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Abstract: Computational models enable accurate, timely prediction of landslides based on the
monitoring data on-site as the development of artificial intelligence technology. The most existing
prediction methods focus on finding a single prediction algorithm with excellent performance or an
integrated and efficient hyperparameter optimization algorithm with a highly accurate regression
prediction algorithm. In order to break through the limitation of generalization of prediction models,
this paper proposes an ensemble model that combines deep learning algorithms, with a stacking
framework optimized with the sliding window method. Multiple deep learning algorithms are set
as the first layer of the stacking framework, which is optimized with the sliding window method
to avoid confusion in the time order of datasets based on time series analysis. The Shengjibao
landslide in the Three Gorges Reservoir is used as a case study. First, the cumulative displacement is
decomposed into a trend and a periodic term using a moving average method. A single-factor and a
multi-factor superposition model based on multiple deep learning algorithms are used to predict the
trend and periodic term of the displacement, respectively. Finally, the predicted values of the trend
and periodic terms are added to obtain the total predicted landslide displacement. For monitoring
point ZK2-3, the values of RMSE and MAPE of the total displacement prediction with the stacking
model are 15.93 mm and 0.54%, and the values of RMSE and MAPE of the best-performing individual
deep learning model are 20.00 mm and 0.64%. The results show that the stacking model outperforms
other models by combining the advantages of each individual deep learning algorithm. This study
provides a framework for integrating landslide displacement prediction models. It can serve as a
reference for the geological disaster prediction and the establishment of an early warning system in
the Three Gorges Reservoir Area.

Keywords: Shengjibao landslide; landslide displacement prediction; stacking; sliding window
method; algorithm integrated

1. Introduction

In the wake of the normalization of extreme weather, landslides, a common geological
hazard, have caused unexpected damage [1,2]. Since the 20th century, due to the inten-
sifying and expanding scope of human engineering activities, the frequency of landslide
disasters in our country has been steadily rising, significantly impacting the living environ-
ment and the safety of lives and property. Accurate displacement prediction is an essential
component of an early warning system [3].
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Recently, researchers have made progress on the computational models for landslide
displacement prediction [4], including those based on a physical model [5], statistical
methods [6], time series analysis [7], and artificial intelligence methods [8]. In recent years,
research on artificial intelligence methods has made great progress. For artificial intelli-
gence methods applied to landslide displacement, machine learning (ML) algorithms have
become the main method for dealing with complex non-linear deformable landslides [9].
The prediction of landslide displacement currently uses machine learning methods, such
as the time series model (TSM) [10], the support vector machine (SVM) model [11], and the
LSTM model [12], which have become popular.

There are two critical issues in predicting the displacement of landslides. The first
is the decomposition of landslide displacement. The second is the construction of the
prediction. Regarding the decomposition of landslide displacement, the moving average
method (MAM) [11,13], the weighted moving average (WMA) method [14], the Hodrick–
Prescott (HP) filter method [15], the singular spectrum analysis (SSA) [16], and the local
mean decomposition (LMD) algorithm [17,18] have been proposed widely. In this study,
we adopt the MAM to decompose the cumulative displacement of landslides because it is
convenient for solving displacement decomposition without random terms. At the same
time, this method can better handle the impact of the fluctuation period of landslide-related
factors on landslide displacement [19].

The cumulative displacement of landslides is influenced by internal and external
factors [20]. Establishing an accurate response relationship between causal factors and
landslide deformation is the key to predicting landslide displacement [21]. In recent
research on the prediction of landslide displacement, generally speaking, cumulative
landslide displacements were decomposed into trend and period terms or trend, period,
and random terms [12,22] by using these decomposition methods. However, the random
term displacement is usually caused by random factors such as wind loads and vehicle
loads, which the current monitoring equipment cannot accurately monitor [19]. Therefore,
the MAM was adopted to decompose the cumulative displacement for its simplicity and
effectiveness in this paper.

Currently, research in landslide displacement prediction has mainly focused on se-
lecting a single predictive model from numerous artificial intelligence methods [23]. The
introduction of ensemble models can bring new ideas for predicting landslide displace-
ment. Jiang proposed a weight coefficient ensemble model based on linear combination
theory [19]. Liu et al. [23] have harmonized the temporal component displacements through
the amalgamation of diverse algorithms, thereby obviating the biases inherent in individual
machine learning methodologies and significantly enhancing the precision and robustness
of the predictive outcomes. Within the realm of landslide susceptibility assessment, which
is intrinsically linked to the field of landslide hazard prediction and forecasting, numerous
studies have explored the application of ensemble learning methodologies. Zeng et al. [24]
constructed a stacking ensemble model based on three distinct base classifiers, achieving
commendable results in landslide susceptibility mapping at the township level.

This paper used the stacking method to integrate four commonly used deep learning
algorithms, which achieved good results in this case study. The stacking method is a
powerful technique that capitalizes on the strengths of multiple independent models to
enhance predictive performance. A key advantage lies in its ability to amalgamate diverse
models, each capable of capturing distinct patterns within the data. This diversity mitigates
the risk of overfitting and bolsters the model’s generalization capabilities, rendering stack-
ing particularly well-suited for complex tasks that a solitary model may find challenging.
Furthermore, stacking facilitates the integration of both simple and intricate models, thus
creating a more robust ensemble capable of adapting to various data distributions. By em-
ploying a meta-learner to aggregate the predictions from base models, stacking effectively
harnesses their complementary strengths, achieving greater accuracy and reliability in the
task at hand.



Water 2024, 16, 3141 3 of 23

In this study, we proposed a model for predicting the displacement of landslides
based on the sliding window method and the deep learning ensemble model. Cumulative
displacement and influencing factors were decomposed into specific subsequences by
the MAM. Then, we proposed a sliding window approach to process time series data,
which divides the dataset using a stacking method and constructs a series of models
using a validation set. After conducting data pre-processing and feature selection, the
stacking ensemble method was employed to predict the trend and periodicity components
of landslide displacement using four commonly used deep learning algorithms. The
predicted results were then aggregated to obtain the total predicted displacement value,
which was compared with those obtained using a single deep learning algorithm.

2. Study Site
2.1. Shengjibao Landslide

The Shengjibao landslide is located on the southern bank of the Yangtze River in
Fengjie County, and the width of the river surface is 350–400 m. The river flows from the
southwest of the landslide front to the northeast (Figure 1). The geomorphology of the
landslide is located in a low mountainous geomorphic unit of tectonic-erosion-denudation,
exhibiting a V-shaped valley terrain. The south bank of the landslide is the downhill slope,
with an overall slope of 15–20 degrees. The slope surface is stepped. Gullies are developing
on the slope. The elevation of the front and rear edges of the landslide is 81–85 m and
370 m, respectively. The landslide’s longitudinal length and transverse width are 1500 m
and 1160 m, respectively, with an average thickness of about 25 m. The total area of the
landslide is approximately 2.45 km2, and the total volume is 3998 × 104 m3.
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Figure 1. (a) Location of the Three Gorges Reservoir Area (TGRA) in China; (b) location of the
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2.2. Landslide Activity

The initial monitoring network for the Shengjibao landslide was established in March
2007 and included 8 GPS monitoring points. Figure 2 illustrates the current distribution of
monitoring points at the Shengjibao landslide site. In May 2007, the Shengjibao landslide
began to deform after the first impoundment of the Three Gorges Reservoir to a water
level of 156 m, primarily due to the effects of seasonal rainfall and the decrease in the
reservoir’s water level. The main sliding direction of the landslide was 348 degrees. Based
on the monitoring data from March 2008 to December 2015, surface displacement can be
divided into four stages (Table 1). Schematic geological cross section II-II’ of the Shengjibao
landslide was shown in Figure 3.
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Figure 2. Monitoring arrangement in Shengjibao landslide and displacement blocks.

Table 1. Deformation stages of the Shengjibao landslide.

Deformation
Stage Time Range Remarks

1 March 2008–May 2008 The initial stage of landslide deformation.

2 June 2008–October 2009 The deformation intensified, and the first
fluctuation was 172 m.

3 November 2009–August 2011 Steady deformation stage, the first
fluctuation of 175 m.

4 September 2011–December 2015 Deformation has periodic and trend
characteristics
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Figure 3. A schematic geological cross-section II-II’ of the Shengjibao landslide.

3. Methodologies
3.1. Displacement Decomposition

Understanding the impact of influencing factors on the prediction and development
of landslides is crucial in this analysis [11]. Based on previous research, we mainly selected
some influencing factors related to rainfall and reservoir water level.

In this study, the original displacement of landslides was subjected to a decomposition
process that separates it into two components: trend and period terms. Various factors,
including geological tectonism, weathering, and the specific stage of evolution of the
deformation, influence landslide trend terms.

The periodic term of landslides corresponds to the short-term displacement observed
in wading landslides within the Three Gorges Reservoir Area [25,26]. This displacement is
predominantly influenced by two factors: rainfall changes and reservoir water level changes.
It is important to note that this study did not consider displacement caused by random
factors, as it is challenging to monitor and generally of relatively small magnitude [27].

To analyze the accumulated displacement time series, the accumulated displacement
time series can be decomposed as follows:

X(m) = µ(m) + σ(m) (1)

where m indicates the time step, that they are all spaced by an interval ∆t. The index m
corresponds to the time instant t = t0 + m ∗ ∆t·X(m) is the accumulated displacement,
µ(m) is the trend term, and σ(m) is the periodic term.

3.2. Moving Average Methods

Scientific decomposition of trends and cyclical terms is the basis for building reliable
models. [11]. In this paper, the moving average method was employed to smoothen the
time series data to achieve a more consistent pattern. By accurately identifying time series
and their influencing factors, this method can more effectively predict trends [28].

The primary purpose of applying the moving average method is to minimize fluctua-
tions and generate a smoother representation of the data. This smoothening process helps
to understand the underlying trend better and facilitates the identification of significant
factors that influence the time series. When a more accurate trend estimation is achieved,
the model’s predictive capacity can be enhanced, leading to improved forecasting outcomes.
The function of the single-moving average method is shown as follows:

Xt =
Xt + Xt−1 + ···+ Xt−n+1

n
(t = n, n + 1, . . . , T) (2)

where Xt is the displacement trend term at time step t, Xt is the accumulated displacement
of the landslide at time step t, and n is the moving average period. In this paper, the value
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of the n is 12, and the reservoir water level dispatching in the Three Gorges Reservoir Area
takes 12 months.

3.3. Recurrent Neural Networks and Long Short-Term Memory Neural Networks

The standard recurrent neural networks (RNNs) module contains a single layer
(Figure 4a) [29]. RNNs have input and output units that contain data sets accordingly.
We marked the input data set as {x0, x1, · · ·, xt, xt+1, · · ·}, while the output data set as{

y0, y1, · · ·, yt, yt+1, · · ·
}

. RNNs also contain hidden units, whose output set is marked
as {s0, s1, · · ·, st, st+1, · · ·}. The calculation of St is expressed as a non-linear activation
function, which reads.

st = f (Uxt + Wst−1) (3)

where st is the state of the hidden layer at time step t, which is calculated based on the
output of the current input layer and the status of the previous hidden layer. f is a non-linear
activation function.
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Figure 4. (a) The standard recurrent neural network (RNN) module contains one single layer. (b) The
long short-term memory (LSTM) module contains four interaction layers.

It is correct to point out that traditional RNNs can suffer from vanishing or exploding
gradient problems, making them less effective in handling long-term dependencies. How-
ever, LSTM (Long Short-Term Memory) neural networks (Figure 4b), which are a specific
type of RNN, are designed to overcome these limitations [30].

In an LSTM network, each RNN unit is replaced with a memory block containing three
gate functions: the input gate, the output gate, and the forget gate. Those gate functions
control the flow of information within the memory block.

By incorporating these gate functions, LSTM networks can effectively capture and
learn long-term dependencies in a data sequence. This makes them particularly well suited
for handling and modeling complex temporal relationships over extended periods.

3.4. Convolutional Neural Networks

In 1986, Rumelhart and Hinton et al. proposed the Back Propagation (BP) algorithm.
In 1998, LeCun et al. used the BP algorithm to train the LeNet5 network, marking the actual
emergence of CNN (Figure 5).

CNN is a feedforward neural network with a convolution structure [31]. The con-
volution structure can reduce the memory occupied by the deep network. Three critical
operations, i.e., local receptive field, weight sharing, and pooling layer, effectively reduce
the number of network parameters and alleviate the problem of overfitting the model.
Compared with traditional neural networks, it uses images as input parameters and uses
multiple layers.

There are already some application examples of CNN algorithms in landslide displace-
ment prediction [32–34]. Whether applied to single algorithm models or coupled models,
CNN is a deep learning algorithm that can be considered.
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3.5. Stacking and Its Optimization

When dealing with complex data, achieving an accurate fit with a single model can
be difficult. Moreover, single models often exhibit limited robustness to disturbances. To
address these challenges in displacement prediction, using an ensemble model, consisting
of multiple strategically combined models, can be beneficial. This approach leverages
individual models’ diverse strengths and weaknesses to enhance the ensemble model’s
overall generalization ability [35].

In this study, the stacking approach combined Boosting and Bagging, which are two
commonly used ensemble learning techniques.

Stacking, also known as stacked generalization, involves modeling the stacked predic-
tions generated by multiple base learners fitted to the original data [36]. The base learners
are first trained on the original data to produce individual predictions in this process. These
predictions are then horizontally stacked together, resulting in a two-dimensional array
where the rows represent the samples and the columns represent the base learners. Subse-
quently, this newly created data set is used as input for a higher-level model to improve
prediction performance further. The diagram provided in Figure 6 depicts the schematic
representation of a traditional stacking model.
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The sliding window method is a commonly used data processing technology, often
used in extracting several subsequences from a long data sequence and then performing
certain calculations and analyses on these subsequences. The basic idea of this technique is
to divide the input sequence into several fixed-length subsequences (also called windows)
and process the data within each window interval to obtain a result sequence. For exam-
ple, we can divide the original sequence into several fixed-length windows in time-series
data analysis. Then, various statistics and calculations, such as mean, variance, maxi-
mum, and minimum, can be performed on the data within each window, serving as the
feature values of this window. By extracting features from data within the window, we
can effectively reduce the data dimensionality and enhance the data representation and
utilization efficiency.

This paper introduces a model based on stacked ensemble learning. In the initial
layer of this model, we have employed four distinct deep learning algorithms as base
learners, thereby constructing the respective base models, each of which is crafted using a
singular deep learning algorithm. Upon completion of the training of these base models,
their performance is evaluated on the validation set. It is noteworthy that the stacking
ensemble technique itself does not intervene with the models; it refrains from providing
predictive data post-training of the base models. In the subsequent layer, we employ a
straightforward regression algorithm to train the data outputted from the first layer. This
algorithm necessitates no hyperparameter optimization and, following the division of the
training and prediction sets, directly furnishes the prediction outcomes.

The conventional stacking model utilizes k-fold cross-validation to handle the dataset,
which may have limitations when applied to time series problems. For example, the
fact that each training dataset contains information from other samples may lead to data
leakage issues, resulting in overly optimistic evaluation results. In this study, if future data
was adopted to predict previous data, it would go against timeliness. To overcome this
challenge, this study introduced an optimized stacking model incorporating the sliding
window method to process the raw data set, thus preserving the inherent temporal sequence.
The flowchart of this method is shown in Figure 7.

Like traditional stacking frameworks, the improved stacking framework utilizing
the sliding window method can be divided into two primary components: first-layer
algorithms and second-layer algorithms.

The first-layer algorithms partitioned the dataset into a fitting set and a test set in a
6:1 ratio. The fitting set included training and validation sets with varying sample sizes.
Notably, not all of the fitting set data was used for training in each base model. The
sliding window method was employed to avoid validating past landslide data with future
landslide data. Based on the previously mentioned dataset partitioning period of 12, the
validation datasets consist of the sample data corresponding to the last twelve steps of
each training set. Consequently, five different datasets were established with training-to-
validation ratios of 1:1, 2:1, 3:1, 4:1, and 5:1, respectively, creating five base models. Then,
the GS optimization algorithm is used to obtain the best hyperparameters for these models,
and the retained prediction set is used to evaluate the models.

In the second-level algorithm, the input dataset was constructed from the outputs
of the first-level algorithm. Specifically, for each base learner, datasets with five distinct
sample sizes generated a set of validation data, VR n, after validating the validation set
with the training set. These five sets of validation data were then stacked to form the input
data for the second-level algorithm’s training samples, with the output value being the
actual landslide displacement. Similarly, different base models within each base learner
were tested on a reserved test set, and the processed prediction results were used as the
input data for the second-level algorithm’s prediction samples, with the output value
representing the unknown displacement.
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The traditional stacking model often employs k-fold cross-validation, with the han-
dling of the prediction set typically involving the computation of an average. In the sliding
window approach, the number of samples per base model varies, and the differences influ-
ence the diversity of information provided by each base model to the meta-model in the
training data and algorithms of these models. Consequently, determining the weighting for
each base model’s predictions within the test set is paramount. In this study, the weighting
of base model outputs for the meta-model’s predictive set was determined based on the
mean absolute error (MAE) metric calculated on the test set. The MAE, the average of
absolute errors, provides a more accurate reflection of the actual error in predictions. A
smaller MAE value signifies better model performance, and a greater weighting is assigned.
After weighing the results of each base learner’s output, the data obtained will serve as the
predictive set for the second-level algorithm.
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3.6. Multiple Linear Regression

Multiple linear regression is a regression model that is based on the relationship be-
tween multiple independent variables and a dependent variable, which is an essential tool
in statistics and machine learning [37]. The basic idea is to use multiple independent vari-
ables to predict and model a dependent variable. In multiple linear regression, there may
be a linear or non-linear relationship between the dependent and independent variables,
but it is assumed to be a linear relationship [38].

In multiple linear regression, the most critical task is to estimate the regression co-
efficients [39]. In the stacking model proposed in this paper, the second-level algorithm
employed a multiple linear regression approach. It is worth noting that multiple linear
regression is a straightforward regression technique readily accessible in Python’s Scikit-
Learn without parameter optimization or hyperparameter tuning. Consequently, unlike
the first-level algorithm, where training and validation sets were established within the
fitting set, the entire fitting set was used as the training set in the second-level algorithm.
The second-level model utilized 60 time steps of data as the fitting set and the remaining
12 time steps as the prediction set, yielding the final landslide displacement predictions.

Thus, the principal steps of our study have been thoroughly delineated. The overall
process is shown in Figure 8.
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3.7. Reliability Evaluation of the Model

The best hyperparameters for the model are obtained by fitting the entire dataset, and
the model is then trained using the entire training dataset and the best hyperparameters [40].
To verify the prediction accuracy of the LSTM model, the RNN model, CNN model, DNN
model, and the integrated stacking model, the root mean square error (RMSE) [21] and the
mean absolute percentage error (MAPE) [41] are calculated.
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where xorg is the measured value, xprd is the predicted value, and N is the number of
predicted values.

4. Prediction Process
4.1. Point Selection and Data Processing

In this paper, the ZK2-3 data was selected as the GPS deformation detection point. As
sample data, we picked up the displacement monitoring data of 84 time steps from January
2009 to December 2015.

For a single deep learning algorithm, the original data of the landslide displacement
was first decomposed using the moving average method. The dataset was often divided
in proportions such as 7:1.5:1.5 or 6:2:2 according to relevant literature on landslide dis-
placement prediction [18,42]. After decomposition, the first 72 steps are assigned to the
fitting data set, as illustrated in Section 3.5. The training and validation datasets will be
selected from these 72 time steps of data. The reserved 12 time steps served as the predic-
tion set to evaluate the model’s performance and provide prediction data for the second
layer algorithm. The specific situation of the decomposition of the increment of landslide
displacement is shown in Figure 9.
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In contrast to the equal-sized training datasets in k-fold cross-validation, the sliding
window method was employed to handle time series data. In this approach, the data
was divided into groups with 12 sequential time points. These groups were stacked in
succession to form the training set of the model. The 12 time points after each training
set were used as a validation set to fine-tune the hyperparameters of the model. The last
12 time points of the original dataset were used as validation sets for each respective group.

4.2. The Composition of Dataset

As mentioned in Section 3.5, when dividing the dataset, we did not follow the tradi-
tional k-fold cross-validation approach to split the data into equal parts. To ensure that
future landslide data would not be used to predict past landslide occurrences, we employed
a sliding window method to handle the time series data.

We selected a data set that spans seven years from 2009 to 2015, comprising a total of
84 time points, explicitly focusing on landslide occurrences in a region. We employed the



Water 2024, 16, 3141 12 of 23

sliding window method to handle the time series data and generated five different training
sets. These five training sets each contain data comprising 12, 24, 36, 48, and 60 time steps,
respectively. Specifically, the first training set comprises twelve time-step datasets from the
year 2009, while the second training set encompasses twenty-four time-step datasets from
the years 2009 and 2010. Consequently, this process yields five datasets of varying sizes.
The output results of the first-layer algorithms, obtained by evaluating the performance
of each training set on respective validation sets, were used as input for the second-layer
training. Once the model parameters were determined, the trained models were used to
predict the test dataset. The second layer algorithm used in this study was multiple linear
regression. The five sets of prediction results from the second-layer models were weighted
and combined to generate the final prediction datasets.

It is essential to specify that we partition the dataset into subsets of varying sizes to
ensure that the outputs of each ensemble of base models adhere to the logical continuity
of the time series. Furthermore, we aim to investigate whether the model can still predict
effectively under these subdivision criteria. Additionally, employing the sliding window
technique for handling time series data does not adversely affect the performance of the
model or the accuracy of the predictions.

4.3. Factors Selection

The selection of alternative influencing factors and status factors plays a vital role
in landslide prediction. Rainfall is a significant influencing factor in the occurrence of
landslide disasters. Considering the linkage between reservoir water level and rainfall,
several candidate factors related to rainfall variation and reservoir water level were selected
and labeled as f 1 to f 9 in turn [43]. The relationship between landslide initial displacement
and influencing factors is shown in Figure 10. Table 2 shows the initial data of landslide
displacement and the sources of the relevant influencing factor data. A grey correlation
coefficient with a resolution of 0.5 was obtained by the grey correlation analysis method
(GCAM) [27]. When the grey correlation coefficient is more significant than 0.6, which
means that there is a strong correlation between the two variables, the results show that the
candidate input factors selected in this section meet the requirements (Table 3).
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Table 2. Original data of this study.

Data Source

Landslide displacement Geological Environmental Monitoring Station
Rainfall Local meteorological station monitoring data
Reservoir level The reservoir level of the Three Gorges Reservoir

Table 3. Grey correlation coefficient between input factors and periodic displacement of the
Shengjibao landslide.

Candidate Factors Description ZK2-3

f 1 The precipitation during the current month 0.66
f 2 The precipitation during the past two months 0.63
f 3 The average reservoir level during the current month 0.60
f 4 The change in the reservoir level during the current month 0.66
f 5 The change in the reservoir level during the past two months 0.69
f 6 The change in displacement during the last month 0.76
f 7 The change in displacement during the last two months 0.75
f 8 The change in displacement during the last three months 0.74
f 9 The average displacement during the last 12 months 0.72

This article selected ZK2-3 as the research subject because this point was located in a
high deformation zone; its displacement trend conformed to the characteristics of a stepped
landslide, which was conducive to studying landslide displacement patterns. Meanwhile,
the choice of landslide point did not affect the final accuracy of the model.

Meanwhile, on the basis of correlation degree analysis, we carried out the collinearity
analysis on candidate factors. By excluding input factors with collinearity exceeding the
standard, the model’s prediction accuracy was improved. For example, when tolerance is
less than or equal to 0.1 or the variance inflation factor (VIF) is greater than 5, the problem
of collinearity exists in the index [44].

According to the analysis results, we excluded f 2, f 5, and f 7 to ensure the scientific
validity of factor screening. After completing the screening process, input factor evaluation
has been completed (Table 4).

Table 4. The result of the collinearity test in ZK2-3.

Candidate
Factors

Initial Input Factor New Input Factor 1 New Input Factor 2

Tolerance VIF Tolerance VIF Tolerance VIF

f 1 0.204 4.904 0.212 4.727 0.471 2.122
f 2 0.146 6.851 0.176 5.666 / /
f 3 0.213 4.699 0.337 2.966 0.391 2.560
f 4 0.226 4.427 0.502 1.993 0.579 1.726
f 5 0.138 7.244 / / / /
f 6 0.183 5.454 0.466 2.148 0.466 2.147
f 7 0.062 16.133 / / / /
f 8 0.113 8.819 0.385 2.599 0.390 2.562
f 9 0.734 1.362 0.744 1.345 0.761 1.313

4.4. Normalization and Inverse Normalization

Normalization is an essential step in data preprocessing for machine learning algo-
rithms. Its purpose is to facilitate the algorithms in finding optimal parameters by scaling
the data to a specific interval.

To avoid information leakage, it is essential to obtain the boundary values for normal-
ization and inverse normalization from the fitted dataset rather than the entire dataset [45].
Because the fitted data set is considered known information, while the predicted data set
is unknown.
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xscale = 2 ×
xorigin − xmin

xmax − xmin
− 1 (6)

where xscale is the normalized value, xorigin is the original value, xmax is the maximum value
of the samples, and xmin is the minimum value. The range of xscale is [−1, 1].

In this study, the fitting set contained 72 time steps. We selected boundary values from
these time steps. It is worth recalling that the number of time steps in the data set was
different after the sliding window method was processed. Considering the consistency of
the data, no special processing will be performed on the partitioned data set. That means
all the datasets used the same boundary values to calculate.

4.5. Hyperparameters of Deep Learning Models and Stacking Model

The Keras 2.10.0 framework is used to build deep learning models, with TensorFlow
2.10.0 as the backend and the codes written in Python 3.9.

The deep learning models operated in the Python language environment. For the
establishment of the model, batch size, number of neurons, and number of layers of models
were decided with the GS method in succession [46]. In GS processing, the batch size of
the grid ranged from [1,20], the grid step was 1, and the number of neurons was [1,30]
with a grid step of 1. During the algorithmic process, the best result was obtained by
setting an early stop. The patience setting for early stop was 50, which means that the
algorithm process will stop when the result does not improve within 50 steps. The optimal
epochs were obtained. The optimal hyperparameters of the single deep learning algorithm
and stacking models are shown in Tables 5 and 6; “TR n” represents the base model
corresponding to each base learner.

Table 5. Optimal hyperparameters of periodic term in point ZK2-3.

Models Hyperparameters TR 1 TR 2 TR 3 TR 4 TR 5

LSTM

Neurons 16 15 24 26 22

Batch size 10 9 7 1 19

Epochs 142 98 70 127 54

CNN

Neurons 5 11 14 17 18

Batch size 4 9 7 13 19

Epochs 112 85 126 131 50

RNN

Neurons 11 16 17 8 3

Batch size 11 7 5 1 19

Epochs 60 97 53 137 107

DNN

Neurons 28 13 14 16 17

Batch size 12 9 5 2 2

Epochs 33 106 95 94 56

Table 6. Optimal hyperparameters of trend term in point ZK2-3.

Models Hyperparameters TR 1 TR 2 TR 3 TR 4 TR 5

LSTM

Neurons 13 17 10 9 26

Batch size 12 9 8 6 3

Epochs 20 100 99 102 80

CNN

Neurons 5 6 6 25 3

Batch size 12 8 11 9 10

Epochs 30 99 99 94 91
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Table 6. Cont.

Models Hyperparameters TR 1 TR 2 TR 3 TR 4 TR 5

RNN

Neurons 1 5 10 28 26

Batch size 12 9 7 9 2

Epochs 30 99 68 80 51

DNN

Neurons 5 6 6 25 3

Batch size 12 8 11 9 10

Epochs 30 99 99 94 91

5. Results
5.1. The Results of Each Model

In this study, we present the prediction results of various models. These results are
accurate to within 0.01 mm, as the raw monitoring data collected at our observation points
is precise to two decimal places in the millimeter unit. To ensure the reliability of the
original data, we also calibrated the predictions of landslide displacement values, achieving
an accuracy of 0.01 mm.

The comparison results of predicted and measured displacement obtained using deep
learning models at point ZK2-3 are shown in Figures 11 and 12. For ZK2-3, the RMSE and
MAPE values of the LSTM model are 20.00 mm and 0.64%, respectively; the RMSE and
MAPE values of the CNN model are 23.07 mm and 0.85%, respectively; the RMSE and
MAPE values of the RNN model are 35.01 mm and 1.26%, respectively; and the accuracy
factors of the DNN model are 21.60 mm and 0.71%, respectively.
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Comparing the results between the validation dataset and the prediction dataset in
Table 7, it can be seen that the accuracy of the predicted results on the validation dataset is
also well reflected in the prediction dataset.

Table 7. Accuracy of the predicted total displacement of point ZK2-3 in the validation and
prediction dataset.

Models
RMSE (mm)

Validation Dataset Prediction Dataset

LSTM 34.97 20.00
CNN 52.82 23.07
RNN 18.92 35.01
DNN 30.93 21.60

From Figure 13, it can be seen that the cumulative displacement growth of landslides is
mainly concentrated in June, July, and August. We compared the reservoir water level and
rainfall data from 2013 and 2014. We found that the rainfall in 2013 was mainly concentrated
from the end of July to mid-August, while the rainfall in 2014 was mainly concentrated
from mid-July to early August.

This indicated that certain fluctuations in reservoir water level and rainfall may
have a certain impact on landslide deformation. At the same time, the difference in the
distribution time of rainfall and the fluctuation of reservoir water level were more likely to
cause deviations in landslide displacement prediction.

It is imperative to note that in Figures 9, 11 and 14, we meticulously delineate the
nuances of the initial landslide displacement, juxtaposing the predictions of the singular
model with the actual initial displacement, as well as contrasting the integrated model
with the singular model. These visual representations are exclusively derived from the
outcomes of the model predictions. Conversely, in Figures 10, 13 and 15, we illustrate the
interplay between influencing factors and landslide displacement, the temporal variations
of precipitation, the fluctuations in reservoir water levels, as well as the interactions between
cumulative displacement increments and influencing factors. These aspects are, in fact, not
contradictory. We have incorporated them in this section to ensure that these visual aids
simultaneously bolster the credibility of our model predictions during the analysis of our
results. They serve more as supplementary elucidations of the model predictions rather
than detracting from the original forecasts.
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tions of precipitation, the fluctuations in reservoir water levels, as well as the interactions 
between cumulative displacement increments and influencing factors. These aspects are, 
in fact, not contradictory. We have incorporated them in this section to ensure that these 
visual aids simultaneously bolster the credibility of our model predictions during the 
analysis of our results. They serve more as supplementary elucidations of the model 
predictions rather than detracting from the original forecasts. 
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comparison at the fifth to the eighth point).
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5.2. Analysis of Differences in Prediction Performance Among Models

The comparison results of predicted displacement and measured displacement ob-
tained using deep learning models at point ZK2-3 are shown in Figure 14. Compared
with LSTM, CNN, RNN, and DNN, the accuracy of the ensemble model was noticeably
improved by an average of 20.4%, 30.9%, 54.5%, and 26.3%, respectively.

Overall, the stacking model performs better because it can exhibit better predictive
performance at some time points and does not differ significantly from other models at
some time points with poor predictive performance. Comparing the prediction results of
the four graphs comprehensively, the prediction bias of each model mainly occurred after
May 2015. Especially in mid-year 2015, the overall displacement of the landslide was in an
upward stage. From the selected regions in Figure 14 (such as A, A’, B, B’, C, C’, D, and D’), it
is evident that when there are significant changes in landslide displacement, the predictions
made by the Stacking algorithm often align more closely with the actual displacement
values of the landslide or better reflect the trend of these absolute displacement values
compared to those made by individual deep learning algorithms.

The robustness and effectiveness of the proposed method have been verified, and
significant progress has been made in predicting landslide displacement.

6. Discussion
6.1. Stochastic Terms in Landslide Displacement Prediction

In this paper, the focus is on decomposing the original landslide displacement into
trend and periodic terms, while the effects of stochastic terms are not considered. Currently,
limited research exists on the decomposition of landslide displacement into random terms,
as these random terms are influenced by various stochastic factors such as wind load and
vehicle load. The method of numerical analysis of the observed accumulated displacement
and time series of a landslide cannot decompose and predict random displacements [17].

It is challenging to identify the factors contributing to the random term displacement
of landslides using existing detection techniques. Therefore, exploring and developing high-
quality models capable of accurately predicting the random term of landslide displacement
in future studies is imperative. By doing so, we can improve our understanding of the
underlying factors and the accuracy of landslide displacement prediction models.
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6.2. The Development of Integrated Models in the Field of Deep Learning

Numerous research studies have employed machine learning techniques to forecast
landslide displacement, employing various integrated models [47]. The integrated models
usually contain bagging, boosting, and stacking. The bagging algorithm avoids overfitting
by reducing the variance of the results. Boosting is a machine learning algorithm that can
reduce bias in supervised learning.

In this study, a robust ensemble model using the coupled deep learning algorithm was
developed for prediction purposes, showcasing excellent performance. Currently, multiple
investigations have been conducted on the prediction of landslide displacement using deep
learning. To achieve precise and accurate results in landslide displacement prediction, it
is necessary to explore more advanced deep learning algorithms [48]. Hence, the novel
approach proposed in this paper presents a fresh perspective on utilizing deep learning for
landslide displacement prediction [49].

6.3. Decomposition and Reconstruction of Trend and Periodic Terms

One should note that the ensemble model performs less effectively on its trend com-
ponent compared to other individual deep learning models. However, the final result
obtained by adding the trend and periodic components together is significantly better
than the final results of other models. Therefore, the results of different models on the
trend and periodic components are combined sequentially, resulting in the results shown
in Table 8. The horizontal axis of the table represents the different algorithms employed
for the cyclical component, while the vertical axis denotes the various algorithms utilized
for the trend component. The numbers within the table indicate the RMSE values of the
predictions resulting from the integration of the two algorithms. It is evident that applying
the Stacking algorithm to both the trend and cyclical components yields the most optimal
prediction results.

Table 8. Evaluation of the results of the prediction of landslide displacement in different combinations
of algorithms.

RMSE
Periodic Terms

Stacking LSTM CNN RNN DNN

Trend
Terms

Stacking 15.93 18.66 26.74 33.39 18.6

LSTM 17.58 20 24.62 34.89 20.05

CNN 19.34 21.27 23.07 35.72 21.6

RNN 17.83 20.18 24.37 35.01 20.27

DNN 19.34 21.27 23.07 35.72 21.6

Moreover, the Stacking algorithm performs better in forecasting the cyclical component
than other deep learning algorithms. In future studies, examining whether these disparities
are amplified or diminished in the total displacement after the addition calculation is
imperative. The main objective of future research on landslide displacement prediction is
to properly understand the relationship between trend and periodic components to achieve
accurate prediction results.

6.4. Further Exploration of the Landslide Research Cycle

In this study, the data set was divided into groups of 12 time points each, as shown
in Figure 15, according to chronological order. Incremental displacement of landslides is
closely related to local rainfall and reservoir water level variations, which often exhibit
a periodicity of 12 time points. We also attempted to divide the initial displacement of
landslides into groups of 8 time points each. We used the LSTM algorithm model to predict
the displacement of the landslide, and the results are shown in Table 9. In the table, LSTM-8
denotes the partitioning scheme with a period of 8, while LSTM-12 refers to the partitioning
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scheme with a period of 12. It can be seen that it is necessary to divide the data set based
on the fluctuation patterns of external factors. In future research, it would be more precise
to consider daily units instead of monthly units.

Table 9. Comparison of accuracy in predicted displacement across different partitioning periods.

Model
RMSE (mm)

Trend Term Periodic Term Total Displacement

LSTM-8 7.09 24.34 28.17
LSTM-12 1.22 18.71 20.00

7. Conclusions

In this study, a stacking ensemble landslide displacement prediction model was
proposed. This model had been applied to the displacement prediction of the Shengjibao
landslide in the Three Gorges Reservoir Area and was compared to single deep learning
models such as CNN and LSTM models, achieving reliable results. Based on the above
research, the following conclusions can be drawn:

(1) It is essential to select appropriate influencing factors based on the rainfall and reser-
voir water level data at the geographical location of the landslide, and conducting
correlation analysis after normalization is more conducive to improving the prediction
accuracy of the model.

(2) Overall, the LSTM model was better than other single deep learning models based
solely on evaluation indicators. However, its results were only sometimes closer to
the original values than those of other single deep learning models at all time steps of
the prediction dataset.

(3) The landslide displacement prediction model in the stacking ensemble optimized by
the sliding window method in this paper combined the advantages of deep learn-
ing algorithms. The ensemble model is ultimately closer to the original value than
other models. Therefore, this paper considers its prediction performance superior to
that of other models, and effectively constructs the relationship between landslide
displacement and factors.

The methodology presented in this paper adeptly amalgamates time series analysis,
the sliding window technique, multiple linear regression, deep learning algorithms, and the
principles of ensemble prediction to effectively forecast the displacement of the Shengjibao
landslide within the Three Gorges reservoir region. Research indicates that the ensemble
model developed through this approach holds substantial promise for future applications
in predicting landslide displacements in the Three Gorges Reservoir Area and other regions
susceptible to such geological occurrences.

In practical applications, the integrated deep learning model proposed by this study
can be seamlessly incorporated into existing landslide monitoring and early warning sys-
tems. By synergizing meteorological data, geological data, and remote sensing information,
it facilitates real-time analysis, thereby enhancing the accuracy and timeliness of predictions.
Government agencies can leverage the predictive and evaluative outcomes of the model
to formulate policies and regulations geared towards landslide disaster prevention and
mitigation, thereby bolstering the overall disaster resilience of society. Furthermore, the
landslide risk maps and predictive results generated by the model can serve as invaluable
resources for public education and training, elevating public awareness and preparedness
in the face of potential disasters.

Ensemble models can effectively reduce the bias and variance of a single model by
leveraging the strengths of multiple foundational models, thereby enhancing the accuracy
of landslide risk prediction. This holds significant implications for scientific decision-
making and risk management. The application of integrated deep learning models offers
new technological approaches for landslide prediction, fostering the connection between
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theoretical research and practical application, and elevating the practicality and efficiency
of disaster early warning systems.
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