Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming
Abstract
:1. Introduction
2. Nutrient Pollution
2.1. Legislation Aspects Addressing Nutrient Levels in Water
2.2. Nitrogen Pollution
2.2.1. Nitrogen Forms and Route from Agriculture to Water Bodies
- (a)
- 2NH3 + 3O2 → 2HNO2 + 2H2O + 168 kcal
- (b)
- HNO2 + ½O2 → HNO3 + 42 kcal
2.2.2. Discrimination of Nitrogen Sources in Water
2.2.3. Nitrogen Levels Resulted from Agricultural Practices in Water Bodies from Europe
- Groundwater
- Surface water
- Actual situation in EU
2.3. Phosphorus Pollution
2.3.1. Phosphorus Forms and Route from Agriculture to Water Bodies
2.3.2. Tracing Phosphorus Species in Water
2.3.3. Phosphorus Levels Resulted from Agricultural Practices in Water Bodies from Europe
- Surface water
- Actual situation in EU
3. Effects of Nutrient Pollution on Water and Human Health
3.1. Eutrophication
3.2. Adverse Effects on Human Health
- Methemoglobinemia (blue baby syndrome) has been described firstly by Comly in 1945 [87]. This manifestation occurs mainly to infants and the elderly and consists in the reduction of nitrate to nitrite, followed by the oxidation of ferrous ion (Fe+2) from hemoglobin (Hb) to ferric ion (Fe+3) in methemoglobin (MetHb), which is unable to bind oxygen.
- Formation of potential carcinogenic N-nitroso compounds
- Other health effects
4. Strategies for Managing Agricultural Practices to Minimize Water Pollution
- Identification of the critical level of plant-available phosphorus for each farming system and soil;
- Minimizing the transport of phosphorus to water by minimizing soil erosion;
- Before application of inputs, the farmers should consider existing soil phosphorus level combined with contributions from organic manures, sewage sludge, and chemical fertilizers;
- Plant-available phosphorus should not increase much above critical value.
- 4R nutrient stewardship (right fertilizer type, right amount, right placement, and right time) [105];
- Soil testing before application of nitrogen fertilizers to apply only the amount the crop needs;
- Application of nitrogen fertilizers under proper environmental conditions to prevent runoff;
- Use of environmentally friendly fertilizers that delay the release of nitrogen into soil [106];
- Application method (incorporation of the fertilizers into the soil or injecting).
5. Conclusions and Further Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 1 August 2024).
- Dowd, B.; Press, D.; Los Huertos, M. Agricultural nonpoint source water pollution policy: The case of California’s Central Coast. Agric. Ecosyst. Environ. 2008, 128, 151–161. [Google Scholar] [CrossRef]
- Statista. Global Consumption of Agricultural Fertilizer from 1965 to 2021, by Nutrient. Available online: https://www.statista.com/statistics/438967/fertilizer-consumption-globally-by-nutrient/ (accessed on 15 September 2024).
- Kleinman, P.J.A.; Sharpley, A.N.; McDowell, R.W.; Flaten, D.; Buda, A.; Tao, L.; Bergstrom, L.; Zhu, Q. Managing agricultural phosphorus for water quality protection: Principles for progress. Plant Soil 2011, 349, 169–182. [Google Scholar] [CrossRef]
- Wei, Q.; Wei, Q.; Xu, J.; Liu, Y.; Wang, D.; Chen, S.; Qian, W.; He, M.; Chen, P.; Zhou, X.; et al. Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives. Agric. Water Manag. 2024, 296, 108791. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community in the Field of Water Policy. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 1 August 2024).
- Fact Sheets on the European Union. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/74/water-protection-and-management (accessed on 1 August 2024).
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/eli/dir/1991/676/oj (accessed on 1 August 2024).
- Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater Against Pollution and Deterioration. Available online: https://eur-lex.europa.eu/eli/dir/2006/118/oj (accessed on 1 August 2024).
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 1 August 2024).
- Philips, G.; Pitt, J.-A. A Comparison of European Freshwater Nutrient Boundaries Used for the Water Framework Directive: A Report to WG ECOSTAT. Available online: https://circabc.europa.eu/sd/a/37778f00-5a8a-4198-9ff3-8b15360ba975/ComparisonNutrientBoundaries_2016J_FINAL%20for%20CIRCABC(0).pdf (accessed on 18 October 2024).
- Order 161/2006 for the Approval of the Normative Concerning the Classification of Surface Water Quality to Establish the Ecological Status of Water Bodies. Official Journal of Romania 2006, 511 Bis. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/74255 (accessed on 2 August 2024).
- Anas, M.; Liao, F.; Verma, K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Economic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Madjar, R. Agrochemistry, Plant and Soil (In Romanian); INVEL-Multimedia: Ilfov, Romania, 2008. [Google Scholar]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water and increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Li, S.-X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). In Advances in Agronomy; Sparks, D., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 156, pp. 159–217. [Google Scholar] [CrossRef]
- European Environment Agency. Nitrate in Groundwater. Available online: https://www.eea.europa.eu/en/analysis/indicators/nitrate-in-groundwater-8th-eap?activeAccordion=ecdb3bcf-bbe9-4978-b5cf-0b136399d9f8#footnote-R2UN69VW (accessed on 20 August 2024).
- Nikolenko, O.; Jurado, A.; Borges, A.; Knöller, K.; Brouyére, S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef]
- Kendall, C.; Elliott, E.; Wankel, S. Tracing anthropogenic inputs of nitrogen to ecocystems. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R., Lajtha, K., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; Volume 12, pp. 375–449. [Google Scholar] [CrossRef]
- Li, S.-L.; Liu, C.-Q.; Li, J.; Liu, X.; Chetelat, B.; Wang, B.; Wang, F. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach. Environ. Sci. Technol. 2010, 44, 1573–1578. [Google Scholar] [CrossRef]
- Hong, S.; Han, Y.; Kim, J.; Lim, B.R.; Park, S.-Y.; Choi, H.; Park, M.R.; Kim, E.; Lee, S.; Huh, Y.; et al. A Quantitative Approach for Identifying Nitrogen Sources in Complex Yeongsan River Watershed, Republic of Korea, Based on Dual Nitrogen Isotope Ratios and Hydrological Model. Water 2023, 15, 4275. [Google Scholar] [CrossRef]
- Hundey, E.J.; Russell, S.D.; Longstaffe, F.J.; Moser, K.A. Agriculture causes nitrate fertilization of remote alpine lakes. Nat. Commun. 2016, 7, 10571. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, W.; Zhang, F.; Liu, Y.; Li, Z. Identifying the nitrate transport and transformation under apple orchards in the loess deposit sing stable isotopes of water and nitrate. Agric. Ecosyst. Environ. 2024, 364, 108885. [Google Scholar] [CrossRef]
- Martinelli, G.; Dadomo, A.; De luca, D.A.; Mazzola, M.; Lasagna, M.; Pennisi, M.; Pilla, G.; Sacchi, E.; Saccon, P. Nitrate sources, accumulation and reduction in groundwater from Northern Italy: Insights provided by a nitrate and boron isotopic database. Appl. Geochem. 2018, 91, 23–35. [Google Scholar] [CrossRef]
- Guinoiseau, D.; Louvat, P.; Paris, G.; Chetelat, B.; Rocher, V.; Guérin, S.; Gaillardet, J. Are boron isotopes a reliable tracer of anthropogenic inputs to rivers over time? Sci. Total Environ. 2018, 626, 1057–1068. [Google Scholar] [CrossRef]
- Ehteshami, M.; Farahani Dolatabadi, N.; Tavassoli, S. Simulation of nitrate contamination in groundwater using artificial neural networks. Model. Earth Syst. Environ. 2016, 2, 28. [Google Scholar] [CrossRef]
- Atabati, A.; Adab, H.; Zolfaghari, G.; Nasrabadi, M. Modeling groundwater nitrate concentrations using spatial and non-spatial regression models in a semi-arid environment. Water Sci. Eng. 2022, 15, 218–227. [Google Scholar] [CrossRef]
- Stylianoudaki, C.; Trichakis, I.; Karatzas, G.P. Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks. Water 2022, 14, 1173. [Google Scholar] [CrossRef]
- Curk, M.; Glavan, M.; Pintar, M. Analysis of Nitrate Pollution Pathways on a Vulnerable Agricultural Plain in Slovenia: Taking the Local Approach to Balance Ecosystem Services of Food and Water. Water 2020, 12, 707. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.; Kumar, V.; Kapoor, D.; Subramanian, S.; Singh, J.; Ramamurthy, P. Nitrates in the environment: A critical review of their distribution, sensing, techniques, ecological effects and remediation. Chemosphere 2022, 287, 131996. [Google Scholar] [CrossRef] [PubMed]
- Vasile Scăețeanu, G.; Madjar, R.M.; Peticilă, G.A. Universal screening of private wells water quality in the Muntenia region, Romania. In Proceedings of the International Symposium “The Environment and Industry”, Bucharest, Romania, 26–27 September 2019. [Google Scholar] [CrossRef]
- Pele, M.; Vasile, G.; Artimon, M. Studies regarding nitrogen pollutants in well waters from Romania. Sci. Pap. Ser. A Agron. 2010, 53, 145–151. [Google Scholar]
- Raduly, O.-C.; Farkas, A. Nitrate, nitrite and microbial denitrification in drinking water from Ozun village (Covasna County, Romania) and the association between changes during water storage. Stud. UBB Biol. 2017, 62, 17–28. [Google Scholar] [CrossRef]
- Martonos, I.M.; Sabo, H.M. Quality of drinking water supplies in Almasu rural area (Salaj County, Romania). Carpath. J. Earth Environ. 2017, 12, 371–376. [Google Scholar]
- Perez-Martin, M.A.; Arora, M.; Monreal, T.E. Defining the maximum nitrogen surplus in water management plans to recover nitrate polluted aquifers in Spain. J. Environ. Manag. 2024, 356, 120770. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Kubiniok, J. Spring waters as an indicator of nitrate and pesticide pollution of rural watercourses from nonpoint sources: Results of repeated monitoring campaigns since the early 2000s in the low mountain landscape of Saarland, Germany. Environ. Sci. Eur. 2022, 34, 53. [Google Scholar] [CrossRef]
- Cruz, J.V.; Andrade, C.; Pacheco, D.; Mendes, S.; Cymbron, R. Nitrates in Groundwater Discharges from the Azores Archipelago: Occurrence and Fluxes to Coastal Waters. Water 2017, 9, 125. [Google Scholar] [CrossRef]
- Mesic, M.; Basic, F.; Kisic, I.; Zgorelec, Z. Nitrate concentration in drinking water from wells at three different locations in Northwest Croatia. Cereal Res. Commun. 2007, 35, 845–848. [Google Scholar] [CrossRef]
- Bankova, E. Assessment of the measures implemented in Bulgarian legislation to reduce the content of nitrates in groundwater used for public water supply. J. Biomed. Clin. Res. 2023, 16, 44–54. [Google Scholar] [CrossRef]
- Srećković, M.; Dugandžija, T.; Dragičević, I.; Matić, A.; Čapo, N.; Pantić, S.; Damnjanović, B. Trends in concentrations of nitrate in public water systems and private wells located in municipalities of the Mačva district (ten-year monitoring). Water Res. Manag. 2020, 10, 29–33. [Google Scholar]
- Fytianos, K.; Christophoridis, C. Nitrate, arsenic and chloride pollution of drinking water in Northern Greece. Elaboration by applying GIS. Environ. Monit. Assess. 2004, 93, 55–67. [Google Scholar] [CrossRef]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF (accessed on 1 August 2024).
- Karavoltsos, S.; Sakellari, A.; Mihopoulos, N.; Dassenakis, M.; Scoullos, M. Evaluation of the quality of drinking water in regions of Greece. Desalination 2008, 224, 317–329. [Google Scholar] [CrossRef]
- European Commission. Nitrates: Commission Decides to Refer Greece to the Court of Justice and Asks for Financial Sanctions. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1482 (accessed on 20 September 2024).
- Cepuder, P.; Shukla, M.K. Groundwater nitrate in Austria: A case study in Tullnerfeld. Nutr. Cycl. Agroecosyst. 2002, 64, 301–315. [Google Scholar] [CrossRef]
- Pisciotta, A.; Cusimano, G.; Favara, R. Groundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. J. Biochem. Explor. 2015, 156, 89–100. [Google Scholar] [CrossRef]
- Stockmarr, J. Groundwater quality monitoring in Denmark. GEUS 2005, 7, 33–36. [Google Scholar] [CrossRef]
- Heaton, T.; Stuart, M.; Sapiano, M.; Sultana, M.M. An isotope study of the sources of nitrate in Malta’s groundwater. J. Hydrol. 2012, 414–415, 244–254. [Google Scholar] [CrossRef]
- Natural Resources Institute Finland. Nitrate Content in Surface Water and Groundwater. Available online: https://www.luke.fi/en/statistics/indicators/cap-indicators/nitrate-content-in-surface-water-and-groundwater (accessed on 20 September 2024).
- Bouza-Deano, R.; Ternero-Rodriguez, M.; Fernandez-Espinosa, A.J. Trend study and assessment of surface water quality in the Ebro River (Spain). J. Hydrol. 2008, 361, 227–239. [Google Scholar] [CrossRef]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef]
- Dunca, A.-M. Water pollution and water quality assessment of major transboundary rivers from Banat (Romania). J. Chem. 2018, 2018, 9073763. [Google Scholar] [CrossRef]
- Sandu, M.A.; Vîrsta, A.; Vasile Scăețeanu, G.; Nicolae, C.G.; Iliescu, A.I.; Ivan, I.; Stoian, M.; Madjar, R.M. Water quality monitoring of Moara Domnească pond, Ilfov County, using UAV-based RGB imaging. AgroLife Sci. J. 2023, 12, 191–201. [Google Scholar] [CrossRef]
- Berbecea, A.; Radulov, I.; Nita, L.; Vogyvolgyi, C.; Lato, A.; Őkros, A.; Crista, F.; Lato, K.I. The quality of Maros River water in Romania Hungary cross border area. RJAS 2014, 46, 3–13. [Google Scholar]
- Seymenov, K. Assessment of water pollution with nitrogen and phosphorus along the course of a river: A case study from Northern Bulgaria. J. Bulg. Geogr. Soc. 2022, 47, 35–44. [Google Scholar] [CrossRef]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Gikas, G.D.; Sylaios, G.K.; Tsihrintzis, V.A.; Konstantinou, I.K.; Albanis, T.; Boskidis, I. Comparative evaluation of river chemical status based on WFD methodolody and CCME water quality index. Sci. Total Environ. 2020, 745, 140849. [Google Scholar] [CrossRef]
- Fact Sheet. Surface and Groundwater Pollution. Available online: https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2022-08/02_surface_and_groundwater_pollution.pdf (accessed on 20 September 2024).
- Kuczyńska, A.; Jarnuszewski, G.; Nowakowska, M.; Wexler, S.; Wiśniowski, Z.; Burczyk, P.; Durkowski, T.; Woźnicka, M. Identifying causes of poor water quality in a Polish agricultural catchment for designing effective and targeted mitigation measures. Sci. Total Environ. 2021, 765, 144125. [Google Scholar] [CrossRef] [PubMed]
- Leoni, B.; Patelli, M.; Soler, V.; Nava, V. Ammonium Transformation in 14 Lakes along a Trophic Gradient. Water 2018, 10, 265. [Google Scholar] [CrossRef]
- European Environment Agency. Nitrate in Rivers and Groundwater—Nutrients in European Water Bodies. Available online: https://www.eea.europa.eu/data-and-maps/daviz/nitrate-in-groundwater-and-rivers-2#tab-chart_2 (accessed on 20 August 2024).
- European Environment Agency. Ammonium in European Rivers. Available online: https://www.eea.europa.eu/data-and-maps/daviz/rivers-ammonium-7/#tab-chart_3 (accessed on 20 August 2024).
- Lizcano-Toledo, R.; Reyes-Martín, M.P.; Celi, L.; Fernández-Ondoño, E. Phosphorus Dynamics in the Soil–Plant–Environment Relationship in Cropping Systems: A Review. Appl. Sci. 2021, 11, 11133. [Google Scholar] [CrossRef]
- Șimon, A.; Russu, F.; Ceclan, A.; Popa, A.; Bărdaș, M.; Chețan, F.; Rusu, T. Mineral fertilization—An important factor in obtaining maize harvests. AgroLife Sci. J. 2022, 11, 218–225. [Google Scholar] [CrossRef]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press Taylor&Francis Group: Boca Raton, FL, USA, 2009; pp. 91–123. [Google Scholar]
- Davies, C.; Surridge, B.; Gooddy, D. Phosphate oxygen isotopes within aquatic ecosystems: Global data synthesis and future research priorities. Sci. Total. Environ. 2014, 496, 563–575. [Google Scholar] [CrossRef]
- Gruau, G.; Legeas, M.; Riou, C.; Gallacier, E.; Martineau, F.; Henin, O. The oxygen isotope composition of dissolved anthropogenic phosphates: A new tool for eutrophication research? Water Res. 2005, 39, 232–238. [Google Scholar] [CrossRef]
- Jacquemin, S.J.; Jaqueth, A.L. Isotopic Differentiation (δ18OPO4) of Inorganic Phosphorus among Organic Wastes for Nutrient Runoff Tracing Studies: A Summary of the Literature with Refinement of Livestock Estimates for Grand Lake St. Marys Watershed (Ohio). Pollutants 2024, 4, 316–323. [Google Scholar] [CrossRef]
- Granger, S.; Heaton, T.; Pfahler, V.; Blackwell, M.; Yuan, H.; Collins, A. The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK. Sci. Total. Environ. 2017, 574, 680–690. [Google Scholar] [CrossRef]
- Ishida, T.; Tamura, M.; Kimbi, S.B.; Tomozawa, Y.; Saito, M.; Hirayama, Y.; Nagasaka, I.; Onodera, S.-I. Evaluation of phosphorus entichment in groundwater by legacy phosphorus in orchard soils with high phosphorus adsorption capacity using phosphate oxygen isotope analysis. Environ. Sci. Technol. 2024, 58, 5372–5382. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, Y.; Zhou, T.; Yuan, D. Determination of total phosphorus in natural waters with a simple neutral digestion method using sodium persulfate. Limnol. Oceanogr. Methods 2017, 15, 372–380. [Google Scholar] [CrossRef]
- Boyd, C.E. Phosphorus. In Water Quality, 3rd ed.; Boyd, C.E., Ed.; Springer: Cham, Switzerland, 2020; pp. 291–309. [Google Scholar] [CrossRef]
- Johnson, A.E.; Steen, I. Understanding Phosphorus and Its Use in Agriculture. European Fertilizers Manufacturers Association. Available online: https://fertiliser-society.org/wp-content/uploads/2019/11/EFMA-Phosphorus-booklet-2000.pdf (accessed on 10 September 2024).
- Fones, G.; Bakir, A.; Gray, J.; Mattingley, L.; Measham, N.; Knight, P.; Bowes, M.; Greenwood, R.; Mills, G. Using high-frequency phosphorus monitoring for water quality management: A case study of the upper River Itchen, UK. Environ. Monit. Assess. 2020, 192, 184. [Google Scholar] [CrossRef] [PubMed]
- Janicka, E.; Kanclerz, J.; Wiatrowska, K.; Budka, A. Variability of nitrogen and phosphorus content and their forms in waters of a river-lake system. Front. Environ. Sci. 2022, 10, 874754. [Google Scholar] [CrossRef]
- Umwelt Bundesamt. Indicator: River Eutrophication by Phosphorus. Available online: https://www.umweltbundesamt.de/en/data/environmental-indicators/indicator-river-eutrophication-phosphorus#at-a-glance (accessed on 20 August 2024).
- Hungarian Central Statistical Office. Available online: https://www.ksh.hu/stadat_files/kor/en/kor0028.html (accessed on 20 August 2024).
- European Environment Agency. Nutrients in Freshwater in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/nutrients-in-freshwater-in-europe (accessed on 20 August 2024).
- Nürnberg, G.K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manag. 1996, 12, 432–447. [Google Scholar] [CrossRef]
- Baldwin, D. Water quality in the Murray-Darling Basin: The potential impacts of climate change. In Ecohydrology from Catchment to Coast; Hart, B., Bond, N., Byron, N., Pollino, C., Stewardson, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 137–159. [Google Scholar] [CrossRef]
- Sandu, M.A.; Madjar, R.M.; Preda, M.; Vîrsta, A.; Stavrescu-Bedivan, M.-M.; Vasile Scăețeanu, G. Assessment of Water Quality and Parasitofauna, and a Biometric Analysis of the Prussian Carp of the Romanian Lentic Ecosystem in Moara Domnească, Ilfov County. Water 2023, 15, 3978. [Google Scholar] [CrossRef]
- Schindler, D.; Carpenter, S.; Chapra, S.; Hecky, R.; Orihel, D. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef]
- Gooddy, D.; Lapworth, D.; Bennett, S.; Heaton, T.; Williams, P.; Surridge, B. A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Water Res. 2016, 88, 623–633. [Google Scholar] [CrossRef]
- Balasuriya, B.T.G.; Ghose, A.; Gheewala, S.; Prapaspongsa, T. Assessment of eutrophication potential from fertilizer application in agricultural systems in Thailand. Sci. Total. Environ. 2022, 833, 154993. [Google Scholar] [CrossRef]
- Falconer, I.R.; Humpage, A.R. Health Risk Assessment of Cyanobacterial (Blue-green Algal) Toxins in Drinking Water. Int. J. Environ. Res. Public Health 2005, 2, 43–50. [Google Scholar] [CrossRef]
- Hilborn, E.D.; Beasley, V.R. One Health and Cyanobacteria in Freshwater Systems: Animal Illnesses and Deaths Are Sentinel Events for Human Health Risks. Toxins 2015, 7, 1374–1395. [Google Scholar] [CrossRef]
- Fraser, P. Health aspects of nitrate in drinking water. Sci. Total Environ. 1981, 18, 103–116. [Google Scholar] [CrossRef]
- Greer, F.; Shannon, M. Infant methemoglobinemia: The role of dietary nitrate in food and water. Pediatrics 2005, 116, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect. 2004, 112, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- WHO. Nitrate and Nitrite in Drinking Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2016. Available online: https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/chemical-hazards-in-drinking-water/nitrate-nitrite (accessed on 20 August 2024).
- Van Breda, S.; Mathijs, K.; Sagi-Kiss, V.; Kuhnle, G.; Van der Veer, B.; Jones, R.; Sinha, R.; Ward, M.; Kok, T. Impact of high drinking water nitrate levels on the endogenous formation of apparent N-nitroso compounds in combination with meat intake in healthy volunteers. Environ. Health 2019, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Essien, E.E.; Said Abasse, K.; Côté, A.; Mohamed, K.S.; Baig, M.M.F.A.; Habib, M.; Naveed, M.; Yu, X.; Xie, W.; Jinfang, S.; et al. Drinking-water nitrate and cancer risk: A systematic review and meta-analysis. Arch. Environ. Occup. Health 2020, 77, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Piacetti, R.; Deeney, M.; Pastorino, S.; Miller, M.; Shah, A.; Leon, D.; Dangour, A.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res. 2022, 210, 112988. [Google Scholar] [CrossRef]
- Grout, L.; Chambers, T.; Hales, S.; Prickett, M.; Baker, M.; Wilson, N. The potential human hazard of nitrates in drinking water: A media discourse analysis in a high-income country. Environ. Health 2023, 22, 9. [Google Scholar] [CrossRef]
- Jacobsen, B.; Hansen, B.; Schullehner, J. Health-economic valuation of lowering nitrate standards in drinking water related to colorectal cancer in Denmark. Sci. Total Environ. 2024, 906, 167368. [Google Scholar] [CrossRef]
- Gatseva, P.; Argirova, M. High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant woman living in rural Bulgarian areas. Int. J. Hyg. Environ. Health 2008, 211, 555–559. [Google Scholar] [CrossRef]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Lin, L.; St Clair, S.; Gamble, G.; Crowther, C.; Dixon, L.; Bloomfield, F.; Harding, J. Nitrate contamination in drinking water and adverse reproductive and birth outcomes: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 563. [Google Scholar] [CrossRef]
- Wei, C.; Vanhatalo, A.; Kadach, S.; Stoyanov, Z.; Abu-Alghayth, M.; Black, M.; Smallwood, M.; Rajaram, R.; Winyard, P.; Jones, A. Reduction in blood pressure following acute dietary nitrate ingestion is correlated with increased red blood cell S-nitrosothiol concentrations. Nitric Oxide 2023, 138-139, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Water pollution by agriculture. Phil. Trans. R. Soc. B 2008, 363, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Šileikienė, D.; Čiteikė, L.; Mozgeris, G.; Takayoshi, K. The Impact of Organic and Intensive Agricultural Activity on Groundwater and Surface Water Quality. Water 2023, 15, 1240. [Google Scholar] [CrossRef]
- University of Minnesota Extension. Nutrient Management. Crop Calculators. Available online: https://apps.extension.umn.edu/agriculture/nutrient-management/crop-calculators (accessed on 15 August 2024).
- NSW Government. Crop Nutrient Replacement: Calculator for Fertilizer Requirements. Available online: https://www.dpi.nsw.gov.au/agriculture/horticulture/tropical/fertilising/replacement (accessed on 15 August 2024).
- Johnson, A.E.; Dawson, C.J. Phosphorus in Agriculture and in Relation to Water Quality; Conferederation House: Peterborough, UK, 2005; pp. 43–47. [Google Scholar]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613-614, 829–839. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Hardie, M. Two-dimensional modelling of nitrate flux in a commercial apple orchard. Soil Sci. Am. J. 2017, 81, 1235–1246. [Google Scholar] [CrossRef]
- Kurtzman, D.; Shapira, R.; Bar-Tal, A.; Fine, P.; Russo, D. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions. J. Contam. Hydrol. 2013, 151, 93–104. [Google Scholar] [CrossRef]
- Whalen, J.; Thomas, B.; Sharifi, M. Novel Practices and Smart Technologies to Maximize the Nitrogen Fertilizer Value of Manure for Crop Production in Cold Humid Temperate Regions. In Advances in Agronomy; Sparks, D., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–85. [Google Scholar] [CrossRef]
- Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control) (Recast). Available online: https://eur-lex.europa.eu/eli/dir/2010/75/oj (accessed on 1 August 2024).
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Chai, Y.; Pannell, D.; Pardey, P. Nudging farmers to reduce water pollution from nitrogen fertilizer. Food Policy 2023, 120, 102525. [Google Scholar] [CrossRef]
Extraction Method | Optimum | Environmental |
---|---|---|
Mehlich-1 | 13–25 | >55 |
Mehlich-3 | 25–50 | >50 |
Bray-1 | 20–40 | >75 |
Olsen | 12 | >50 |
Trophic State | Total Phosphorus, mg L−1 | Total Nitrogen, mg L−1 | Chlorophyll “a”, μg L−1 |
---|---|---|---|
ultraoligotrophic | <0.005 | <0.2 | <1 |
oligotrophic | 0.005–0.01 | 0.2–0.4 | 1–2.5 |
mesotrophic | 0.01–0.03 | 0.4–0.65 | 2.5–8 |
eutrophic | 0.03–0.1 | 0.65–1.5 | 8–25 |
hypertrophic | >0.1 | >1.5 | >25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madjar, R.M.; Vasile Scăețeanu, G.; Sandu, M.A. Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming. Water 2024, 16, 3146. https://doi.org/10.3390/w16213146
Madjar RM, Vasile Scăețeanu G, Sandu MA. Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming. Water. 2024; 16(21):3146. https://doi.org/10.3390/w16213146
Chicago/Turabian StyleMadjar, Roxana Maria, Gina Vasile Scăețeanu, and Mirela Alina Sandu. 2024. "Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming" Water 16, no. 21: 3146. https://doi.org/10.3390/w16213146
APA StyleMadjar, R. M., Vasile Scăețeanu, G., & Sandu, M. A. (2024). Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming. Water, 16(21), 3146. https://doi.org/10.3390/w16213146