Partitioning of Heavy Rainfall in the Taihang Mountains and Its Response to Atmospheric Circulation Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Analysis Methods
2.3.1. Rotated Empirical Orthogonal Function (REOF)
2.3.2. Mann–Kendall Trend Test
2.3.3. Wavelet Analysis
2.3.4. Correlation Analysis Method
3. Results
3.1. Spatial Variation Characteristics of Heavy Rainfall in the Taihang Mountains Based on REOF Partitioning
3.2. Interannual Variation Trends of Heavy Rainfall in the Six Partitions of the Taihang Mountains
3.3. Temporal Variation Characteristics of Heavy Rainfall in the Taihang Mountains Based on REOF Partitioning
3.4. Relationship Between Heavy Rainfall in Each Partition and Large-Scale Circulation
4. Discussion
5. Conclusions
- (1)
- Spatial heterogeneity: The REOF analysis divided the Taihang Mountains into six distinct rainstorm partitions, each showing spatial heterogeneity in rainfall distribution. Partition I, located in the transition zone between the plains and mountains in the central region, experiences relatively higher rainfall due to orographic uplift. Partition IV, situated in the southeast, records the highest rainfall, driven by significant monsoon uplift during the summer. In contrast, partitions III and VI have lower rainfall, with partition VI, located in the northern hilly region, having the least rainfall. These spatial differences in rainstorm distribution are closely linked to the region’s complex terrain and climatic patterns.
- (2)
- Interannual variation trends: Over the past 50 years, rainfall in each partition of the Taihang Mountains has shown an increasing trend. Partition II displayed a significant upward trend (p < 0.05), with rainfall increasing at a rate of 14.4 mm per decade. This trend is closely related to the intensification of the water cycle under global warming, highlighting the impact of climate change on the frequency and intensity of regional rainstorms.
- (3)
- Periodicity: Results from the Continuous Wavelet Transform revealed significant 2–3-year periodic fluctuations in rainfall across all partitions. This periodicity aligns with the quasi-biennial oscillation (QBO) characteristics of the East Asian Summer Monsoon. The study found that all six rainstorm partitions experienced oscillation cycles of approximately 2–3 years over the past 50 years, indicating that QBO characteristics of the East Asian Summer Monsoon influence rainfall periodicity in the Taihang Mountains. This periodic pattern provides valuable reference information for future climate forecasting.
- (4)
- Influence of large-scale circulation factors: Correlation and wavelet resonance analyses revealed that rainfall in Partitions II, III, and IV is positively correlated with the Southern Oscillation Index (SOI), while rainfall in Partitions II and IV is positively correlated with the Pacific Warm Pool Region (PWR) and negatively correlated with the Pacific Decadal Oscillation (PDO). Rainfall in Partition I is negatively correlated with the Indian Ocean Dipole (IOD). These variations in large-scale circulation factors not only influence the frequency of rainstorms but are also linked to the temporal lag of rainstorm events. Incorporating these factors into future rainstorm prediction models is expected to enhance the accuracy of rainstorm forecasting.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junior, F.D.C.V.; Zachariah, M.; do Vale Silva, T.L.; dos Santos, E.P.; Coelho, C.A.; Alves, L.M.; Martins, E.S.P.R.; Köberle, A.C.; Singh, R.; Vahlberg, M.; et al. An attribution study of very intense rainfall events in Eastern Northeast Brazil. Weather Clim. Extrem. 2024, 45, 100699. [Google Scholar]
- Sene, K.; Sene, K. Flash floods. In Hydrometeorology: Forecasting and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 273–312. [Google Scholar]
- Qin, W. Study on the Anomalous Characteristics and Causes of Heavy Rainfall Climate Change in Guangxi. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2022. [Google Scholar]
- Zhu, Y.H.; Ren, L.L.; Lü, H.S.; Zhang, Y.L. Water Ecological Protection and Restoration; China Water & Power Press: Beijing, China, 2020. [Google Scholar]
- Wang, H.; Chen, B.; Shen, X. Extreme rainfall, farmer vulnerability, and labor mobility—Evidence from rural China. Sci. Total Environ. 2024, 918, 170866. [Google Scholar] [CrossRef] [PubMed]
- Armah, F.A.; Yawson, D.O.; Yengoh, G.T.; Odoi, J.O.; Afrifa, E.K. Impact of floods on livelihoods and vulnerability of natural resource dependent communities in Northern Ghana. Water 2010, 2, 120–139. [Google Scholar] [CrossRef]
- Cavalcante, L.; Walker, D.W.; Kchouk, S.; Ribeiro Neto, G.; Carvalho, T.M.N.; de Brito, M.M.; Pot, W.; Dewulf, A.; van Oel, P. From insufficient rainfall to livelihoods: Understanding the cascade of drought impacts and policy implications. EGUsphere 2024, 2024, 1–20. [Google Scholar]
- Yan, G. Study on the Impact of the Taihang Mountains on Rainstorms in North China. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2013. [Google Scholar]
- Lin, H.; Min, J.; Zhu, L.; Xu, Y.; Tao, Y. The Role of Taihang Mountain Topography in the Persistent Low Vortex Rainstorm over North China on "7.19". Meteorol. Sci. 2023, 1, 46–58. [Google Scholar]
- Li, Z.; Yang, H.; Jia, M. Factors Affecting the Spatiotemporal Variation of Precipitation in the Songhua River Basin of China. Water 2024, 16, 2. [Google Scholar] [CrossRef]
- Kömüşcü, A.Ü.; Aksoy, M. Characterizing variability of spatial patterns of annual and seasonal precipitation of Turkey and identifying the probable driving factors including teleconnection patterns. J. Water Clim. Change 2024, 15, 1392–1416. [Google Scholar] [CrossRef]
- Zeleke, T.T.; Lukwasa, A.Z.W.; Beketie, K.T.; Ayal, D.Y. Analysis of Spatio-Temporal Precipitation and Temperature Variability and Trend over Sudd-Wetland, Republic of South Sudan. Clim. Serv. 2024, 34, 100451. [Google Scholar] [CrossRef]
- Stikeleather, W.D.; Roundy, P.E. Application of a Two-Step Space-Time EOF Statistical Postprocessing Algorithm to Mitigate Sub-Seasonal 200hPa Geopotential Height Forecast Error. Weather Forecast. 2024. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, X.; Li, H.; Wu, J.; Lu, B.; Chen, D.; Xie, S.-P.; Wu, L.; Chao, Q.; Lin, C.; et al. A Machine Learning Model That Outperforms Conventional Global Subseasonal Forecast Models. Nat. Commun. 2024, 15, 6425. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Gao, H.; Fu, T.; Liu, J.; Liang, H.; Han, L. Ecosystem Services Management Based on Differentiation and Regionalization along Vertical Gradient in Taihang Mountain, China. Sustainability 2018, 10, 986. [Google Scholar] [CrossRef]
- Fu, T.; Gao, H.; Liang, H.; Liu, J. Spatio-Temporal Precipitation Changes and Their Localized Predictors in the Taihang Mountain Region, North China. Stoch. Environ. Res. Risk Assess. 2021, 35, 665–679. [Google Scholar] [CrossRef]
- Chen, X.; Zou, X.; Zhang, Q. Rainstorm Disaster Grade (GB/T 33680-2017); China Standards Press: Beijing, China, 2017. [Google Scholar]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Andrade, L.M.B.; Souza, D.O.; Araujo, P.A.A.; Silva, A.C.N.; Santos e Silva, C.M. Probability of Occurrence of Extreme Precipitation Events and Natural Disasters in the City of Natal, Brazil. Urban Clim. 2021, 35, 100753. [Google Scholar] [CrossRef]
- Springer, S.; Laio, A.; Galfi, V.M.; Lucarini, V. Unsupervised Detection of Large-Scale Weather Patterns in the Northern Hemisphere via Markov State Modelling: From Blockings to Teleconnections. Npj Clim. Atmos. Sci. 2024, 7, 105. [Google Scholar] [CrossRef]
- Blumenauer, E. Examining the Vertical Structure of Hurricane Laura (2020) Using Azimuthal-Mean Vertical Profiles and an EOF Analysis. 2023. Available online: https://hdl.handle.net/11244/337944 (accessed on 27 October 2024).
- Khoir, A.N.; Ooi, M.C.; Juneng, L.; Ramadhan, M.A.; Virgianto, R.H.; Tangang, F. Spatio-Temporal Analysis of Aerosol Optical Depth Using Rotated Empirical Orthogonal Function over the Maritime Continent from 2001 to 2020. Atmos. Environ. 2022, 290, 119356. [Google Scholar] [CrossRef]
- Chang, C.H.; Lee, H.; Do, S.K.; Du, T.L.; Markert, K.; Hossain, F.; Ahmad, S.K.; Piman, T.; Meechaiya, C.; Bui, D.D.; et al. Operational Forecasting Inundation Extents using REOF analysis (FIER) over Lower Mekong and its Economic Impact on Agriculture. Environ. Model. Softw. 2023, 162, 20230014033. [Google Scholar] [CrossRef]
- Çelebioğlu, T.; Tayanç, M. A Study on Precipitation Trends in Türkiye via Linear Regression Analysis and Non-Parametric Mann-Kendall Test. Sürdürülebilir Çevre Derg. 2024, 4, 19–28. [Google Scholar] [CrossRef]
- Gowthaman, T.; Kumar, S.; Bhattacharyya, B. Detecting air pollutants trends using Mann-Kendall tests and Sen’s slope estimates. Environ. Conserv. J. 2023, 24, 157–166. [Google Scholar]
- Mondal, C.; Uddin, M.J. Assessment of climate change induced rainfall trend and variability with non-parametric and linear approach for Sirajganj district, Bangladesh. Heliyon 2024, 10, e31151. [Google Scholar] [CrossRef]
- Magrini, L.A.; Oliveira Domingues, M.; Macau, E.E.N.; Kiss, I.Z. Extraction of Slow and Fast Dynamics of Multiple Time Scale Systems Using Wavelet Techniques. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063139. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.S.; Bajaj, M.; Prokop, L.; Berhanuz, M. Perception of Power Quality Disturbances Using Fourier, Short-Time Fourier, Continuous and Discrete Wavelet Transforms. Sci. Rep. 2024, 14, 3443. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.I.; Nunes, M.A.; Hargreaves, J.K. Adaptive wavelet domain principal component analysis for nonstationary time series. J. Comput. Graph. Stat. 2024, 33, 941–954. [Google Scholar] [CrossRef]
- Sirohiwal, A.; Berraud-Pache, R.; Neese, F.; Izsák, R.; Pantazis, D.A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B 2020, 124, 8761–8771. [Google Scholar] [CrossRef]
- Allega, L. Variaciones de la Temperatura del Mar y Sus Efectos en Las Pesquerías en Un Área de Interés Estratégico del Mar Argentino. Ph.D. Thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2022. [Google Scholar]
- Hansani, K.; Thilakarathne, E.; Koongolla, J.B.; Gunathilaka, W.; Perera, B.; Weerasingha, W.; Egodauyana, K. Contamination of Microplastics in Tropical Coral Reef Ecosystems of Sri Lanka. Mar. Pollut. Bull. 2023, 194, 115299. [Google Scholar] [CrossRef]
- Cretignier, M.; Dumusque, X.; Pepe, F. Stellar activity correction using PCA decomposition of shells. Astron. Astrophys. 2022, 659, A68. [Google Scholar] [CrossRef]
- Basnayake, B.M.L.A. Rainfall regimes in Sri Lanka. Hydrol. Sci. J. 2023, 68, 585–603. [Google Scholar] [CrossRef]
- Qu, Q.; Jian, S.; Chen, A. Xiao, C. Investigating the Dynamic Change and Driving Force of Vegetation Carbon Sink in Taihang Mountain, China. Land 2024, 13, 1348. [Google Scholar] [CrossRef]
- Cao, D. The Loess Highland in a Trading Network (1300–1050 BC). Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2014. [Google Scholar]
- Wei, F. Modern Climate Statistical Diagnosis and Forecasting Techniques; Meteorological Press: Beijing, China, 2022.
- Tang, Q.; Li, Y.; Hu, M.; Zhang, J.; Li, H.; Fu, Z.; Huang, S.; Li, Y. Analysis of the Spatiotemporal Evolution Characteristics of Rainstorms in the Taihang Mountains from 1973 to 2022. J. Xinyang Norm. Univ. (Nat. Sci. Ed.) 2024, 37, 524–531. [Google Scholar]
- Han, J.; Fang, S.; Wang, X.; Zhuo, W.; Yu, Y.; Peng, X.; Zhang, Y. The Impact of Intra-Annual Temperature Fluctuations on Agricultural Temperature Extreme Events and Attribution Analysis in Mainland China. Sci. Total Environ. 2024, 949, 174904. [Google Scholar] [CrossRef]
- Wang, T.; Song, C.; Chen, X. Clarifying the relationship between annual maximum daily precipitation and climate variables by wavelet analysis. Atmos. Res. 2023, 295, 106981. [Google Scholar] [CrossRef]
- Wang, F.; Lai, H.; Li, Y.; Feng, K.; Tian, Q.; Zhang, Z.; Di, D.; Yang, H. Terrestrial Ecological Drought Dynamics and Its Response to Atmospheric Circulation Factors in the North China Plain. Atmos. Res. 2023, 294, 106944. [Google Scholar] [CrossRef]
- Ling, M.; Guo, X.; Zhang, Y.; Yu, L.; Xi, Q. Drought Evolution in the Haihe River Basin During 1960–2020 and the Correlation with Global Warming, Sunspots, and Atmospheric Circulation Indices. J. Water Clim. Change 2023, 14, 369–386. [Google Scholar] [CrossRef]
- Li, T.; Lv, A.; Zhang, W.; Liu, Y. Spatiotemporal Characteristics of Watershed Warming and Wetting: The Response to Atmospheric Circulation in Arid Areas of Northwest China. Atmosphere 2023, 14, 151. [Google Scholar] [CrossRef]
- Polanco-Martínez, J.M.; Fernández-Macho, J.; Medina-Elizalde, M. Dynamic wavelet correlation analysis for multivariate climate time series. Sci. Rep. 2020, 10, 21277. [Google Scholar] [CrossRef]
- Yi, P.; Chen, G.; Tang, X. Present and future climate of the Yangtze River Delta region: Analysis of the CMIP6 HighResMIP simulations. Theor. Appl. Climatol. 2024, 155, 8909–8921. [Google Scholar] [CrossRef]
- Ban, J.; Lu, K.; Liu, Y.; Zang, J.; Zhou, Z.; Zhang, C.; Liu, Z.; Huang, J.; Chen, Y.; Gao, X.; et al. Projecting Future Excess Deaths Associated with Extreme Precipitation Events in China Under Changing Climate: An Integrated Modelling Study. Lancet Planet. Health 2024, 8, e723–e733. [Google Scholar] [CrossRef]
- García Bu Bucogen, G. Estimación del Riesgo Asociado a la Ocurrencia de Inundaciones en La Cuenca Hidrográfica Inferior del río Negro (Argentina). Ph.D. Thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2023. [Google Scholar]
- Shen, L.; Wen, J.; Zhang, Y.; Ullah, S.; Cheng, J.; Meng, X. Changes in Population Exposure to Extreme Precipitation in the Yangtze River Delta, China. Clim. Serv. 2022, 27, 100317. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Zhong, G.; Lin, H.; Zho, Z. Modified Mann-Kendall Trend Test for Hydrological Time Series Under the Scaling Hypothesis and Its Application. Hydrol. Sci. J. 2020, 65, 2419–2438. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Qiao, Y. Response of Seasonal Droughts and Floods in Shanxi to ENSO Events over the Past 56 Years. J. Catastrophol. 2015, 30, 85–90. [Google Scholar]
- adhi Rahmawan, G. Tendency for climate-variability-driven rise in Sea level detected in the Altimeter Era in The Marine Waters of Aceh, Indonesia. Int. J. Remote Sens. Earth Sci. (IJReSES) 2020, 16, 165–178. [Google Scholar] [CrossRef]
- Tan, L.; Cai, Y.; An, Z.; Cheng, H.; Shen, C.-C.; Gao, Y.; Edwards, R.L. Decreasing Monsoon Precipitation in Southwest China During the Last 240 Years Associated with the Warming of Tropical Ocean. Clim. Dyn. 2017, 48, 1769–1778. [Google Scholar] [CrossRef]
- Endo, H.; Kitoh, A.; Mizuta, R.; Ose, T. Different Future Changes Between Early and Late Summer Monsoon Precipitation in East Asia. J. Meteorol. Soc. Japan. Ser. II 2021, 99, 1501–1524. [Google Scholar] [CrossRef]
- Gu, W.; Wang, L.; Chen, L. The contrasting interannual variation and mechanism of the first rainy season precipitation before and after the South China Sea summer monsoon onset. Atmos. Res. 2024, 306, 107455. [Google Scholar] [CrossRef]
- Gao, T.; Cao, F.; Dan, L.; Li, M.; Gong, X.; Zhan, J. The Precipitation Variability of the Wet and Dry Season at the Interannual and Interdecadal Scales Over Eastern China (1901–2016): The Impacts of the Pacific Ocean. Hydrol. Earth Syst. Sci. 2021, 25, 1467–1481. [Google Scholar] [CrossRef]
- Pan, X.; Wang, W.; Shao, Q.; Zhang, Y.; Liu, H.; Chen, R. Compound Drought and Heat Waves Variation and Association with SST Modes Across China. Sci. Total Environ. 2024, 907, 167934. [Google Scholar] [CrossRef]
- Wu, J.; Fan, H.; Lin, S.; Zhong, W.; He, S.; Keenlyside, N.; Yang, S. Boosting effect of strong western pole of the Indian Ocean Dipole on the decay of El Niño events. Npj Clim. Atmos. Sci. 2024, 7, 6. [Google Scholar] [CrossRef]
- Debnath, S.; Sinha, M. Rotated empirical orthogonal function analysis for spatio-temporal data analysis. J. Mech. Contin. Math. Sci. 2022, 17, 21–31. [Google Scholar] [CrossRef]
- Shi, P.; Sun, S.; Wang, M.; Li, N.; Wang, J.A.; Jin, Y.; Gu, X.; Yin, W. Climate Change Zoning in China (1961–2010). Sci. China Earth Sci. 2014, 44, 2294–2306. [Google Scholar]
Station ID | Station Name | Lat/N | Lon/E | Elevation/m |
---|---|---|---|---|
53588 | Wutai Mountain | 38.95 | 113.52 | 1302.12 |
53593 | Yu County | 39.83 | 114.57 | 1407.95 |
53594 | Lingqiu | 39.45 | 114.18 | 1363.51 |
53687 | Pingding | 37.78 | 113.63 | 1176.18 |
53698 | Shijiazhuang | 38.07 | 114.35 | 1213.22 |
53798 | Xingtai | 37.18 | 114.37 | 1115.86 |
53868 | Linfen | 36.07 | 111.5 | 971.92 |
53877 | Anze | 36.17 | 112.25 | 988.86 |
53882 | Changzhi | 36.07 | 113.03 | 980.39 |
53884 | Xiangyuan | 36.52 | 113.03 | 1029.07 |
53898 | Anyang | 36.05 | 114.13 | 987.8 |
53968 | Yuanqu | 35.28 | 111.67 | 884.08 |
Serial Number | EOF | REOF | ||
---|---|---|---|---|
Variance Contribution% | Cumulative Variance Contribution% | Variance Contribution% | Cumulative Variance Contribution% | |
1 | 41.63 | 41.63 | 18.01 | 18.01 |
2 | 14.27 | 55.90 | 13.65 | 31.66 |
3 | 11.64 | 67.54 | 13.60 | 45.26 |
4 | 9.12 | 76.67 | 11.14 | 56.40 |
5 | 6.03 | 82.69 | 11.08 | 67.49 |
6 | 4.77 | 87.47 | 9.58 | 77.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Fu, Z.; Ma, Y.; Hu, M.; Zhang, W.; Xu, J.; Li, Y. Partitioning of Heavy Rainfall in the Taihang Mountains and Its Response to Atmospheric Circulation Factors. Water 2024, 16, 3134. https://doi.org/10.3390/w16213134
Tang Q, Fu Z, Ma Y, Hu M, Zhang W, Xu J, Li Y. Partitioning of Heavy Rainfall in the Taihang Mountains and Its Response to Atmospheric Circulation Factors. Water. 2024; 16(21):3134. https://doi.org/10.3390/w16213134
Chicago/Turabian StyleTang, Qianyu, Zhiyuan Fu, Yike Ma, Mengran Hu, Wei Zhang, Jiaxin Xu, and Yuanhang Li. 2024. "Partitioning of Heavy Rainfall in the Taihang Mountains and Its Response to Atmospheric Circulation Factors" Water 16, no. 21: 3134. https://doi.org/10.3390/w16213134
APA StyleTang, Q., Fu, Z., Ma, Y., Hu, M., Zhang, W., Xu, J., & Li, Y. (2024). Partitioning of Heavy Rainfall in the Taihang Mountains and Its Response to Atmospheric Circulation Factors. Water, 16(21), 3134. https://doi.org/10.3390/w16213134