Feasibility Study on Geothermal Dolomite Reservoir Reinjection with Surface Water in Tianjin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.2.1. Sample Description
2.2.2. Pre-Treatment of Water Samples Before Experiments
2.2.3. Experimental Setup and Conditions
2.3. Collection and Test Analysis of Reaction Samples
3. Results and Discussion
3.1. Geochemical Response of Geothermal Reservoir Fluids
3.2. Geochemical Response of Reservoir Minerals
3.3. Main Geochemical Processes and Their Effects on Reservoirs
4. Conclusions
- (1)
- The lake water in the Dongli Lake area is Alkaline (pH = 8.3) and of the Cl·HCO3-Na type. The TDS of the water is 1618 mg/L, which is similar to the geothermal reservoir fluid, and the carbonate minerals (calcite, dolomite and aragonite) are supersaturated.
- (2)
- In the initial stage of the untreated lake water recharge experiment, plagioclase dissolved and released alkali metals such as K, Ca, Na and SiO2, resulting in the supersaturation of dolomite, calcite and potassium feldspar in the solution and precipitation. As the reaction progressed, incomplete dissolution and precipitation caused some dolomite to dissolve, while calcite continued to precipitate, eventually leading to a significant decrease in TDS. The calculated precipitation amount was 142.6 mg·L−1, which is equivalent to a 0.09% increase in mineral mass, indicating that the impact of lake water recharge on the reservoir structure is limited.
- (3)
- This series of experiments show that after the untreated lake water is directly recharged into the dolomite geothermal reservoir, the water–rock interaction will promote the continuous precipitation of calcite, potassium feldspar and illite. Among them, the clay mineral illite is the most important mineral that affects the porosity and permeability of the reservoir. The influence of different forms of illite on the reservoir structure is also different, but the morphological detection of illite is still underway, so its influence on the reservoir structure remains to be further determined.
- (4)
- The simulation results of dolomite water–rock equilibrium under different environmental change conditions (varying temperatures, partial pressures of CO2, pH values and initial aqueous geochemical conditions) indicate the following: At higher temperatures, the solubility of carbonates decreases, leading to easier precipitation. As the partial pressure of CO2 increases, the solubility of carbonate rocks increases, making dolomite more susceptible to dissolution. A decrease in pH value results in greater dolomite dissolution. Higher concentrations of Ca2⁺ and Mg2⁺ in the initial water promote dolomite precipitation, with Mg2⁺ having a more significant impact.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.H.; Li, Y.M.; Li, X.Y.; Zhang, H.B.; Luo, J. Characterization and integrated utilization of waste water from oil production stations in shengli oil fields. J. Eng. Geol. 2013, 23, 989–995. [Google Scholar]
- Pang, Z.H.; Kong, Y.L.; Pang, J.M.; Hu, S.B.; Wang, J.Y. Study on geothermal resources and exploitation in Xiongan New Area. Bull. Chin. Acad. Sci. 2017, 32, 1224–1230. [Google Scholar]
- Li, X.Y.; Zhao, M.H.; Yang, Y.H.; Xi, F.K.; Huang, R.; Shang, B.; Zhang, H.B. Distribution characteristics and resource potential evaluation of limestone geothermal reservoir in Jiyang Depression. J. Eng. Geol. 2018, 26, 1105–1112. [Google Scholar]
- Liu, K.; Ye, C.; Liu, Y.Z.; Li, Z.P.; Sun, Y. Regionalization of geothermal resource potential in Beijing. J. Eng. Geol. 2018, 26, 551–560. [Google Scholar]
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015 worldwide review. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015. [Google Scholar]
- Li, J.; Ruan, C.X.; Tian, G.H. Annual Report of Dynamic Monitoring of Underground Hot Water in Tianjin During 2002–2005; Tianjin Geothermal Exploration and Development Design Institute: Tianjin, China, 2005. [Google Scholar]
- Zhao, S.M.; Cheng, W.Q.; Zhang, W. Clogging problems analysis for Neogene sandstone reservoir reinjection. Geotherm. Energy 2013, 6, 7–12. [Google Scholar]
- Axelsson, G.; Gunnlaugsson, E.; Jonasson, T.; Ólafsson, M. Low-temperature geothermal utilization in Iceland−Decades of experience. Geothermics 2010, 39, 329–338. [Google Scholar] [CrossRef]
- Rivera Diaz, A.; Kaya, E.; Zarrouk, S.J. Reinjection in geothermal fields: A worldwide review updates. Renew. Sustain. Energy Rev. 2016, 53, 105–162. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Pan, X.P. Successful Experience in Sustaining Long-Term Operation of Larderello Geothermal Power Station—The 100th Anniversary of Startup of Larderello Geothermal Power Station. Sino-Glob. Energy 2014, 2, 25–29. [Google Scholar]
- Majer, E.L.; Peterson, J.E. The impact of injection on seismicity at The Geysers, California Geothermal Field. Int. J. Rock Mech. Min. Sci. 2007, 44, 1079–1090. [Google Scholar] [CrossRef]
- Mroczek, E.; Graham, D.; Siega, C.; Bacon, L. Silica scaling in cooled silica saturated geothermal water: Comparison between Wairakei and Ohaaki geothermal fields. Geothermics 2017, 69, 145–152. [Google Scholar] [CrossRef]
- Mlcak, H.; Mirolli, M.; Hjartarson, H.; Húsavíkur, O. Notes from the North: A Report on the Debut Year of the 2 MW Kalina Cycle® Geothermal Power Plant in Húsavík, Iceland. Húsavík Perform. 2002, 26, 715–718. [Google Scholar]
- Romain, V.; Philippe, L.; Alain, D.; Christian, B. France Country Update. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015. [Google Scholar]
- Allan, M.; Jesper, M. Country Update Report for Denmark. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010. [Google Scholar]
- Fuchinp, H. Status of geothermal power generation in Japan. In Proceeding of the World Geothermal Congress, Kyushu, Japan, 28 May–10 June 2000. [Google Scholar]
- Xu, W. Study on Key Problems of Geothermal Reinjection in Xiaotangshan Area, Beijing. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Liu, Z.J. Suggestions on the improvement of Yangbajing geothermal power station. Therm. Power Gener. 1991, 1, 38–43. [Google Scholar]
- Yu, X. Completion of the first geothermal reinjection demonstration project of sandstone geothermal reservoir in Shandong. China Mining News, 26 April 2017. [Google Scholar]
- Feng, S.T.; Wang, C.M.; Yang, Y.B.; Song, W.H.; Liu, S.; Zhao, J.C. Impact assessment of reinjection on sandstone geothermal reservoir: A case study of Northwest Shandong depression. Acta Geol. Sin. 2019, 93, 158–167. [Google Scholar]
- Feng, H.X.; Yin, W.X. Anticorrosion Filter for Geothermal Reinjection and the Matching Technology Test. Explor. Eng. (Rock Soil Drill. Tunnel.) 2012, 2, 18–21. [Google Scholar]
- Sun, B.C.; Zeng, M.X.; Lin, L.; Zhao, S.M. Isotopic trace technique in geothermal pair recharging well system in Tianjin. Geol. Surv. Res. 2005, 28, 187–191. [Google Scholar]
- Lin, J.W.; Liu, X.M.; Gao, B.Z.; Wang, X.Y. Analyses and Discussion on Geothermal Reinjection Test in Tianjin. J. Henan Polytech. Univ. 2006, 25, 200–204. [Google Scholar]
- Wang, L.C.; Shen, J.; Cheng, W.Q.; Zhao, N.; Li, J. Plan of Research for Geothermal Reinjection Analysis in Jxw Reservoir in Tianjin. China Real Estate 2012, 25, 52–57. [Google Scholar]
- Su, Y.; Yang, F.; Wang, B.; Jia, Z.; Duan, Z. Reinjection of cooled water into sandstone geothermal reservoirs in China: A review. Geosci. J. 2017, 22, 199–207. [Google Scholar] [CrossRef]
- Zeng, M.X.; Ruan, C.X.; Zhao, Y.B.; Tian, G.H. Connect test between Karst Cranny Reservoir Pumping Well and Injection Well. Geol. Prospect. 2008, 44, 105–109. [Google Scholar]
- Wang, K.; Zhu, J.L. Study on Tracer Test and Reinjection of Doublet System In Tianjin Baserock Reservoir. Acta Energiae Solaris Sin. 2003, 24, 162–166. [Google Scholar]
- Stopa, J.; Wojnarowski, P. Analytical model of cold water front movement in a geothermal reservoir. Geothermics 2006, 35, 59–69. [Google Scholar] [CrossRef]
- Liu, H.J.; Li, Q.; Gou, Y.; Zhang, L.W.; Feng, W.T.; Liao, J.X.; Zhu, Z.W.; Wang, H.W.; Zhou, L. Numerical modelling of the cooling effect in geothermal reservoirs induced by injection of CO2 and cooled geothermal water. Oil Gas Sci. Technol. 2020, 75, 15. [Google Scholar] [CrossRef]
- Shen, J. A Study of the Technology for Geothermal Reservoir Reinjection Using Surface Water in the Dongli Lake of Tianjin. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Song, D. Influences of Dongli Lake Water Reinjection in Tianjin City on the Scaling Characteristics of Geothermal Reservoirs in Wumishan Formation, Jixian System. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Ruan, C.X.; Shen, J.; Li, L.L.; Liu, R.G.; Mou, S.X. Researches on the reinjection of Dongli Lake bedrock reservoir in Binhai NewArea. Geol. Bull. China 2017, 36, 1439–1449. [Google Scholar]
- Adegbite, J.O.; Al-Shalabi, E.W.; Ghosh, B. Geochemical modeling of engineered water injection effect on oil recovery from carbonate cores. J. Pet. Sci. Eng. 2018, 170, 696–711. [Google Scholar] [CrossRef]
- Tale, F.; Kalantariasl, A.; Shabani, A.; Abbasi, S.; Zohoorian, A.H.; Khamehchi, E. Experimental and simulation study of low salinity brine interactions with carbonate rocks. J. Pet. Sci. Eng. 2020, 184, 106497. [Google Scholar] [CrossRef]
- Egbe, D.I.O.; Jahanbani Ghahfarokhi, A.; Nait Amar, M.; Torsæter, O. Application of Low-Salinity Water flooding in Carbonate Cores: A Geochemical Modeling Study. Nat. Resour. Res. 2021, 30, 519–542. [Google Scholar] [CrossRef]
- Sharma, H.; Mohanty, K.K. An experimental and modeling study to investigate brine-rock interactions during low salinity water flooding in carbonates. J. Pet. Sci. Eng. 2018, 165, 1021–1039. [Google Scholar] [CrossRef]
- Cui, G.D.; Wang, Y.; Rui, Z.H.; Chen, B.L.; Ren, S.R.; Zhang, L. Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers. Energy 2018, 155, 281–296. [Google Scholar] [CrossRef]
- Mahzari, P.; Jones, A.P.; Oelkers, E.H. An integrated evaluation of enhanced oil recovery and geochemical processes for carbonated water injection in carbonate rocks. J. Pet. Sci. Eng. 2019, 181, 106188. [Google Scholar] [CrossRef]
- Yanaze, T.; Yoo, S.; Marumo, K.; Ueda, A. Prediction of permeability reduction due to silica scale deposition with a geochemical clogging model at Sumikawa Geothermal Power Plant. Geothermics 2019, 79, 114–128. [Google Scholar] [CrossRef]
- Shabani, A.; Kalantariasl, A.; Parvazdavani, M.; Abbasi, S. Geochemical and hydrodynamic modeling of permeability impairment due to composite scale formation in porous media. J. Pet. Sci. Eng. 2019, 176, 1071–1081. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, S.; Yang, L.; Wen, R.; He, C.; Zhao, Z.; Qin, G. Formation blockage risk analysis of geothermal water reinjection: Rock property analysis, pumping and reinjection tests, and long-term reinjection prediction. Geosci. Front. 2022, 13, 101299. [Google Scholar] [CrossRef]
- Zhang, L.; Chao, J.; Geng, S.; Zhao, Z.; Chen, H.; Luo, Y.; Qin, G. Particle migration and blockage in geothermal reservoirs during water reinjection: Laboratory experiment and reaction kinetic model. Energy 2020, 206, 118234. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, G.; Luo, Y.; Geng, S.; Yang, L.; Wen, R.; Chao, J.; Zhang, L. Experimental Study on Reservoir Physical Properties and Formation Blockage Risk in Geothermal Water Reinjection in Xining Basin: Taking Well DR2018 as an Example. Energies 2021, 14, 2671. [Google Scholar] [CrossRef]
- Yang, F.; Wang, G.; Hu, D.; Zhou, H.; Tan, X. Influence of water-rock interaction on permeability and heat conductivity of granite under high temperature and pressure conditions. Geothermics 2022, 100, 102347. [Google Scholar] [CrossRef]
- Gören, A.Y.; Topcu, G.; Demir, M.M.; Baba, A. Effect of high salinity and temperature on water–volcanic rock interaction. Environ. Earth Sci. 2021, 80, 74. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, B.-Y.; Lee, M.H.; Yang, M.J. Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: Experimental and geochemical modeling study of CO2–water–rock interactions. Environ. Earth Sci. 2021, 80, 81. [Google Scholar] [CrossRef]
- Fatah, A.; Ben Mahmud, H.; Bennour, Z.; Gholami, R.; Hossain, M. Geochemical modelling of CO2 interactions with shale: Kinetics of mineral dissolution and precipitation on geological time scales. Chem. Geol. 2022, 592, 120742. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, S.; He, Y.; Wang, Y.; Wan, X.; Cui, S.; Long, K. Experiment on CO2-brine-rock interaction during CO2 injection and storage in gas reservoirs with aquifer. Chem. Eng. J. 2021, 413, 127567. [Google Scholar] [CrossRef]
- Nikoo, A.H.; Malayeri, M.R. Interfacial interactions between scale-brine and various reservoir rocks. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125840. [Google Scholar] [CrossRef]
- Zheng, X.; Duan, C.; Xia, B.; Jiang, Y.; Wen, J. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field. J. Earth Sci. 2019, 30, 870–878. [Google Scholar] [CrossRef]
- Czinkota, I.; Osvald, M.; Szanyi, J.; Medgyes, T.; Kobor, B.; Balint, A. Analysis of Chemical and Biological Processes in Geothermal Systems-A Case Study. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015. [Google Scholar]
Sample ID | pH | F− | Cl− | SO42− | HCO3− | Na+ | K+ | Mg2+ | Ca2+ | SiO2 | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|
RL1 | 8.2 | 4.0 | 498.1 | 271.2 | 438.7 | 484.4 | 35.0 | 47.5 | 41.3 | 5.6 | 1618.3 |
RL2 | 7.4 | 4.6 | 503.3 | 287.2 | 234.3 | 484.0 | 35.3 | 12.8 | 28.2 | 31.0 | 1503.6 |
RL3 | 8.1 | 4.1 | 502.9 | 288.9 | 210.3 | 481.4 | 36.8 | 10.7 | 29.6 | 33.4 | 1493.1 |
RL4 | 8.2 | 2.9 | 479.8 | 286.5 | 276.4 | 464.0 | 34.0 | 18.0 | 41.0 | 11.3 | 1475.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Cai, Y.; Feng, Z.; Zhang, Q.; Hu, L.; Li, S. Feasibility Study on Geothermal Dolomite Reservoir Reinjection with Surface Water in Tianjin, China. Water 2024, 16, 3144. https://doi.org/10.3390/w16213144
Liu D, Cai Y, Feng Z, Zhang Q, Hu L, Li S. Feasibility Study on Geothermal Dolomite Reservoir Reinjection with Surface Water in Tianjin, China. Water. 2024; 16(21):3144. https://doi.org/10.3390/w16213144
Chicago/Turabian StyleLiu, Donglin, Yun Cai, Zhaolong Feng, Qiuxia Zhang, Lisha Hu, and Shengtao Li. 2024. "Feasibility Study on Geothermal Dolomite Reservoir Reinjection with Surface Water in Tianjin, China" Water 16, no. 21: 3144. https://doi.org/10.3390/w16213144
APA StyleLiu, D., Cai, Y., Feng, Z., Zhang, Q., Hu, L., & Li, S. (2024). Feasibility Study on Geothermal Dolomite Reservoir Reinjection with Surface Water in Tianjin, China. Water, 16(21), 3144. https://doi.org/10.3390/w16213144