen, K.; Keinänen-Toivola, M.M. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study. Water Res. 2014, 49, 83–91. [Google Scholar] [CrossRef]
- Makris, K.C.; Andra, S.S.; Botsaris, G. Technology, Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1477–1523. [Google Scholar] [CrossRef]
- Folkman, S. Water Main Break Rates in the USA and Canada: A Comprehensive Study. 2018. Available online: https://digitalcommons.usu.edu/mae_facpub/174/ (accessed on 1 April 2024).
- UK Water Industry Research (UKWIR). National Sewer and Water Mains Failure Database; United Kingdom Water Industry Research: London, UK, 2011. [Google Scholar]
- Li, D.; Li, Z.; Yu, J.; Cao, N.; Liu, R.; Yang, M. Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl. Environ. Microb. 2010, 76, 7171–7180. [Google Scholar] [CrossRef]
- Kim, E.J.; Herrera, J.E. Characteristics of lead corrosion scales formed during drinking water distribution and their potential influence on the release of lead and other contaminants. Environ. Sci. Technol. 2010, 44, 6054–6061. [Google Scholar] [CrossRef]
- Liu, H.; Wahman, D.G.; Pressman, J.G. Evaluation of monochloramine and free chlorine penetration in a drinking water storage tank sediment using microelectrodes. Environ. Sci. Technol. 2019, 53, 9352–9360. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Struewing, I.; Yelton, S.; Ashbolt, N. Molecular survey of occurrence and quantity of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in municipal drinking water storage tank sediments. J. Appl. Microbiol. 2015, 119, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Geng, B.; Jin, C. Effect of disinfection dosage on cleaning and disinfection of secondary water supply tank. Water Purif. Technol. 2020, 39, 92–95. [Google Scholar]
- Ra, K.; Proctor, C.; Ley, C.; Angert, D.; Noh, Y.; Odimayomi, T.; Whelton, A.J. Four buildings and a flush: Lessons from degraded water quality and recommendations on building water management. Environ. Sci. Ecotechnol. 2024, 18, 100314. [Google Scholar] [CrossRef] [PubMed]
- Bouneb, Z.E.A.; Saidouni, D.E. Toward an IoT-based software-defined plumbing network system with fault tolerance. Int. J. Hyper Connect. Internet Things 2022, 6, 1–18. [Google Scholar] [CrossRef]
- Martinez Paz, E.F.; Tobias, M.; Escobar, E.; Raskin, L.; Roberts, E.F.; Wigginton, K.R.; Kerkez, B. Wireless sensors for measuring drinking water quality in building plumbing: Deployments and insights from continuous and intermittent water supply systems. ACS Environ. Sci. Technol. Eng. 2021, 2, 423–433. [Google Scholar] [CrossRef]
- Liu, X.; Shu, S.; Yang, K.; Wang, T.; Geng, B. Intelligent management of secondary water supply systems in downtown Shanghai. Procedia Comput. Sci. 2019, 154, 206–209. [Google Scholar] [CrossRef]
Location | Building Type | Sample Type | Physicochemical Parameters | Biological Indicators | Reference |
---|---|---|---|---|---|
Beijing, China | Residential building | Tap water (n = 14) | Cu (0.069 ± 0.076 mg/L) Zn (0.10 ± 0.04 mg/L) | Class: α-Proteobacteria Family: Hyphomonadaceae Genus: Phreatobacter, Porphyrobacter, Blastomonas Sphing-omonas | [15] |
Office building | Tap water (n = 17) | Cu (0.005 ± 0.000 mg/L) Zn (0.40 ± 0.24 mg/L) | Class: γ-Proteobacteria Family: Rhodocyclaceae Genus: Aquabacterium, Methyloversatilis, Hydrogenophaga | ||
Xiamen, China | Residential building | Input water (n = 41) | Turbidity (0.19 ± 0.10 NTU) Residual chlorine (0.57 ± 0.23 mg/L) | 16S rRNA genes (103.08 ± 0.91 gene copies/mL) Legionella spp. (100–3.87 gene copies/100 mL) | [11] |
Tank water (n = 41) | Turbidity (0.38 ± 0.33 NTU) Residual chlorine (0.44 ± 0.20 mg/L) | 16S rRNA genes (103.63 ± 1.10 gene copies/mL) Legionella spp. (100–6.71 gene copies/100 mL) Enterococcus (101.96–3.43 gene copies/100 mL) Acanthamoeba (101.91–2.38 gene copies/100 mL) H. vermiformis (103.43–4.01 gene copies/100 mL) | |||
Tap water (n = 39) | Turbidity (0.28 ± 0.18 NTU) Residual chlorine (0.42 ± 0.21 mg/L) | 16S rRNA genes (103.65 ± 1.25 gene copies/mL) Legionella spp. (100–4.36 gene copies/100 mL) Salmonella, Staphylococcus aureus and Aeromonas hydrophilia (101.08–3.38 gene copies/100 mL) | |||
Fujian, China | Laboratory building | Tap water (n = 24) | Zn (7.716 mg/L) Fe (1.621 mg/L) Turbidity (1.02 ± 1.40 NTU) Residual chlorine (0.038 ± 0.036 mg/L) | L. pneumophila (Max: 1.95 × 105 copies/100 mL) Salmonella spp. (Max: 1.70 × 103 copies/100 mL) Shigella spp. (Max: 7.08 × 103 copies/100 mL) E. coli (Max: 7.24 × 103 copies/100 mL) P. aeruginosa (Max: 1.62 × 103 copies/100 mL) | [25] |
Teaching building | Tap water (n = 24) | Zn (6.378 mg/L) Fe (0.700 mg/L) Turbidity (0.20 ± 0.07 NTU) Residual chlorine (0.149 ± 0.132 mg/L) | |||
Dormitory building | Tap water (n = 24) | Zn (3.082 mg/L) Fe (0.717 mg/L) Turbidity (0.23 ± 0.09 NTU) Residual chlorine (0.093 ± 0.074 mg/L) | |||
Taipei, China | Public and private buildings | Tank water (n = 75) | Turbidity (0.46 NTU) Residual chlorine (0.4 mg/L) | Total coliform (1/75) Total bacteria count (4/75) | [27] |
Tap water (n = 87) | Turbidity (0.44 NTU) Residual chlorine (0.3 mg/L) | Total coliform (3/87) Total bacteria count (8/87) | |||
Kaohsiung, China | Public and private buildings | Tank water (n = 55) | Turbidity (0.94 NTU) Residual chlorine (0.3 mg/L) | Total coliform (0/55) Total bacteria count (12/55) | |
Tap water (n = 56) | Turbidity (0.57 NTU) Residual chlorine (<0.1 mg/L) | Total coliform (4/56) Total bacteria count (24/56) | |||
Shanghai, China | Residential building | Tap water (n = 17) | Total chlorine (0.35 ± 0.36 mg/L) TOC (4.28 ± 1.48 mg/L) | Phylum: Proteobacteria, Firmicutes, Bacteroidetes, Nitrospirae, Actinobacteria, Genus: Sphingomonas, Prevotella, Nitrospira, Novosphingobium, Methylobacterium Legionella spp. (77–8.4 × 103 gene copies/mL) Mycobacterium spp. (61–2.1 × 104 gene copies/mL) | [12] |
Rooftop tank water (n = 10) | Total chlorine (0.48 ± 0.31 mg/L) TOC (4.28 ± 1.94 mg/L) | ||||
Underground tank water (n = 8) | Total chlorine (0.69 ± 0.36 mg/L) TOC (4.64 ± 0.38 mg/L) | ||||
Amman, Jordan | Laboratory building | Tank water (n = 68) | Turbidity (0.3–1.7 NTU) Residual chlorine (0.0–0.30 mg/L) TOC ((1.94–4.28 mg/L) | Log mean plant count ((1.0–6.8 CFU/mL) | [28] |
Shanghai, China | Residential buildings | Tank water (n = 30) | - | Bacteria Phylum: Proteobacteria Class: α-Proteobacteria, γ-Proteobacteria Genus: Nitrospira, Pseudomonas Eukaryotes Protists ((31.23% ± 19.83%) Metazoan (20.91% ± 16.41%) Fungi (9.14% ± 8.62%) Amoebae Amoebozoa (91.15% ± 17.02%) Rhizaria (6.62% ± 16.16%) Opisthokonta (1.29% ± 3.54%) Excavata (0.94% ± 3.60%) | [29] |
Tap water (n = 16) | - | ||||
Biofilm (n = 27) | - | ||||
Sediment (n = 27) | - | ||||
Beijing, China | Unspecified | Tap water (n = 22) | Fe (0.04 ± 0.02 mg/L) Turbidity (0.19 ± 0.24 NTU) Total organic carbon (2.06 ± 0.48 mg/L) UV (0.01 ± 0.01 cm−1) | Phylum: Proteobacteria Class: α-Proteobacteria, γ-Proteobacteria | [24] |
Facility Material | Facility Type | Key Findings | Reference |
---|---|---|---|
Cast iron, PE and one fiberglass | Tank | (1) Relative abundance of Bacillus spp. and Moraxella spp.: cast iron > fiberglass and PE (2) Relative abundance of Arthrobacter spp., Pseudomonas–Alcaligenes and Aeromonas: fiberglass and PE > cast iron | [28] |
SS and ceramic | Tank | (1) Relative abundances of some amoeba genera: SS < ceramic (2) Significant differences were observed in amoeba communities among water samples collected from SS and ceramic tanks | [29] |
SS, PE and ceramic | Tank | (1) Detection frequency of AOA amoA genes: SS < PE < ceramic | [37] |
Galvanized steel vs. steel plastic | Pipe | (1) Color degree (CU): 11.8 vs. 8.1; (2) Turbidity(NTU): 8.2 vs. 0.74 (3) Fe (mg/L): 0.455 vs. 0.175; (4) Residual chlorine (mg/L): 0.25 vs. 0.28 | [7] |
PPR, SS and copper | Pipe | (1) Biofilm biomass: PPR > copper > SS; (2) EPS content: copper > PPR > SS (3) B. cereus grown displayed more biofilm biomass in PPR and SS pipes (4) Acinetobacter displayed more biofilm biomass in SS and copper pipes | [46] |
Copper and PE | Pipe | (1) Biofilm formation rate: copper < PE (2) Number of virus-like particles in water and biofilm: copper < PE | [47] |
Copper, PVC-C, PE and PVC-P | Pipe | (1) ATP concentration in water and biofilm: copper < PVC-C < PE < PVC-P (2) Gene copy numbers of Legionella spp., Mycobacterium spp., Pseudomonas spp., Aeromonas spp., fungi and Vermamoeba vermiformis were higher for PVC-P and PE than for copper and PVC-C | [48] |
PPR, PVC and SS | Pipe | (1) HPC in biofilm: PVC > PPR > SS; (2) Escherichia coli in biofilm: PVC > SS >PPR | [49] |
Copper and PEX | Pipe | (1) Number of L. pneumophila (< 41 °C): copper < PEX (2) Differences between copper and PEX diminished with elevated temperature | [50] |
Treatment Technology | Operating Condition | Treatment Effect and Economic Benefit | Reference |
---|---|---|---|
Ultrafiltration (UF) | Flux: 10 L/(m2•h) without residual chlorine | (1) Total organic carbon (TOC) and UV254 were reduced in the effluent (2) Successfully achieved zero fouling of UF membrane | [64] |
Ultraviolet (UV)-UF | UV dose: 40 mJ/cm2 UF membrane effluent rate: 40 mL/min | (1) Legionella spp., Legionella pneumophila, Mycobacterium spp. and Acanthameoba spp. were undetected in the water (2) Mitigate biofouling of UF membranes | [65] |
Chlorine | Short-term chlorination 0.1 and 0.2 mg/L | (1) Biofilm: inactivation rate over 98% at 2 h (2) Water: regrowth of bacteria was effectively controlled within 24 h. | [20] |
Continuous chlorination 0.1 and 0.2 mg/L | (1) Continuous secondary chlorination significantly enhanced the inhibition of bacterial regrowth in biofilm and water (2) Bacterial diversity and potential pathogens reduced after continuous secondary chlorination | ||
Shock disinfection (3 mg/L) | (1) 3.0 mg/L, CT = 300–400 mg•min/L: biofilm inactivation rate > 95% (2) Biofilm structure is disrupted and thickness is reduced | [19] | |
Chloramine | Shock disinfection (3 mg/L) | (1) 3.0 mg/L, CT = 300–400 mg•min/L: biofilm inactivation rate > 95% (2) Biofilm structure is disrupted and thickness is reduced | [19] |
UV | 6-lamp UV disinfection reactor Various lamp operation modes for different time periods | (1) The economical-running strategy for the UV disinfection reactor was predicted to reduce 32% of energy, corresponding to a daily electrical energy cut of 4.8 kWh | [66] |
UV–Chlorine | UV: 40–100 mJ/cm2 Chlorine: 1–5 mg/L | (1) The technology has been applied in a residential district of Suzhou, China, and the qualified rate of water quality increases from 61% to 100% | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Liu, Y.-W.; Li, X.; Fan, X.-Y.; Wang, N.; Zhao, L. Comprehensive Control of Water Quality Deterioration in Building Water Supply Systems: A Review on Configuration, Purification and Regulation. Water 2024, 16, 3132. https://doi.org/10.3390/w16213132
Li N, Liu Y-W, Li X, Fan X-Y, Wang N, Zhao L. Comprehensive Control of Water Quality Deterioration in Building Water Supply Systems: A Review on Configuration, Purification and Regulation. Water. 2024; 16(21):3132. https://doi.org/10.3390/w16213132
Chicago/Turabian StyleLi, Na, Yong-Wang Liu, Xing Li, Xiao-Yan Fan, Nan Wang, and Li Zhao. 2024. "Comprehensive Control of Water Quality Deterioration in Building Water Supply Systems: A Review on Configuration, Purification and Regulation" Water 16, no. 21: 3132. https://doi.org/10.3390/w16213132
APA StyleLi, N., Liu, Y. -W., Li, X., Fan, X. -Y., Wang, N., & Zhao, L. (2024). Comprehensive Control of Water Quality Deterioration in Building Water Supply Systems: A Review on Configuration, Purification and Regulation. Water, 16(21), 3132. https://doi.org/10.3390/w16213132