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Abstract: The spatial and temporal distribution of heavy rainfall across the Taihang Mountains ex-
hibits significant variation. Due to the region’s unstable geological conditions, frequent heavy rainfall
events can lead to secondary disasters such as landslides, debris flows, and floods, thus intensifying
both the frequency and severity of extreme events. Understanding the spatiotemporal evolution
of heavy rainfall and its response to atmospheric circulation patterns is crucial for effective disas-
ter prevention and mitigation. This study utilized daily precipitation data from 13 meteorological
stations in the Taihang Mountains spanning from 1973 to 2022, employing Rotated Empirical Orthog-
onal Function (REOF), the Mann–Kendall Trend Test, and Continuous Wavelet Transform (CWT)
to examine the spatiotemporal characteristics of heavy rainfall and its relationship with large-scale
atmospheric circulation patterns. The results reveal that: (1) Heavy rainfall in the Taihang Mountains
can be categorized into six distinct regions, each demonstrating significant spatial heterogeneity.
Region I, situated in the transition zone between the plains and mountains, experiences increased
rainfall due to orographic lifting, while Region IV, located in the southeast, receives the highest
rainfall, driven primarily by monsoon lifting. Conversely, Regions III and VI receive comparatively
less precipitation, with Region VI, located in the northern hilly area, experiencing the lowest rainfall.
(2) Over the past 50 years, all regions have experienced an upward trend in heavy rainfall, with
Region II showing a notable increase at a rate of 14.4 mm per decade, a trend closely linked to
the intensification of the hydrological cycle driven by global warming. (3) The CWT results reveal
significant 2–3-year periodic fluctuations in rainfall across all regions, aligning with the quasi-biennial
oscillation (QBO) characteristic of the East Asian summer monsoon, offering valuable insights for
future climate predictions. (4) Correlation and wavelet coherence analyses indicate that rainfall in
Regions II, III, and IV is positively correlated with the Southern Oscillation Index (SOI) and the Pacific
Warm Pool (PWP), while showing a negative correlation with the Pacific Decadal Oscillation (PDO).
Rainfall in Region I is negatively correlated with the Indian Ocean Dipole (IOD). These climatic
factors exhibit a lag effect on rainfall patterns. Incorporating these climatic factors into future rainfall
prediction models is expected to enhance forecast accuracy. This study integrates REOF analysis with
large-scale circulation patterns to uncover the complex spatiotemporal relationships between heavy
rainfall and climatic drivers, offering new insights into improving heavy rainfall event forecasting in
the Taihang Mountains. The complex topography of the Taihang Mountains, combined with unstable
geological conditions, leads to uneven spatial distribution of heavy rainfall, which can easily trigger
secondary disasters such as landslides, debris flows, and floods. This, in turn, further increases the
frequency and severity of extreme events.

Keywords: Taihang Mountains; spatiotemporal distribution; atmospheric circulation factors; wavelet
transform
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1. Introduction

Heavy rainfall ranks among the most severe and frequent meteorological disasters [1].
It can directly cause flash floods and trigger secondary events such as landslides and debris
flows. Flash floods often lead to rising river levels, damage to hydraulic infrastructure,
flooding of agricultural land, disruptions to telecommunications, and even loss of life [2].
In recent years, driven by China’s rapid economic growth, the damage from natural
meteorological disasters has significantly increased. In the 1990s, the average annual direct
economic loss due to heavy rainfall was approximately 186.7 billion RMB, but by the early
21st century, this figure had risen to over 400 billion RMB per year [3]. Consequently,
studying heavy rainfall is critical for protecting lives and property.

Studying heavy rainfall in the Taihang Mountains is particularly important. As a natu-
ral boundary between China’s second and third topographic steps, the Taihang Mountains
feature complex topography with notable elevation differences between plains, mountains,
and plateaus. These geographical characteristics significantly influence air movement,
resulting in uneven spatial distribution of heavy rainfall. Additionally, the region’s unsta-
ble geological conditions make it particularly susceptible to secondary disasters such as
landslides, debris flows, and floods, exacerbating the frequency and severity of extreme
events in areas regularly affected by heavy rainfall. Furthermore, the dense population
and rapid socioeconomic development in the Taihang Mountains have led to economic
losses amounting to billions of RMB in recent years due to heavy rainfall [4,5], significantly
affecting societal development and livelihoods [6,7]. Over recent years, several scholars
have employed numerical simulations to study heavy rainfall events in this region. For
instance, Hou Ruiqin et al. [8] used the MM5 model to simulate the heavy rainfall event
in south-central Hebei on 5 July 2007, discussing the influence of the Taihang Mountains
on rainfall patterns in Hebei. Yan Guanhua et al. [9] conducted sensitivity experiments
on the Taihang Mountains’ terrain, simulating how changes in mountain height affected
three typical heavy rainfall events in North China. Their results concluded that the terrain
differently impacts various types of rainfall processes. Lin Huimin et al. [10] analyzed the
extraordinary rainfall event in North China on 19 July 2016, using numerical simulations
and concluded that both circulation and terrain had a significant influence on the event.
They noted that increased terrain height enhances the blocking and uplifting of air currents,
thereby intensifying precipitation. Despite these advances, only a few researchers have
employed the Mann–Kendall mutation test, wavelet analysis, and Empirical Orthogonal
Function (EOF) method to study the spatiotemporal evolution of heavy rainfall in the
Taihang Mountains [11–13]. While EOF effectively illustrates the structural variations in
climate variable fields across large regions, it struggles to accurately capture the character-
istic distributions of different geographic areas and is susceptible to sampling errors [14].
In contrast, the Rotated Empirical Orthogonal Function (REOF) method offers a more
precise representation of characteristic distributions across different geographic regions.
REOF simplifies the spatial structure, clearly depicts regional changes, reveals correla-
tions between regions, and reduces sampling errors [15]. The complexity of the Taihang
Mountains’ topography and circulation underscores the necessity of employing the REOF
method for regional partitioning studies of heavy rainfall. This study aims to achieve
the following objectives: (1) To apply the REOF method to investigate the spatiotemporal
variation of heavy rainfall in the region. (2) To use Continuous Wavelet Transform (CWT) to
explore the periodic characteristics of heavy rainfall in each subregion. (3) To apply Pearson
correlation analysis, Cross Wavelet Transform (XWT), and Wavelet Coherence Transform
(WTC) to examine the response of heavy rainfall subregions to atmospheric circulation
factors, ultimately providing a scientific basis for disaster prevention and mitigation efforts
in the region. Combining REOF-based partitioning with Continuous Wavelet Transform
enables a more detailed study of the periodic characteristics of heavy rainfall in each region,
facilitating the development of more targeted disaster prevention and mitigation strategies.
In regions with pronounced rainfall periodicity, drainage systems and emergency supplies
can be pre-deployed to mitigate secondary disasters caused by heavy rainfall. Utilizing
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REOF-based partitioning of heavy rainfall, Pearson correlation analysis, Cross Wavelet
Transform (XWT), and Wavelet Coherence Transform (WTC) were applied to analyze the
response of each subregion to atmospheric circulation factors. Future research should
incorporate circulation factors into heavy rainfall forecasting models to improve forecast
accuracy, thereby offering stronger scientific support for disaster prevention and mitigation
efforts in the Taihang Mountains.

2. Materials and Methods
2.1. Study Area

The Taihang Mountains (34◦34′–40◦43′ N; 110◦14′–116◦34′ E) have an elevation range
of 6 to 3074 m, with the highest peak situated in Wutai County, Shanxi Province. Acting as
the natural boundary between China’s second and third topographic steps, the mountains
are flanked by the North China Plain to the east and the Loess Plateau to the west. The
region encompasses diverse and complex terrain, including plains, mountains, hills, basins,
and plateaus (Figure 1). The area is characterized by well-developed river systems, with nu-
merous rivers (Figure 1) belonging to either the Haihe or Yellow River systems [16]. Notable
rivers such as the Yongding, Juma, Tang, Dasha, Hutuo, Mian, Qingzhang, Zhuozhang,
Anyang, and Qi Rivers are part of the Haihe River system, while the Dan and Qin Rivers
belong to the Yellow River system.
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Figure 1. Schematic diagram of the study area.

The region experiences a temperate continental monsoon climate with distinct sea-
sonal variations. The multi-year average temperature is approximately 10 ◦C, while the
average annual precipitation is 570 mm [17]. Precipitation is mainly concentrated in July
and August, accounting for 60% to 70% of the annual total. These months also record
the highest frequency of heavy rainfall events, constituting roughly 77.4% of the yearly
heavy rainfall occurrences. The unique geographical location of the Taihang Mountains
significantly impacts the local climate. The eastern side functions as a transition zone
between the North China Plain and the mountains, where the summer southeast monsoon
is uplifted by the terrain, causing orographic rainfall and resulting in higher precipitation.
In contrast, the western region, located on the leeward side of the southeast monsoon,
receives comparatively less rainfall [18]. The unique geographical features of the Taihang
Mountains greatly shape the local climate. The eastern flank, acting as a transition from the
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North China Plain to the mountains, facilitates the uplift of the summer southeast monsoon,
resulting in orographic rainfall and increased precipitation. Conversely, the western side,
positioned on the leeward side of the southeast monsoon, experiences significantly less
rainfall [18].

2.2. Data

The precipitation data for this study were sourced from the daily dataset of the
Surface Meteorological Data Database, accessible through the China Meteorological Data
Sharing Service Network (http://data.cma.cn, accessed on July 2023). In accordance
with the classification standards for rainstorm disasters [19], rainfall events with a 24 h
precipitation of ≥50 mm are classified as “rainstorms”. A statistical analysis was performed
on rainstorm events recorded at 13 meteorological stations in the Taihang Mountains region,
all of which have complete meteorological records from 1973 to 2022 (Figure 1 shows the
station locations, and Table 1 presents the station information). The circulation indices
utilized in this study include the North Atlantic Oscillation Index (NAO), Pacific Decadal
Oscillation Index (PDO), Arctic Oscillation Index (AO), Southern Oscillation Index (SOI),
Western Pacific Index (WP), North Pacific Index (NP), Indian Ocean Dipole Index (IOD),
and Pacific Warm Pool Index (PWR). These data were obtained from the Earth System
Research Laboratory (https://psl.noaa.gov/data/climateindices/list/, accessed on July
2023), with complete records of the selected circulation indices for the period from 1973 to
2022, ensuring no missing values.

Table 1. Meteorological station data for the Taihang Mountains region.

Station ID Station Name Lat/N Lon/E Elevation/m

53588 Wutai Mountain 38.95 113.52 1302.12
53593 Yu County 39.83 114.57 1407.95
53594 Lingqiu 39.45 114.18 1363.51
53687 Pingding 37.78 113.63 1176.18
53698 Shijiazhuang 38.07 114.35 1213.22
53798 Xingtai 37.18 114.37 1115.86
53868 Linfen 36.07 111.5 971.92
53877 Anze 36.17 112.25 988.86
53882 Changzhi 36.07 113.03 980.39
53884 Xiangyuan 36.52 113.03 1029.07
53898 Anyang 36.05 114.13 987.8
53968 Yuanqu 35.28 111.67 884.08

2.3. Analysis Methods
2.3.1. Rotated Empirical Orthogonal Function (REOF)

REOF builds upon EOF decomposition by selecting eigenvectors that meet the cu-
mulative variance contribution threshold and using them as new loading eigenvectors.
These eigenvectors are then subjected to maximum variance rotation, which concentrates
the high loading eigenvectors into fewer variables. This process maps the information
features of the original climate vector field onto the spatial dimensions represented by
the loading field. Notably, REOF applies maximum orthogonal variance rotation to the
principal components, significantly enhancing the spatial partitioning capability of the
climate vector field. This is especially relevant in regions with complex terrain, such as
the Taihang Mountains, where it substantially improves the accuracy of rainfall spatial
distribution. Given the considerable terrain variations in the Taihang Mountains, where
the uplift and barrier effects of the topography significantly influence the spatiotemporal
distribution of rainfall, REOF effectively captures the heterogeneity in rainfall caused by
these local features. This provides a more detailed representation of the spatial structure
of the climate field [20,21]. This method reduces noise in the decomposition of climate
fields and improves the understanding of regional climate variability. It allows for a more
detailed depiction of spatiotemporal rainfall characteristics across different geographical

http://data.cma.cn
https://psl.noaa.gov/data/climateindices/list/
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regions [22]. For detailed calculation methods and the theoretical foundations of REOF,
refer to [23].

2.3.2. Mann–Kendall Trend Test

The Mann–Kendall trend test is a non-parametric statistical method commonly used
to detect trend changes in time series data [24]. This method is based on rank comparisons
and does not require specific distribution assumptions, making it suitable for non-normally
distributed data [25]. The M–K trend test determines whether a significant trend exists
in the data series by calculating the test statistic S and variance Var(s), followed by a
significance test using the standardized test statistic Z.

For a given time series, Xt(t = 1, 2, 3 . . . , n), the calculation formula for the test statistic
S is:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(Xj − Xk) (1)

where Xj and Xk are the corresponding years of the heavy rainfall time series, and sgn is
the sign function. The formula for the variance Var(S) calculation is:

Var(S) =
n(n − 1)(2n + 5)

18
(2)

where Var(S) represents the variance of the test statistic, and n denotes the sample size
of the heavy rainfall time series. To assess the significance of the test statistic S, the
standardized test statistic Z is further calculated, with the formula given as:

Z =


S−1√
Var(S)

, S > 0

0 , S = 0
S+1√
Var(S)

, S < 0
(3)

When the test statistic Z is less than 0, it indicates a decreasing trend in heavy rainfall;
when the MK test statistic Z is greater than 0, it indicates an increasing trend. Furthermore,
if the absolute value of the test statistic Z exceeds 1.96, the trend is considered significant
(p < 0.05) [26].

2.3.3. Wavelet Analysis

Wavelet analysis can analyze instantaneous and time-varying signals in a time series
while simultaneously localizing signals in both the time and frequency domains, enabling
the extraction of useful information from the signals. Using dilation and translation,
wavelet analysis allows for multi-scale analysis of functions or frequency signals [27]. This
study employs the Continuous Wavelet Transform (CWT), which is used to analyze the
characteristics of signals at different scales and temporal positions. For the original time
series X(t), its Continuous Wavelet Transform is defined as:

WX(T, S) =
∫ −∞

+∞
x(t) · ψ∗

T,S(t)dt (4)

In Equation (1), ψ(t) represents the wavelet function, and ψ∗
T,S(t) is the complex

conjugate of the wavelet function. The Continuous Wavelet Transform reflects the variance
of the original time series within a certain time–frequency range, where larger fluctuations
indicate greater variability in the time series [28].

Cross Wavelet Transform (XWT) is used to analyze the frequency–domain correlation
between two time series and can highlight the common high-energy regions between the
two series [29]. For two original time series X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn}
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Continuous Wavelet Transform is used to compute WX
n and WY

n , and the cross wavelet
power WXY

n (s) is calculated as follows:

WX(T, S) =
∫ −∞

+∞
x(t) · ψ∗

T,S(t)dt (5)

In Equation (5), WY
n (s)∗ represents the complex conjugate of WY

n (s), and S the fun-
damental deviation of the wavelet phase angle. A larger cross wavelet power indicates a
stronger resonance between the two time series, showing a higher frequency correlation at
that particular time scale.

Wavelet coherence can reflect the covariance strength between two time series in
the time–frequency domain, and it has strong coverage for correlations in low-energy re-
gions [30]. The wavelet coherence spectrum for two original time series X = {x1, x2, · · · , xn}
Y = {y1, y2, · · · , yn} is defined as:

R2
n(s) =

∣∣S(s−1WXY
n (s))

∣∣2
S(s−1|WX

n (s)|2)S(s−1|WY
n (s)|

2
)

(6)

In Equation (6), S represents the smoothing operator, and S−1 denotes the inverse
smoothing transform. WXY

n (s) is the cross wavelet power. The wavelet coherence value R2

ranges between 0 and 1, and can be regarded as the local correlation coefficient at a given
time–frequency. A higher value indicates a stronger frequency correlation between the two
time series at that specific time scale.

2.3.4. Correlation Analysis Method

Pearson correlation analysis is used to examine the strength and direction of the linear
relationship between two sets of variables [31]. A correlation coefficient close to 1 indicates
a strong positive correlation between the variables, while a value close to −1 indicates a
strong negative correlation. The calculations were performed using the “corr.test()” function
from the psych package built into R version 4.2.3. The visualization of the correlation matrix
was performed using the corrplot package [32].

3. Results
3.1. Spatial Variation Characteristics of Heavy Rainfall in the Taihang Mountains Based on
REOF Partitioning

The annual heavy rainfall data from 13 stations, spanning the past 50 years, were
first normalized and then subjected to EOF decomposition. Subsequently, the principal
components underwent maximum orthogonal variance rotation to derive the REOF de-
composition results [33]. The EOF and REOF decomposition results are shown in Table 2.
Typically, an EOF cumulative variance contribution rate of 85% is used as the criterion for
determining the number of REOF eigenvectors [34]. Accordingly, the first six eigenmodes
were selected for analysis. ArcGIS (Version 10.8). was utilized to plot the REOF loading
vector distribution maps for these six modes (Figure 2). Based on the high-value areas of
the loading vectors, a schematic diagram illustrating the heavy rainfall partitions in the
Taihang Mountains was produced (Figure 3).
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Table 2. Variance and cumulative contributions of EOF and REOF decomposition.

Serial Number

EOF REOF

Variance
Contribution%

Cumulative Variance
Contribution%

Variance
Contribution%

Cumulative Variance
Contribution%

1 41.63 41.63 18.01 18.01
2 14.27 55.90 13.65 31.66
3 11.64 67.54 13.60 45.26
4 9.12 76.67 11.14 56.40
5 6.03 82.69 11.08 67.49
6 4.77 87.47 9.58 77.07
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As illustrated in Figure 3, Region I is situated in the central Taihang Mountains, within
the transition zone between the plains and the mountains. It predominantly covers the
Pingding and Xingtai areas, comprising 17% of the total area of the Taihang Mountains.
This region experiences a warm temperate sub-humid monsoon climate, characterized
by distinct seasons and concentrated rainfall. The windward slope terrain significantly
contributes to the higher annual heavy rainfall in this area. Region II is located on the
leeward slope in the southern Taihang Mountains, encompassing the Linfen, Anze, and
Xiangyuan areas, and covers 26% of the total area. This region experiences relatively less
heavy rainfall. Region III is positioned in the northwestern Taihang Mountains, primarily
covering the Wutai Mountain, Lingqiu, and Shijiazhuang areas, and spans 26% of the total
area. This region lies in the transition zone between a temperate monsoon climate and a
temperate continental climate, resulting in relatively low annual heavy rainfall. Region IV
is located in the southeastern Taihang Mountains, within the transition zone from the plains
to the hilly terrain, primarily including the Changzhi and Anyang areas, and covering
14% of the total area. This region experiences a warm temperate continental monsoon
climate [35], where the summer monsoon is uplifted by the terrain, often leading to heavy
rainfall. Consequently, this region records the highest annual heavy rainfall [36]. Region
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V is situated in the southern Taihang Mountains, within the Jin-South Guanzhong Basin,
covering the Yuanqu and Yangcheng areas, and accounting for 8% of the total area. The
funnel-shaped terrain and the narrowing landscape force the convergence and uplift of
the airflow, which easily triggers strong rainfall events [37]. Region VI is positioned in
the northernmost Taihang Mountains, within the hilly region of North China, primarily
encompassing Yu County, and covering 17% of the total area. This region experiences a
temperate continental monsoon climate and receives the least annual heavy rainfall.
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3.2. Interannual Variation Trends of Heavy Rainfall in the Six Partitions of the Taihang Mountains

This study employed linear regression analysis and the Mann–Kendall (MK) trend
test to evaluate the interannual variation trends of heavy rainfall across six partitions in the
Taihang Mountains (Figure 4). The results indicate that, although heavy rainfall fluctuated
significantly in each partition during the study period, the overall trend shows an increase
(R2 > 0, Z > 0). In Partition I, heavy rainfall peaked at 307.4 mm in 2016, with an average
increase of approximately 4 mm per decade. In Partition II, heavy rainfall peaked at 201 mm
in 2013, with an average increase of 14.4 mm per decade. This upward trend passed the
95% significance test (p < 0.05), indicating statistical significance. In Partition III, heavy
rainfall reached its highest value of 310.5 mm in 1996, with an average increase of around
4.7 mm per decade. In Partition IV, heavy rainfall peaked at 726 mm in 2021, with an
average increase of 15.1 mm per decade. This extreme value greatly exceeded those in other
partitions, suggesting that the funnel-shaped topography in this region is more sensitive to
short-duration rainfall as precipitation intensity increases [38]. In Partition V, heavy rainfall
peaked at 387.7 mm in 1982, with an average increase of 8.7 mm per decade.

In Partition VI, heavy rainfall peaked at 66.1 mm in 1991, with an average increase of
0.5 mm per decade. Overall, the interannual variation trends in heavy rainfall across all
partitions exhibit an upward tendency, reflecting the influence of local climate change on
the characteristics of heavy rainfall.
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Figure 4. Interannual variation in heavy rainfall in six partitions of the Taihang Mountains from 1973
to 2022.

3.3. Temporal Variation Characteristics of Heavy Rainfall in the Taihang Mountains Based on
REOF Partitioning

To investigate the temporal variation characteristics of heavy rainfall in the six par-
titions of the Taihang Mountains, this study applied the Continuous Wavelet Transform
power spectrum to analyze heavy rainfall conditions across these partitions from 1973
to 2022 (Figure 5). In Region I, clear oscillations are observed with periods of 2–4 years,
3–5 years, and 6–7 years [see Figure 5a]. In Region II, significant oscillations occur with
periods of 2–3 years, 3–5 years, and 5–9 years [see Figure 5b]. In Region III, a prominent
oscillation period of 2.5–5 years is evident [see Figure 5c]. In Region IV, a significant
oscillation period of 2.5–3 years is apparent [see Figure 5d]. In Region V, heavy rainfall
demonstrates an oscillation period of 4.5–5.5 years [see Figure 5e]. In Region VI, heavy
rainfall shows a periodic variation of 2.5–3.5 years [see Figure 5f]. The Continuous Wavelet
Transform results indicate that all six heavy rainfall partitions over the past 50 years exhibit
oscillation periods of approximately 2–3 years. According to related studies, summer
precipitation in regions such as South China, North China, and the Yangtze River Basin also
exhibit periodic scales of 2–3 years. This oscillation, known as the quasi-biennial oscillation
(QBO) [39], suggests that the QBO characteristics of the East Asian summer monsoon may
influence the periodicity of heavy rainfall in the Taihang Mountains region.
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3.4. Relationship Between Heavy Rainfall in Each Partition and Large-Scale Circulation

Based on relevant studies surrounding the research area [40–43], eight circulation
factors—NAO, PDO, AO, SOI, WP, NP, IOD, and PWR—were selected to analyze their
influence on heavy rainfall in each partition of the Taihang Mountains. As shown in
Figure 6, the correlation coefficients between heavy rainfall in Region I and SOI and IOD
passed the 90% significance test. Region I exhibits a positive correlation with SOI (p < 0.1)
and a negative correlation with IOD (p < 0.1). The correlation coefficients between heavy
rainfall in Region II and PDO and PWR passed the 90% significance test. Region II shows
a negative correlation with PDO (p < 0.1) and a positive correlation with PWR (p < 0.1).
The correlation coefficient between heavy rainfall in Region III and SOI passed the 95%
significance test, showing a positive correlation (p < 0.05). The correlation coefficient
between heavy rainfall in Region IV and PDO passed the 90% significance test, while the
coefficients with SOI and PWR passed the 95% significance test. Region IV is negatively
correlated with PDO (p < 0.1) and positively correlated with SOI and PWR (p < 0.05).
Regions V and VI did not show any significant correlations with the circulation factors.

Building on the correlation analysis (Figure 6), Cross Wavelet Transform (XWT) and
Wavelet Coherence (WTC) analyses were performed to further investigate the relationships
between significant circulation factors and the identified regions (Figures 7 and 8) [44].
Significant resonance periods were identified between heavy rainfall in Region I and the
circulation factors SOI and IOD in both high- and low-energy regions. In the high-energy
region, resonance periods of 3–4 years and 3–5 years are observed between heavy rainfall in
Region I and SOI [see Figure 7a]. In the low-energy region, resonance periods of 2–3 years,
3.5–5 years, and 3–6 years are present [see Figure 8a]. The phase relationship reveals that
changes in SOI lead changes in heavy rainfall in Region I, and they are in positive phase
alignment. In the high-energy region, resonance periods of 3–5 years and 3.5–4 years are
detected between heavy rainfall in Region I and IOD [see Figure 7b]. In the low-energy
region, resonance periods of 12–16 years and 2–3 years are evident [see Figure 8b]. The
phase relationship indicates that changes in the IOD index lag behind changes in heavy
rainfall in Region I, and they exhibit negative phase alignment.
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Figure 7. Cross wavelet analysis diagram of Taihang Mountain partitions and circulation factors.
Note: The black solid-lined areas indicate regions passing the 95% significance test. Higher values
represent stronger correlations between the two. Rightward arrows indicate a positive correlation
between partitioned heavy rainfall and circulation factors, leftward arrows indicate a negative
correlation, and upward or downward arrows indicate whether heavy rainfall lags or leads the
circulation factor by 1/4 phase.
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In Region II, resonance periods between heavy rainfall and the PWR circulation factor
are detected in both high- and low-energy regions. In the high-energy region, there is a
resonance period of 1–4 years between heavy rainfall and PWR [see Figure 7c], while a
shorter oscillation period of 2–3 years is observed in the low-energy region [see Figure 8c].
The phase relationship indicates that PWR changes lead heavy rainfall in Region II, with the
two remaining in positive phase alignment. Additionally, a resonance period of 8–10 years
is identified between heavy rainfall and the PDO in the high-energy region [see Figure 7d],
where PDO changes precede heavy rainfall by approximately 1/4 phase. However, no
resonance period is observed between heavy rainfall and PDO in the low-energy region
[see Figure 8d].

In Region III, significant resonance periods are also observed between heavy rainfall
and the SOI circulation factor. In the high-energy region, the resonance period with SOI
is 2–5 years [see Figure 7e]. In the low-energy region, the resonance periods range from
3–5 years and 5–8 years [see Figure 8e]. The phase relationship shows that SOI changes
precede heavy rainfall in Region III, with the two in positive phase alignment.

In Region IV, significant resonance periods are detected between heavy rainfall and
the PDO and SOI circulation factors in the low-energy region, while no resonance periods
are observed in the high-energy region [Figure 7f,g]. In the low-energy region, a resonance
period of 12–16 years is observed between heavy rainfall in Region IV and PDO [Figure 8f].
The phase relationship indicates that PDO changes lag behind heavy rainfall changes
in Region IV, with a predominantly negative phase alignment. Resonance periods of
10–14 years and 4–7 years are observed in the low-energy region between heavy rainfall in
Region IV and SOI [Figure 8g]. The phase relationship shows that SOI changes precede
heavy rainfall changes in Region IV, with a predominantly positive phase alignment.
Significant resonance periods are detected between heavy rainfall in Region IV and the
PWR circulation factor in both high- and low-energy regions. In the high-energy region,
a resonance period of 2–3 years is identified [Figure 7h], while in the low-energy region,
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resonance periods of 1–2 years, 2–3 years, and 4–8 years are present [Figure 8h]. The phase
relationship indicates that PWR changes precede heavy rainfall changes in Region IV, with
a predominantly positive phase alignment.

4. Discussion

Using the MK trend test and linear fitting analysis, this study reveals that heavy
rainfall in all regions of the Taihang Mountains exhibited an increasing trend from 1973 to
2022. This trend is likely closely related to global warming, which accelerates the water
cycle. In particular, with increased monsoon intensity, both the frequency and intensity of
precipitation in eastern and southern China have risen significantly [45,46]. Additionally,
periodic fluctuations of approximately 2–3 years were observed in heavy rainfall across
different regions during certain periods. This short-term periodicity was reflected in
the linear fitting analysis and matched the periodicity derived from Continuous Wavelet
Transform (CWT) results. The CWT results indicated that, under the influence of the
quasi-biennial oscillation (QBO), heavy rainfall in each region exhibited periodic variations
on a 2–3 year timescale. This implies that, besides the long-term increasing trend, regional
rainfall also experiences regular short-term oscillations. These findings suggest that the
likelihood of future heavy rainfall events in the Taihang Mountains is likely to increase,
consistent with the results reported by Jie Ban et al. Therefore, it is imperative to enhance
storm warning systems and strengthen flood control infrastructure [47] to mitigate the
potential risks posed by frequent heavy rainfall. Due to the fluctuations in the time series,
the M–K trend test employed in this study may be influenced by the scaling hypothesis
to some extent [48]. Zichen Hu et al. refined the M–K trend test based on the scaling
hypothesis [49], leading to more reliable outcomes. Future studies may consider adopting
the improved M–K method to derive more robust conclusions.

Of the six heavy rainfall regions in the Taihang Mountains, regions I, III, and IV are
situated in the transition zone between the North China Plain and the eastern mountainous
and hilly areas of the Taihang Mountains. Heavy rainfall in these three regions is positively
correlated with the Southern Oscillation Index (SOI). Li Fen et al. highlighted that changes
in SOI significantly affect precipitation in northern Jinzhong, a part of the southern region
of the study area, showing a similar positive correlation [50]. A strong SOI is commonly
associated with La Niña events. When sea surface temperatures in the Indonesian re-
gion are elevated and atmospheric pressure is low, the southeast monsoon over China
intensifies [51], shifting the primary rainfall zone northward [52] and increasing rainfall
in northern China. During this process, the elevation of the Taihang Mountains increases
gradually from the eastern plains to the western mountains, particularly in regions I and IV.
The sharp topographic changes cause uplift in airflows, making these areas more prone to
concentrated heavy rainfall during periods of intensified southeast monsoons [53]. Further-
more, land use types in these areas influence runoff patterns after heavy rainfall, further
shaping the spatial distribution characteristics of rainstorms. Heavy rainfall in regions II
and IV is positively correlated with the Pacific Warm Pool Index (PWR) and negatively
correlated with the Pacific Decadal Oscillation (PDO). When sea surface temperatures in the
Pacific Warm Pool rise abnormally, the subtropical high-pressure ridge shifts northward,
leading to a stronger summer monsoon [54]. As a result, the rain belt lingers longer over
northern China, increasing the frequency of summer storms in these regions. When the
PDO is in its negative phase, temperatures in the North China Plain tend to be relatively
low, and atmospheric pressure is no longer abnormally high. Concurrently, the influence
of anomalous northwesterly winds weakens, enabling smoother moisture transport [55].
The negative phase of the PDO makes regions II and IV more susceptible to heavy rainfall
events. Additionally, differences in land use types (e.g., urbanized areas vs. farmland) may
further influence the hydrological response in these regions. Heavy rainfall in region I is
negatively correlated with the Indian Ocean Dipole (IOD). Research indicates that during
positive IOD years, summer rainfall increases south of the Yangtze River, particularly in
Jiangxi and Hunan, while it decreases north of the Yangtze River [56]. During negative
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IOD years, the Walker circulation over the Indian Ocean strengthens, while it weakens over
the Pacific [57], leading to reduced precipitation in the western Pacific and, subsequently,
decreased rainfall in northern China. The fluctuations in the Indian Ocean Dipole (IOD)
are negatively correlated with summer rainfall in northern China, consistent with the
findings of this study. Variations in these circulation indices provide critical insights into
the distribution patterns of heavy rainfall in the Taihang Mountains. Integrating SOI, IOD,
PWR, and PDO into future storm forecasting models for the Taihang Mountains is expected
to enhance the accuracy of heavy rainfall predictions, offering valuable insights for disaster
prevention, mitigation, and protecting people’s livelihoods and safety.

Previous studies on heavy rainfall in the Taihang Mountains have predominantly
focused on numerical simulations of specific storm events and basic analyses of the spa-
tiotemporal distribution of rainfall using the Empirical Orthogonal Function (EOF) model.
Compared to the EOF method, the Rotated Empirical Orthogonal Function (REOF) method
more effectively reveals the geographical characteristics of different spatial fields and has
become a growing trend in the separation of climate vector fields [58]. The complex to-
pography and circulation patterns in the Taihang Mountains necessitate the use of the
REOF method to partition heavy rainfall regions, along with Pearson correlation analysis to
explore the relationships between rainfall and circulation factors. China’s primary climate
zoning divides the country into five trend zones based on temperature and precipitation
trends, while secondary zoning categorizes the country into 14 zones based on temperature
and precipitation fluctuation characteristics [59]. In this study, the boundaries of partitions
III and IV, along with those of partitions I, II, and III, align closely with the I3, I2, and
I4 subzones of China’s secondary climate zoning. This indicates that the REOF method
for partitioning heavy rainfall in the Taihang Mountains is highly reliable. However, the
occurrence of heavy rainfall results from the combined effects of multiple factors. This
study only considered the influence of individual factors on heavy rainfall, neglecting
the complex interactions and interdependencies among various factors. Future research
could apply machine learning to investigate the importance of multiple factors in assessing
heavy rainfall. Furthermore, the impact of human activities on heavy rainfall should also
be considered, including land use changes, global warming driven by human actions, and
the effects of water resource management and flood control projects on the occurrence of
heavy rainfall.

5. Conclusions

This study, based on precipitation data from 13 meteorological stations in the Taihang
Mountains from 1973 to 2022, identified rainstorms using a 50 mm precipitation threshold.
Multiple methods, including REOF analysis, linear fitting, the MK trend test, Continuous
Wavelet Transform (CWT), Cross Wavelet Transform (XWT), Wavelet Coherence (WTC), and
Pearson correlation analysis, were utilized to investigate the spatiotemporal distribution
of rainstorms in the Taihang Mountains over the past 50 years and the large-scale climate
factors affecting rainstorms in each partition. The key conclusions are as follows:

(1) Spatial heterogeneity: The REOF analysis divided the Taihang Mountains into six dis-
tinct rainstorm partitions, each showing spatial heterogeneity in rainfall distribution.
Partition I, located in the transition zone between the plains and mountains in the
central region, experiences relatively higher rainfall due to orographic uplift. Partition
IV, situated in the southeast, records the highest rainfall, driven by significant mon-
soon uplift during the summer. In contrast, partitions III and VI have lower rainfall,
with partition VI, located in the northern hilly region, having the least rainfall. These
spatial differences in rainstorm distribution are closely linked to the region’s complex
terrain and climatic patterns.

(2) Interannual variation trends: Over the past 50 years, rainfall in each partition of the
Taihang Mountains has shown an increasing trend. Partition II displayed a significant
upward trend (p < 0.05), with rainfall increasing at a rate of 14.4 mm per decade. This
trend is closely related to the intensification of the water cycle under global warming,
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highlighting the impact of climate change on the frequency and intensity of regional
rainstorms.

(3) Periodicity: Results from the Continuous Wavelet Transform revealed significant
2–3-year periodic fluctuations in rainfall across all partitions. This periodicity aligns
with the quasi-biennial oscillation (QBO) characteristics of the East Asian Summer
Monsoon. The study found that all six rainstorm partitions experienced oscillation
cycles of approximately 2–3 years over the past 50 years, indicating that QBO char-
acteristics of the East Asian Summer Monsoon influence rainfall periodicity in the
Taihang Mountains. This periodic pattern provides valuable reference information for
future climate forecasting.

(4) Influence of large-scale circulation factors: Correlation and wavelet resonance analyses
revealed that rainfall in Partitions II, III, and IV is positively correlated with the
Southern Oscillation Index (SOI), while rainfall in Partitions II and IV is positively
correlated with the Pacific Warm Pool Region (PWR) and negatively correlated with
the Pacific Decadal Oscillation (PDO). Rainfall in Partition I is negatively correlated
with the Indian Ocean Dipole (IOD). These variations in large-scale circulation factors
not only influence the frequency of rainstorms but are also linked to the temporal
lag of rainstorm events. Incorporating these factors into future rainstorm prediction
models is expected to enhance the accuracy of rainstorm forecasting.

The REOF method, Continuous Wavelet Transform, and correlation analysis used
in this study have shown strong applicability for studying rainstorms in the Taihang
Mountains and have broad potential for wider application. These methods are particularly
suitable for other regions with complex terrain and climatic conditions, especially areas
where mountainous or monsoonal climates play a significant role. For instance, in the
southwestern mountainous areas, the Tibetan Plateau, and other global monsoon regions,
these methods could be used to study the spatial distribution of extreme precipitation
events and the interaction of climatic factors. Moreover, these analytical techniques can be
applied in other climate and environmental fields, such as flood forecasting and disaster
management, offering more precise and efficient tools.

This study is the first to apply the REOF method for fine spatial partitioning of
rainstorms in the Taihang Mountains, combined with resonance analysis of large-scale
climate factors. It reveals the complex spatiotemporal relationships between rainfall and
circulation factors. This multi-scale analytical approach provides new insights into improv-
ing rainstorm prediction models and contributes to enhancing the accuracy of extreme
weather forecasting.
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