Influence of Salinity Level on the Treatment Performance and Membrane Fouling of MBRs Treating Saline Industrial Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. System Start-Up and Operations
2.3. Evaluation Parameters and Analytical Techniques
2.4. Statistics
3. Results and Discussion
3.1. Quality of Influent Wastewater
3.2. Organic Matter Removal and Effects of Salinity Level
3.3. Nutrient Removal and the Impact of Salinity Level
3.4. Permeate Flux and TMP During the Treatment Runs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vo, T.K.Q.; Hoang, Q.H.; Ngo, H.H.; Tran, C.S.; Ninh, T.N.N.; Le, S.L.; Nguyen, A.T.; Pham, T.T.; Nguyen, T.B.; Lin, C.; et al. Influence of salinity on microalgae-bacteria symbiosis treating shrimp farming wastewater. Sci. Total Environ. 2023, 902, 166111. [Google Scholar] [CrossRef] [PubMed]
- Charazińska, S.; Lochyński, P.; Markiewicz, M.; Stolte, S.; Burszta-Adamiak, E. Treatment of electropolishing industrial wastewater and its impact on the immobilization of Daphnia magna. Environ. Res. 2022, 212, 113438. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.D.; Yadav, R.K.; Narjary, B.; Yadav, G.; Jat, H.S.; Sheoran, P.; Meena, M.K.; Antil, R.S.; Meena, B.L.; Singh, H.V.; et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Manag. 2019, 84, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Thakur, A.; Garg, N.; Devi, P. Impact of Industrial Effluents on Groundwater. In Groundwater Geochemistry: Pollution and Remediation Methods; Madhav, S., Singh, P., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Afrad, M.S.I.; Monir, M.B.; Haque, M.E.; Barau, A.A.; Haque, M.M. Impact of industrial effluent on water, soil and Rice production in Bangladesh: A case of Turag River Bank. J. Environ. Health Sci. Eng. 2020, 18, 825–834. [Google Scholar] [CrossRef]
- Giwa, A.; Dufour, V.; Al Marzooqi, F.; Al Kaabi, M.; Hasan, S.W. Brine management methods: Recent innovations and current status. Desalination 2017, 407, 1–23. [Google Scholar] [CrossRef]
- Shi, J.; Huang, W.; Han, H.; Xu, C. Review on treatment technology of salt wastewater in the coal chemical industry of China. Desalination 2020, 493, 114640. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, V.K.; Majumder, A.; Gupta, B.; Gupta, A.K. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies and performance enhancement. J. Environ. Chem. Eng. 2021, 9, 105775. [Google Scholar] [CrossRef]
- Kang, W.; Cui, X.; Cui, Y.; Bao, L.; Ma, K. Assessment of high salinity wasewater treatment with dewatered alum sludge-aerobic membrane bioreactor. Ecol. Chem. Eng. 2022, 29, 77–86. [Google Scholar]
- Gao, Y.; Shao, G.; Wu, S.; Xiaojun, W.; Lu, J.; Cui, J. Changes in soil salinity under treatedwastewater irrigation: A meta-analysis. Agric. Water Manag. 2021, 255, 1056986. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, J.; Chen, Z. Combination of ozonation and biological aerated filter (BAF) for bio-treated coking wastewater. Sep. Purif. Technol. 2014, 132, 610–615. [Google Scholar] [CrossRef]
- Fan, H.; Wang, F.; Ma, J.; Li, E.; Zhou, X.; Zhang, Y.; Chu, H. Field-scale zero liquid discharge of coking wastewater—Operating efficiency and environmental impact. J. Clean. Prod. 2023, 424, 138736. [Google Scholar] [CrossRef]
- Kose Mutlu, B.; Ozgun, H.; Ersahin, M.E.; Kaya, R.; Eliduzgun, S.; Altinbas, M.; Kinaci, C.; Koyuncu, I. Impact of salinity on the population dynamics of microorganisms in a membrane bioreactor treating produced water. Sci. Total Environ. 2019, 646, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, Q.; Li, Q.X.; Jiang, L.; Kong, J.; Ke, M.; Arslan, M.; Gamal El-Din, M.; Chen, C. Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network. Bioresour. Technol. 2020, 313, 123687. [Google Scholar] [CrossRef] [PubMed]
- Corsino, S.F.; Capodici, M.; Torregrossa, M.; Viviani, G. A comprehensive comparison between halophilic granular and flocculent sludge in withstanding short and long-term salinity fluctuations. J. Water Process Eng. 2018, 22, 265–275. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, G.; Li, J.; Chen, S.Y.; Li, Y.; Li, W.T.; Li, A.M. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading. Bioresour. Technol. 2016, 216, 714–721. [Google Scholar] [CrossRef]
- Lefebvre, O.; Vasudevan, N.; Torrijos, M.; Thanasekaran, K.; Moletta, R. Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water Res. 2006, 40, 1492–1500. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Mahadevan, S.; Sekar, S.; Rajakumar, S. Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microb. Cell Factories 2008, 7, 15. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Dhandapani, B.; Mahadevan, S. Optimization studies on the production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment. Braz. J. Microbiol. 2011, 42, 1506–1515. [Google Scholar] [CrossRef]
- Vo, T.D.H.; Bui, X.T.; Dang, B.T.; Nguyen, T.T.; Nguyen, V.T.; Tran, D.P.H.; Nguyen, P.T.; Boller, M.; Lin, K.Y.A.; Varjani, S.; et al. Influence of organic loading rates on treatment performance of membrane bioreactor treating tannery wastewater. Environ. Technol. Innov. 2021, 24, 101810. [Google Scholar] [CrossRef]
- Song, W.; Xu, D.; Bi, X.; Ng, H.Y.; Shi, X. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresour. Technol. 2020, 314, 123715. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, Z.; Zeng, F.; Yang, Y.; Li, X. Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge. Desalination 2021, 518, 115303. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Li, J.; Gao, R.; Kao, C.; Li, X.; Peng, Y. Nitrogen removal from high-saline municipal wastewater via anammox-based process driven by both nitritation and denitratation. Chem. Eng. J. 2023, 462, 142269. [Google Scholar] [CrossRef]
- Song, Q.; Chen, X.; Hua, Y.; Chen, S.; Ren, L.; Dai, X. Biological treatment processes for saline organic wastewater and related inhibition mechanisms and facilitation techniques: A comprehensive review. Environ. Res. 2023, 239, 117404. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, D.; Wang, J.; Xu, Q.; Fang, J.; Yue, Z. Regulatory of salinity on assembly of activated sludge microbial communities and nitrogen transformation potential in industrial plants of the lower Yangtze River basin. Environ. Res. 2024, 251, 118769. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Acquah, I.; Liu, H.; Li, W.; Tan, S. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere 2019, 220, 1150–1162. [Google Scholar] [CrossRef]
- Cao, T.N.D.; Bui, X.T.; Le, L.T.; Dang, B.T.; Tran, D.P.H.; Vo, T.K.Q.; Tran, H.T.; Nguyen, T.B.; Mukhtar, H.; Pan, S.Y.; et al. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. Bioresour. Technol. 2022, 363, 127831. [Google Scholar] [CrossRef]
- Amin, M.M.; Khiadani (Hajian), M.H.; Fatehizadeh, A.; Taheri, E. Validation of linear and non-linear kinetic modeling of saline wastewater treatment by sequencing batch reactor with adapted and non-adapted consortiums. Desalination 2014, 344, 228–235. [Google Scholar] [CrossRef]
- Woolard, C.R.; Irvine, R.L. Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res. 1995, 29, 1159–1168. [Google Scholar] [CrossRef]
- Lou, B.; Yang, Z.; Zheng, S.; Ou, D.; Hu, W.; Ai, N. Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Microorganisms 2024, 12, 1173. [Google Scholar] [CrossRef]
- Jang, D.; Hwang, Y.; Shin, H.; Lee, W. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresour. Technol. 2013, 141, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Di Trapani, D.; Di Bella, G.; Mannina, G.; Torregrossa, M.; Viviani, G. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: Influence of wastewater salinity variation. Bioresour. Technol. 2014, 162, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xie, Y.; Sun, W.; Xu, Y.; Sun, Y. Research Progress of High-Salinity Wastewater Treatment Technology. Water 2023, 15, 684. [Google Scholar] [CrossRef]
- Carrera, P.; Casero-Díaz, T.; Castro-Barros, C.M.; Méndez, R.; Val del Río, A.; Mosquera-Corral, A. Features of aerobic granular sludge formation treating fluctuating industrial saline wastewater at pilot scale. J. Environ. Manag. 2021, 296, 113135. [Google Scholar] [CrossRef] [PubMed]
- Tsipa, A.; Papalli, M.; Christou, A.; Pissaridou, P.; Vasquez, M.I. Ex-situ biological treatment of industrial saline seafood wastewater by salt-tolerant mixed cultures and phytotoxicity evaluation. J. Environ. Chem. Eng. 2023, 11, 109195. [Google Scholar] [CrossRef]
- Ringleben, L.; Weise, T.; Truong, H.T.T.; Anh, L.H.; Pfaff, M. Experimental and model-based characterisation of Bacillus spizizenii growth under different temperature, pH and salinity conditions prior to aquacultural wastewater treatment application. Biochem. Eng. J. 2022, 187, 108630. [Google Scholar] [CrossRef]
- Alighardashi, A.; Pakan, M.; Jamshidi, S.; Shariati, F.P. Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatmenty. Membr. Water Treat. 2017, 8, 517–528. [Google Scholar] [CrossRef]
- Zou, X.; Gao, M.; Yao, Y.; Zhang, Y.; Guo, H.; Liu, Y. Efficient nitrogen removal from ammonia rich wastewater using aerobic granular sludge (AGS) reactor: Selection and enrichment of effective microbial community. Environ. Res. 2024, 251, 118573. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Shen, Y.; Li, J.; Zhou, W.; Song, H.; Liu, M.; Wang, H. Impact of salinity on anaerobic ceramic membrane bioreactor for textile wastewater treatment: Process performance, membrane fouling and machine learning models. J. Environ. Manag. 2023, 345, 118717. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, K.; Wang, S.; Li, M.; Wang, Z.; Wang, S.; Li, Y.; Deng, Y.; Li, X.; Wang, D.; et al. The elevation of salinity above 1% deteriorated nitrification performance and reshaped nitrifier community of an MBR: An often overlooked factor in the treatment of high-strength ammonium wastewater. Chemosphere 2023, 335, 139072. [Google Scholar] [CrossRef]
- Uygur, A.; Kargi, F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzym. Microb. Technol. 2004, 34, 313–318. [Google Scholar] [CrossRef]
- Xu, H.; Deng, Y.; Zou, J.; Zhang, K.; Li, X.; Yang, Y.; Huang, S.; Liu, Z.Q.; Wang, Z.; Hu, C. Nitrification performance and bacterial community dynamics in a membrane bioreactor with elevated ammonia concentration: The combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification at high ammonia loading rates. Sci. Total Environ. 2022, 831, 154972. [Google Scholar] [CrossRef] [PubMed]
- Johir, M.A.H.; Vigneswaran, S.; Kandasamy, J.; BenAim, R.; Grasmick, A. Effect of salt concentration on membrane bioreactor (MBR) performances: Detailed organic characterization. Desalination 2013, 322, 13–20. [Google Scholar] [CrossRef]
- Shokri, S.; Bonakdarpour, B.; Sharghi, E.A. How high salt shock affects performance and membrane fouling characteristics of a halophilic membrane bioreactor used for treating hypersaline wastewater. Chemosphere 2024, 354, 141716. [Google Scholar] [CrossRef]
- Pendashteh, A.R.; Abdullah, L.C.; Fakhru’L-Razi, A.; Madaeni, S.S.; Zainal Abidin, Z.; Awang Biak, D.R. Evaluation of membrane bioreactor for hypersaline oily wastewater treatment. Process Saf. Environ. Prot. 2012, 90, 45–55. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Chen, Z.; Wu, Z.; Chu, X.; Qing, S.; Xu, L.; Yang, K.; Meng, Q.; Cheng, H.; et al. Effects of salinity on anoxic–oxic system performance, microbial community dynamics and co-occurrence network during treating wastewater. Chem. Eng. J. 2022, 461, 141969. [Google Scholar] [CrossRef]
- Moussa, M.S.; Sumanasekera, D.U.; Ibrahim, S.H.; Lubberding, H.J.; Hooijmans, C.M.; Gijzen, H.J.; van Loosdrecht, M.C.M. Long-term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Res. 2006, 40, 1377–1388. [Google Scholar] [CrossRef]
- Ferrer-Polonio, E.; Mendoza-Roca, J.A.; Iborra-Clar, A.; Alonso-Molina, J.L.; Pastor-Alcañiz, L. Biological treatment performance of hypersaline wastewaters with high phenols concentration from table olive packaging industry using sequencing batch reactors. J. Ind. Eng. Chem. 2016, 43, 44–52. [Google Scholar] [CrossRef]
- Nasr, F.A.; Abdelfattah, I.; El-Shafaia, S.A. Cost Effective Management of Confectionery Industrial Wastewater. Egypt. J. Chem. 2022, 65, 391–399. [Google Scholar] [CrossRef]
- Abdelfadil, A.S.; Abo-Aly, M.M.; El-Shafai, S.A.; Nasr, F.A. Low-Cost MBR for Sewage Treatment As Non-Conventional Water Resource. Egypt. J. Chem. 2024, 67, 347–360. [Google Scholar] [CrossRef]
- Zahid, W.M.; El-Shafai, S.A. Use of cloth-media filter for membrane bioreactor treating municipal wastewater. Bioresour. Technol. 2011, 3, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Lipps, C.W.; Howland, E.B.B.; Baxter, T.E. Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC, USA, 2022. [Google Scholar]
- Abdullah, S.Z.; Bérubé, P.R.; Horne, D.J. SEM imaging of membranes: Importance of sample preparation and imaging parameters. J. Membr. Sci. 2014, 463, 113–125. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, D.H. Metcalf &Eddy: Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw Hill Companies, Inc.: New York, NY, USA, 2014; p. 1771. [Google Scholar]
- Alotaibi, M.; Refaat, A.; Munshi, F.; El-said, M.A.; El-shafai, S.A. Influence of organic loading rates on the treatment performance of membrane bioreactors treating saline industrial wastewater. Water 2024, 16, 2629. [Google Scholar] [CrossRef]
- Takahashi, K.; Oshiki, M.; Ruan, C.; Morinaga, K.; Toyofuku, M.; Nomura, N.; Johnson, D.R. Denitrification in low oxic environments increases the accumulation of nitrogen oxide intermediates and modulates the evolutionary potential of microbial populations. Environ. Microbiol. Rep. 2024, 16, e13221. [Google Scholar] [CrossRef] [PubMed]
- Aloui, F.; Khoufi, S.; Loukil, S.; Sayadi, S. Performances of an activated sludge process for the treatment of fish processing saline wastewater. Desalination 2009, 246, 389–396. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, W.; Chen, X.; Zhou, Y.; He, B.; Tan, S. Analysis of the biodegradation performance and biofouling in a halophilic MBBR-MBR to improve the treatment of disinfected saline wastewater. Chemosphere 2021, 269, 128716. [Google Scholar] [CrossRef]
- Lai, X.; Li, X.; Song, J.; Yuan, H.; Duan, L. Enhanced nitrogen removal performance of nitrogen-rich saline wastewater by marine anammox bacteria: Based on different influent loading strengths. J. Environ. Manage. 2024, 354, 120330. [Google Scholar] [CrossRef]
- Yan, Z.; Han, X.; Wang, H.; Jin, Y.; Song, X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). J. Environ. Manag. 2024, 359, 121075. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Chen, H.; Lv, Y. Biological nitrogen removal characteristics and mechanisms of a novel salt-tolerant strain Vibrio sp. LV-Q1 and its application capacity for high-salinity nitrogen-containing wastewater treatment. J. Water Process Eng. 2024, 59, 105098. [Google Scholar] [CrossRef]
- Huang, J.L.; Wang, H.H.; Alam, F.; Cui, Y.W. Granulation of halophilic sludge inoculated with estuarine sediments for saline wastewater treatment. Sci. Total Environ. 2019, 682, 532–540. [Google Scholar] [CrossRef]
- An, N.; Ma, L.; Lian, D.; Wang, S. Effect of salinity on denitrification, membrane fouling and bacterial community in a fixed-bed biofilm membrane reactor. Water Sci. Technol. 2024, 89, 1124–1141. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Tan, C.; Wang, X.; Zhao, N.; Li, J. Deciphering performance and microbial characterization of marine anammox bacteria-based consortia treating nitrogen-laden hypersaline wastewater: Inhibiting threshold of salinity. Bioresour. Technol. 2024, 393, 130170. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, Z.; Du, J.; He, Q.; Chai, H. Enhancement of Organic Matter Removal in an Integrated Biofilm-Membrane Bioreactor Treating High-Salinity Wastewater. Archaea 2018, 2018, 2148286. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Xia, S.; Song, J.; Li, J.; Qiu, L.; Wang, J.; Zhang, S. The Effect of Salinity on Membrane Fouling Characteristics in an Intermittently Aerated Membrane Bioreactor. J. Chem. 2014, 2014, 765971. [Google Scholar] [CrossRef]
Unit | Salinity 5 g/L | Salinity 10 g/L | Salinity 20 g/L | Salinity 25 g/L | |||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Before | After | Before | After | Before | After | Before | After | |
Temperature | °C | 25.8 | 26.8 | 23.1 | 22.5 | 23.3 | 23.5 | 27.3 | 28.9 |
pH | - | 7.6 | 8 | 7 | 6.9 | 7.2 | 7.4 | 7.7 | 7.5 |
Turbidity | NTU | 95 | 145 | 126 | 175 | 111 | 139 | 121 | 165 |
TDS | mg/L | 5430 | 6000 | 6050 | 11,090 | 7980 | 20,850 | 6900 | 25,450 |
COD | mgO2/L | 400 | 1380 | 375 | 1320 | 316 | 1399 | 324 | 1325 |
TSS | mg/L | 73.7 | 122 | 84 | 110 | 71 | 112 | 78 | 135 |
Nitrate | mgN/L | 15.35 | 14.92 | 12.67 | 10.32 | 11.31 | 8.96 | 9.51 | 7.72 |
Nitrite | mgN/L | 15.93 | 16.66 | 15.13 | 15.63 | 15.83 | 16.32 | 16.43 | 17.35 |
BOD | mgO2/L | 117 | 744 | 112 | 717 | 120 | 810 | 112 | 752 |
EC | mS/cm | 5.64 | 6.22 | 6.3 | 12.6 | 8.73 | 24.5 | 7.41 | 31.2 |
Ammonia | mgN/L | 9.5 | 22.2 | 7.8 | 22.4 | 8.7 | 26.3 | 9.8 | 22.9 |
TKN | mgN/L | 14.9 | 27.6 | 14.7 | 29.1 | 15.6 | 33.1 | 17.1 | 30.1 |
TN | mgN/L | 46.18 | 59.18 | 42.5 | 55.05 | 42.74 | 58.38 | 43.04 | 55.17 |
TP | Mg P/L | 4.20 | 5.70 | 2.50 | 5.60 | 4.60 | 5.80 | 3.90 | 5.60 |
Salinity | mg/L | 4500 | 5020 | 5040 | 10,080 | 6890 | 19,680 | 5880 | 24,960 |
Total coliform | cfu/100ml | 1.4 × 105 | 1.5 × 105 | 4.3 × 104 | 4.5 × 104 | 4.03 × 104 | 4.5 × 104 | 4.5 × 104 | 4.8 × 104 |
Parameter | Salinity 5 g/L | Salinity 10 g/L | Salinity 20 g/L | Salinity 25 g/L |
---|---|---|---|---|
COD | 95.4 ± 0.4 a | 96.6 ± 0.7 a | 95.3 ± 0.2 a | 97.2 ± 0.7 a |
BOD | 98.6 ± 0.9 a | 98.8 ± 0.2 a | 98.3 ± 0.1 a | 98.8 ± 0.5 a |
Ammonia | 95.7 ± 3.8 ab | 93.2 ± 0.45 b | 96.7 ± 1.3 a | 95.4 ± 0.9 a |
TKN | 92.3 ± 0.6 a | 93.1 ± 0.7 ab | 93.3 ± 0.2 b | 95.1 ± 1.7 ab |
TN | 81.6 ± 4.8 a | 81.6 ± 9.6 ab | 85.1 ± 0.9 a | 92.5 ± 1.1 b |
TP | 87.7 ± 5.0 a | 95.8 ± 2.7 b | 84.1 ± 13 c | 76.8 ± 8.2 d |
Turbidity | 99.6 ± 0.2 a | 98.3 ± 0.5 bc | 97.8 ± 0.8 c | 98.3 ± 0.3 b |
TSS | 98.5 ± 0.7 a | 97.2 ± 1.4 b | 95.8 ± 1.0 c | 97.9 ± 0.4 a |
Item | Salinity 5 g/L | Salinity 10 g/L | Salinity 20 g/L | Salinity 25 g/L |
---|---|---|---|---|
COD | 63.3 ± 5.9 a | 45.0 ± 8.3 b | 66.2 ± 2.3 a | 37.3 ± 8.8 c |
BOD | 13.8 ± 1.2 a | 8.6 ± 1.2 b | 13.6 ± 0.4 a | 8.9 ± 3.5 ab |
Ammonia-N | 1.45 ± 0.35 ab | 1.53 ± 0.10 b | 0.87 ± 0.35 b | 1.05 ± 0.21 b |
NO3-N | 8.3 ± 3.5 a | 7.2 ± 4.62 a | 6.69 ± 0.73 a | 2.8 ± 0.7 b |
TKN | 2.13 ± 0.15 a | 2.00 ± 0.20 ab | 2.17 ± 0.06 b | 1.49 ± 0.52 ab |
TN | 10.90 ± 2.86 a | 10.15 ± 5.27 ab | 8.67 ± 0.55 a | 4.15 ± 0.63 b |
TP | 0.70 ± 0.28 a | 0.23 ± 0.15 b | 0.92 ± 0.76 ac | 1.3 ± 0.46 c |
TSS | 1.82 ± 0.79 a | 3.05 ± 1.49 b | 4.81 ± 1.17 c | 2.71 ± 0.55 b |
Turbidity | 0.54 ± 0.29 a | 2.99 ± 0.89 bc | 3.05 ± 1.09 b | 2.73 ± 0.53 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.; Refaat, A.; Munshi, F.; El-Said, M.A.; El-Shafai, S.A. Influence of Salinity Level on the Treatment Performance and Membrane Fouling of MBRs Treating Saline Industrial Effluent. Water 2024, 16, 3150. https://doi.org/10.3390/w16213150
Alotaibi M, Refaat A, Munshi F, El-Said MA, El-Shafai SA. Influence of Salinity Level on the Treatment Performance and Membrane Fouling of MBRs Treating Saline Industrial Effluent. Water. 2024; 16(21):3150. https://doi.org/10.3390/w16213150
Chicago/Turabian StyleAlotaibi, Majeb, Ashraf Refaat, Faris Munshi, Mohamed Ali El-Said, and Saber A. El-Shafai. 2024. "Influence of Salinity Level on the Treatment Performance and Membrane Fouling of MBRs Treating Saline Industrial Effluent" Water 16, no. 21: 3150. https://doi.org/10.3390/w16213150
APA StyleAlotaibi, M., Refaat, A., Munshi, F., El-Said, M. A., & El-Shafai, S. A. (2024). Influence of Salinity Level on the Treatment Performance and Membrane Fouling of MBRs Treating Saline Industrial Effluent. Water, 16(21), 3150. https://doi.org/10.3390/w16213150