Impact of the Draft Plate on the Wall Erosion and Flow Field Stability of a Cyclone Separator
Abstract
:1. Introduction
2. Computational Method
2.1. Governing Equations of Liquids
2.2. Governing Equations of Solids
2.3. Erosion Modeling
3. Numerical Method and Settings
3.1. Numerical Settings
3.2. Model Validation
3.2.1. Model Validation I
3.2.2. Model Validation II
4. Results and Discussion
4.1. Gas Flow Field Characteristics
4.1.1. Tangential Velocity of the Gas Phase
4.1.2. Pressure Drop
4.2. Trajectories of Different-Diameter Particles
4.3. Wall Erosion
4.4. Separation Efficiency
4.5. Vortex and Vortex Nuclei
5. Conclusions
- (1)
- The presence of the draft plate significantly affected the movement of gas and particles. Increasing the angle of the draft plate effectively suppressed the compression of the inlet gas flow via the gyrating one-week gas flow, which reduced the pressure drop of conventional separators by 92%, improved the ability to rotate the pressure at static pressure and reduced energy consumption.
- (2)
- Increasing the angle of the draft plate reduced the gas-phase flow field dynamics, leading to a reduction in the tangential velocity and effectively controlling the erosion phenomenon on the cyclone wall. Due to the larger swing of the spinning-in vortex nucleus at the bottom of the cone, the turbulence was more intense and the cone part of the cyclone separator was subjected to more serious erosion than the cylinder part.
- (3)
- The existence of the plate improved the stability of the flow field while weakening the erosion of the cyclone wall. Due to the interactions of the wall, particles and the internal flow field, the local vortex area of the separator was minimized when the plate angle was 90°, which minimized the scope of influence on the internal secondary flow.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Yang, L.; Son, H.; Le, D.K.; Manickam, S.; Sun, X.; Yoon, J.Y. An Overview of Novel Geometrical Modifications and Optimizations of Gas-Particle Cyclone Separators. Sep. Purif. Technol. 2024, 329, 125136. [Google Scholar] [CrossRef]
- Mengmei Lu, Z.P. Research Progress On the Influence of Structural and Operating Parameter on the Enhanced Separation Performance of Mini-Hydrocyclones. Chem. Eng. Res. Des. 2024. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Li, G. Improvement of the Cyclone Separator Performance by the Wedge-Shaped Roof: A Multi-Objective Optimization Study. Chem. Eng. Sci. 2023, 268, 118404. [Google Scholar] [CrossRef]
- Demir, S. A Practical Model for Estimating Pressure Drop in Cyclone Separators: An Experimental Study. Powder Technol. 2014, 268, 329–338. [Google Scholar] [CrossRef]
- Xiong, Z.; Ji, Z.; Wu, X. Development of a Cyclone Separator with High Efficiency and Low Pressure Drop in Axial Inlet Cyclones. Powder Technol. 2014, 253, 644–649. [Google Scholar] [CrossRef]
- Erdal, F.M.; Shirazi, S.A. Local Velocity Measurements and Computational Fluid Dynamics (Cfd) Simulation of Swirling Flow in a Cylindrical Cyclone Separater. Eng. Technol. Conf. Energy 2001, 4, 326–333. [Google Scholar]
- Long, S.; Yang, X.; Yang, J.; Li, B.; Shi, W.; Sommerfeld, M. Euler-Euler Les of Bubble Column Bubbly Flows by Considering Sub-Grid Scale Turbulent Dispersion Effect on Modulating Bubble Transport. Chem. Eng. J. 2023, 477, 147239. [Google Scholar] [CrossRef]
- Zhang, Y. Cfd Study of a Sudden-Expanding Coal Combustor Using Euler–Euler. Fuel 2010, 3643–3649. [Google Scholar] [CrossRef]
- Bu, T.; Mesa, D.; Pukkella, A.K.; Brito-Parada, P.R. Optimising Miniaturised Hydrocyclones for Enhanced Separation of Microplastics. Chem. Eng. J. 2024, 496, 153718. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. Optimization of the Cyclone Separator Geometry for Minimum Pressure Drop Using Mathematical Models and Cfd Simulations. Chem. Eng. Sci. 2010, 65, 6048–6058. [Google Scholar] [CrossRef]
- Wasilewski, M.; Brar, L.S. Effect of the Inlet Duct Angle on the Performance of Cyclone Separators. Sep. Purif. Technol. 2019, 213, 19–33. [Google Scholar] [CrossRef]
- Safikhani, H.; Mehrabian, P. Numerical Study of Flow Field in New Cyclone Separators. Adv. Powder Technol. 2016, 27, 379–387. [Google Scholar] [CrossRef]
- Oka, Y.I.; Okamura, K.; Yoshida, T. Practical Estimation of Erosion Damage Caused by Solid Particle Impact. Wear 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Sedrez, T.A.; Decker, R.K.; da Silva, M.K.; Noriler, D.; Meier, H.F. Experiments and Cfd-Based Erosion Modeling for Gas-Solids Flow in Cyclones. Powder Technol. 2017, 311, 120–131. [Google Scholar] [CrossRef]
- Dehdarinejad, E.; Bayareh, M. Impact of Non-Uniform Surface Roughness on the Erosion Rate and Performance of a Cyclone Separator. Chem. Eng. Sci. 2022, 249, 117351. [Google Scholar] [CrossRef]
- Mirzaei, M.; Clausen, S.; Wu, H.; Nakhaei, M.; Zhou, H.; Jønck, K.; Jensen, P.A.; Lin, W. Investigation of Erosion in an Industrial Cyclone Preheater by Cfd Simulations. Powder Technol. 2023, 421, 118424. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, J.; Zhang, P.; Gao, F.; Chen, G.; Li, J. Effect of Local Erosion on the Flow Field and Separation Performance of the Cyclone Separator. Powder Technol. 2023, 413, 118007. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, Y.; Liu, W.; Xu., D. Experimental Study of the Effect of Different Forms of Deflectors on Cyclone Performance. Silicate Bulletin 2007, 26, 242–246. [Google Scholar] [CrossRef]
- Ji, R.; Zhao, Q.; Zhao, L.; Liu, Y.; Jin, H.; Wang, L.; Wu, L.; Xu, Z. Study On High Wear Resistance Surface Texture of Electrical Discharge Machining Based on a New Water-in-Oil Working Fluid. Tribol. Int. 2023, 180, 108218. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, S.; Dong, S.; Dong, K.; Zhang, Y.; Wang, B. Study of the Short-Circuit Flow and Circulation Flow’S Impact on Separation Performance of Cyclone Separator with Volute-Helical Inlet. Adv. Powder Technol. 2024, 35, 104281. [Google Scholar] [CrossRef]
- Zandie, M.; Kazemi, A.; Ahmadi, M.; Moraveji, M.K. A Cfd Investigation into the Enhancement of Down-Hole De-Oiling Hydro Cyclone Performance. J. Pet. Sci. Eng. 2021, 199, 108352. [Google Scholar] [CrossRef]
- Zhang, Y.; Reuterfors, E.; McLaury, B.; Shirazi, S.; Rybicki, E. Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows. Wear 2007, 263, 330–338. [Google Scholar] [CrossRef]
- Cao, M.-Q.; Chen, J.-Y.; Hu, B.; Meng, H.; Li, S.-Y.; Wei, Y.-D. Experimental Study on Flow Characteristics of Ash Band in a Cyclone Separator Using Hpiv Techniques. Sep. Purif. Technol. 2024, 337, 126437. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, M.; Chang, L.; Pan, K.; Shen, X.; Zhong, S.; Xu, J.; Liu, L.; Li, G.; Chen, L. Assessing the Particulate Matter Emission Reduction Characteristics of Small Turbofan Engine Fueled with 100% Hefa Sustainable Aviation Fuel. Sci. Total Environ. 2024, 945, 174128. [Google Scholar] [CrossRef]
- Wang, B.; Xu, D.; Chu, K.; Yu, A. Numerical Study of Gas–Solid Flow in a Cyclone Separator. Appl. Math. Model. 2006, 30, 1326–1342. [Google Scholar] [CrossRef]
Do | Dc | D1 | D2 | H1 | H2 | Du |
---|---|---|---|---|---|---|
0.1 | 0.2 | 0.05 | 0.1 | 0.4 | 0.4 | 0.05 |
L (m) | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
Forced vortex | 0.061 | 0.045 | 0.045 | 0.046 |
Free vortex | 0.029 | 0.045 | 0.045 | 0.044 |
Erosion (kg/m2) | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
20 m/s | 1.08 × 10−6 | 1.89 × 10−8 | 9.8 × 10−9 | 1.36 × 10−7 |
25 m/s | 9.07 × 10−7 | 1.91 × 10−8 | 1.11 × 10−6 | 1.36 × 10−7 |
30 m/s | 9.01 × 10−7 | 1.58 × 10−8 | 5.48 × 10−7 | 1.36 × 10−7 |
Erosion (kg/m2) | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
20 m/s | 1.97 × 10−6 | 7.3 × 10−8 | 1.43 × 10−8 | 4.98 × 10−7 |
25 m/s | 7.32 × 10−8 | 7.32 × 10−8 | 1.49 × 10−8 | 4.99 × 10−7 |
30 m/s | 9.01 × 10−7 | 6.35 × 10−8 | 5.88 × 10−9 | 4.99 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, X.; Gao, Y. Impact of the Draft Plate on the Wall Erosion and Flow Field Stability of a Cyclone Separator. Water 2024, 16, 3142. https://doi.org/10.3390/w16213142
Zhang Y, Zhang X, Gao Y. Impact of the Draft Plate on the Wall Erosion and Flow Field Stability of a Cyclone Separator. Water. 2024; 16(21):3142. https://doi.org/10.3390/w16213142
Chicago/Turabian StyleZhang, Yida, Xiaodong Zhang, and Yanjiao Gao. 2024. "Impact of the Draft Plate on the Wall Erosion and Flow Field Stability of a Cyclone Separator" Water 16, no. 21: 3142. https://doi.org/10.3390/w16213142
APA StyleZhang, Y., Zhang, X., & Gao, Y. (2024). Impact of the Draft Plate on the Wall Erosion and Flow Field Stability of a Cyclone Separator. Water, 16(21), 3142. https://doi.org/10.3390/w16213142