Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Sampling and Preparation
2.3. Analytical Methods
2.4. Pollution and Ecological Risk Assessment
2.4.1. Enrichment Factor
2.4.2. Geoaccumulation Index
2.4.3. Single Pollution Index and Nemerow Pollution Index
2.4.4. Contamination Factor and Modified Degree of Contamination
2.4.5. Metal Pollution Index
2.4.6. Potential Ecological Risk Factor and Risk Index
2.5. Sediment Quality Assessment
2.6. Data Analysis and Visualization
3. Results and Discussion
3.1. Physicochemical Properties of Sediments
3.2. Geochemistry of Sediments
3.3. Potential Sources of PTEs
3.4. PTE Contamination of Sediments and Associated Ecological Risks
3.5. Ecotoxicology of Sediments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Area | Site | Coordinates | pH | EC | TOC | CaCO3 | Fine Clay | Σ(Ca2+ + Mg2+) | ||
---|---|---|---|---|---|---|---|---|---|---|
µS/cm | % | cmol/kg | ||||||||
Taganrog Bay coast | Beach | TB1 | N47°08′43.26″ | E38°29′02.69″ | 8.0 | 895 | 0.5 | 1.3 | 22.1 | 27.8 |
TB2 | N46°52′48.04″ | E38°30′00.47″ | 7.5 | 184 | 1.1 | 5.7 | 11.0 | 17.3 | ||
TB3 | N47°06′54.36″ | E38°34′08.69″ | 7.8 | 417 | 0.1 | 5.5 | 1.5 | 3.1 | ||
TB4 | N47°08′37.10″ | E38°35′37.10″ | 8.1 | 142 | 0.5 | 1.4 | 13.3 | 21.8 | ||
TB5 | N47°09′53.32″ | E38°44′34.04″ | 7.2 | 336 | 0.3 | 6.1 | 4.7 | 6.1 | ||
TB6 | N46°53′02.08″ | E38°45′34.99″ | 7.8 | 113 | 0.2 | 12.7 | 16.4 | 22.8 | ||
TB7 | N46°53′41.78″ | E38°47′29.00″ | 7.4 | 173 | 0.3 | 6.1 | 4.6 | 5.5 | ||
TB8 | N47°11′02.98″ | E38°52′17.58″ | 7.5 | 237 | 0.2 | 1.8 | 2.9 | 4.2 | ||
TB9 | N46°57′45.83″ | E38°54′31.32″ | 7.7 | 167 | 0.1 | 2.3 | 2.9 | 7.9 | ||
TB10 | N47°16′03.11″ | E39°01′04.04″ | 7.8 | 318 | 0.7 | 4.1 | 20.5 | 26.0 | ||
TB11 | N47°16′33.64″ | E39°03′20.70″ | 7.3 | 668 | 0.4 | 2.9 | 6.1 | 7.1 | ||
TB12 | N47°01′43.39″ | E39°06′33.84″ | 8.4 | 116 | 0.1 | 5.0 | 24.0 | 41.5 | ||
TB13 | N47°01′36.91″ | E39°06′54.43″ | 7.6 | 354 | 0.6 | 2.2 | 6.7 | 10.9 | ||
TB14 | N47°17′11.18″ | E39°09′50.18″ | 7.0 | 856 | 0.3 | 11.0 | 11.0 | 19.6 | ||
TB15 | N47°16′56.50″ | E39°12′03.67″ | 7.1 | 805 | 1.4 | 9.1 | 7.0 | 15.5 | ||
TB16 | N46°41′01.21″ | E37°44′11.15″ | 7.6 | 3880 | 0.1 | 11.2 | 1.5 | 4.5 | ||
TB17 | N46°39′32.98″ | E37°47′05.68″ | 7.9 | 3248 | 0.4 | 12.3 | 1.1 | 4.1 | ||
TB18 | N46°45′32.40″ | E38°23′54.78″ | 7.3 | 3080 | 0.2 | 27.2 | 1.0 | 2.7 | ||
TB19 | N46°45′02.84″ | E38°24′16.49″ | 7.4 | 2884 | 0.4 | 14.2 | 3.4 | 5.5 | ||
TB20 | N46°39′08.10″ | E38°26′03.44″ | 7.8 | 2312 | 0.2 | 9.3 | 1.3 | 3.1 | ||
Shore | TS1 | N47°07′02.50″ | E38°33′15.05″ | 7.5 | 1258 | 0.4 | 3.8 | 15.1 | 22.1 | |
TS2 | N47°07′13.66″ | E38°33′45.47″ | 7.2 | 2750 | 1.3 | 17.1 | 14.4 | 17.8 | ||
TS3 | N47°06′51.84″ | E38°34′24.85″ | 7.9 | 1740 | 1.5 | 7.1 | 19.3 | 26.6 | ||
TS4 | N46°59′08.77″ | E38°54′06.95″ | 7.2 | 1193 | 0.9 | 5.2 | 9.2 | 21.8 | ||
TS5 | N47°02′46.79″ | E39°02′02.87″ | 7.3 | 888 | 1.1 | 5.2 | 8.0 | 19.7 | ||
TS6 | N47°16′57.43″ | E39°12′06.77″ | 7.1 | 1166 | 1.5 | 7.2 | 8.9 | 22.6 | ||
TS7 | N46°52′01.81″ | E38°29′22.45″ | 7.6 | 5700 | 1.6 | 9.5 | 36.3 | 42.4 | ||
TS8 | N46°52′48.83″ | E38°30′03.46″ | 7.7 | 1441 | 0.3 | 6.0 | 25.2 | 31.5 | ||
TS9 | N46°54′14.80″ | E38°31′23.52″ | 6.9 | 7680 | 4.3 | 2.0 | 28.3 | 44.0 | ||
Don River Delta | Riverbank | DB1 | N47°16′22.77″ | E39°16′29.42″ | 7.3 | 650 | 0.6 | 7.0 | 4.7 | 9.5 |
DB2 | N47°12′17.93″ | E39°20′17.59″ | 7.4 | 1381 | 0.7 | 2.5 | 13.2 | 19.7 | ||
DB3 | N47°09′43.85″ | E39°20′48.05″ | 7.1 | 321 | 0.4 | 0.5 | 2.0 | 3.3 | ||
DB4 | N47°08′40.88″ | E39°27′53.71″ | 7.0 | 876 | 1.7 | 2.2 | 14.2 | 28.4 | ||
DB5 | N47°07′18.26″ | E39°28′55.45″ | 7.2 | 487 | 0.3 | 0.4 | 3.5 | 2.2 | ||
DB6 | N47°11′30.59″ | E39°36′42.52″ | 7.2 | 206 | 0.5 | 1.0 | 5.6 | 8.1 | ||
DB7 | N47°11′10.72″ | E39°37′46.02″ | 7.1 | 1356 | 2.0 | 4.2 | 17.1 | 28.7 | ||
Stream | DS1 | N47°12′11.34″ | E39°13′46.96″ | 6.5 | 3100 | 3.5 | 4.1 | 13.6 | 20.6 | |
DS2 | N47°07′27.73″ | E39°14′31.20″ | 7.5 | 1527 | 1.7 | 8.1 | 20.2 | 31.1 | ||
DS3 | N47°07′04.91″ | E39°15′08.06″ | 7.0 | 1298 | 0.9 | 1.9 | 13.0 | 27.8 | ||
DS4 | N47°13′12.00″ | E39°15′44.35″ | 7.2 | 145 | 0.4 | 0.4 | 5.8 | 4.4 | ||
DS5 | N47°08′33.36″ | E39°16′40.40″ | 7.3 | 1467 | 1.4 | 4.0 | 20.2 | 29.4 | ||
DS6 | N47°16′08.15″ | E39°16′45.01″ | 7.5 | 1882 | 2.8 | 6.3 | 14.6 | 27.8 | ||
DS7 | N47°10′33.78″ | E39°17′32.39″ | 7.4 | 2570 | 3.8 | 5.3 | 31.5 | 46.3 | ||
DS8 | N47°10′12.14″ | E39°17′44.66″ | 7.0 | 2170 | 2.4 | 3.1 | 23.0 | 32.1 | ||
DS9 | N47°06′02.77″ | E39°17′45.42″ | 6.6 | 2590 | 2.4 | 8.0 | 13.4 | 27.2 | ||
DS10 | N47°13′27.59″ | E39°18′44.82″ | 7.5 | 1110 | 2.8 | 7.9 | 17.3 | 29.1 | ||
DS11 | N47°07′04.87″ | E39°19′27.80″ | 7.2 | 234 | 2.4 | 2.7 | 14.1 | 26.1 | ||
DS12 | N47°12′14.80″ | E39°20′17.16″ | 7.0 | 1456 | 2.2 | 3.9 | 15.3 | 27.3 | ||
DS13 | N47°15′14.94″ | E39°20′30.70″ | 7.3 | 1357 | 4.4 | 8.3 | 15.1 | 26.0 | ||
DS14 | N47°14′10.86″ | E39°21′41.51″ | 7.0 | 1431 | 4.5 | 5.5 | 13.8 | 26.6 | ||
DS15 | N47°15′39.17″ | E39°23′36.78″ | 7.1 | 1130 | 4.2 | 6.8 | 29.5 | 43.6 | ||
DS16 | N47°15′45.97″ | E39°23′38.58″ | 7.0 | 2010 | 4.3 | 16.9 | 18.2 | 38.4 | ||
DS17 | N47°14′00.89″ | E39°24′08.57″ | 7.2 | 1324 | 2.0 | 2.6 | 14.6 | 28.1 | ||
DS18 | N47°15′14.72″ | E39°24′21.85″ | 9.5 | 5190 | 5.0 | 3.0 | 18.9 | 36.0 |
Site | Al | Cr | Mn | Ni | Cu | Zn | Cd | Pb |
---|---|---|---|---|---|---|---|---|
TB1 | 56,074 | 109.6 | 871.2 | 102.5 | 19.9 | 43.5 | 0.7 | 33.1 |
TB2 | 14,812 | 66.2 | 1761.6 | 81.9 | 18.3 | 25.9 | 2.7 | 59.1 |
TB3 | 3174 | 85.9 | 1123.9 | 102.3 | 32.2 | 164.2 | 0.6 | 98.5 |
TB4 | 35,972 | 40.9 | 1327.4 | 38.0 | 194.0 | 47.2 | 7.6 | 39.9 |
TB5 | 2116 | 95.3 | 194.6 | 26.3 | 2.6 | 31.5 | 1.1 | 33.8 |
TB6 | 52,371 | 74.3 | 1826.0 | 88.7 | 73.7 | 481.4 | 3.5 | 59.2 |
TB7 | 16,399 | 77.5 | 1127.0 | 92.2 | 68.9 | 51.7 | 1.6 | 55.3 |
TB8 | 20,116 | 62.4 | 417.6 | 19.1 | 9.4 | 53.3 | 5.5 | 34.9 |
TB9 | 7406 | 37.1 | 353.6 | 77.3 | 35.0 | 88.7 | 0.6 | 36.8 |
TB10 | 51,313 | 101.0 | 826.3 | 116.7 | 27.0 | 57.7 | 0.8 | 39.4 |
TB11 | 11,638 | 37.5 | 573.3 | 23.9 | 9.2 | 34.4 | 0.5 | 25.3 |
TB12 | 51,842 | 62.7 | 827.1 | 73.2 | 20.4 | 40.2 | 2.6 | 33.7 |
TB13 | 13,225 | 128.3 | 1731.9 | 74.8 | 19.7 | 127.4 | 6.5 | 32.9 |
TB14 | 38,088 | 62.3 | 801.1 | 74.1 | 16.5 | 461.9 | 8.5 | 38.7 |
TB15 | 40,204 | 58.1 | 3515.9 | 72.3 | 16.9 | 68.1 | 4.3 | 53.2 |
TB16 | 3703 | 81.2 | 881.1 | 27.8 | 14.0 | 13.1 | 0.8 | 24.9 |
TB17 | 3703 | 108.3 | 1171.4 | 26.4 | 7.3 | 8.8 | 1.4 | 21.2 |
TB18 | 21,160 | 74.2 | 1107.6 | 53.0 | 10.3 | 13.0 | 0.7 | 36.9 |
TB19 | 23,276 | 31.9 | 401.2 | 38.1 | 4.8 | 19.5 | 1.7 | 32.2 |
TB20 | 9522 | 21.3 | 1347.7 | 28.3 | 10.0 | 10.5 | 1.6 | 29.4 |
TS1 | 51,842 | 73.2 | 967.7 | 129.1 | 19.2 | 39.8 | 1.4 | 97.5 |
TS2 | 44,436 | 67.9 | 869.1 | 26.4 | 18.2 | 57.4 | 1.0 | 111.9 |
TS3 | 50,784 | 105.3 | 1447.3 | 130.9 | 22.4 | 49.6 | 1.4 | 127.8 |
TS4 | 42,320 | 84.9 | 833.3 | 52.6 | 15.7 | 53.2 | 0.8 | 94.4 |
TS5 | 39,675 | 69.0 | 857.5 | 52.8 | 13.8 | 43.3 | 1.1 | 29.7 |
TS6 | 41,791 | 53.4 | 2220.0 | 70.2 | 18.5 | 64.2 | 2.2 | 76.2 |
TS7 | 41,262 | 100.3 | 1626.4 | 145.3 | 36.9 | 64.6 | 2.0 | 113.6 |
TS8 | 57,132 | 87.0 | 1425.3 | 92.7 | 27.6 | 109.0 | 2.6 | 109.3 |
TS9 | 58,190 | 109.8 | 1469.8 | 150.8 | 39.7 | 96.3 | 2.0 | 121.6 |
DB1 | 10,051 | 69.1 | 986.5 | 33.9 | 10.0 | 31.2 | 1.6 | 41.3 |
DB2 | 45,494 | 136.0 | 1303.9 | 115.9 | 16.3 | 35.9 | 2.0 | 31.1 |
DB3 | 9522 | 110.1 | 667.1 | 63.2 | 12.3 | 47.4 | 0.9 | 32.0 |
DB4 | 48,139 | 94.5 | 945.3 | 68.6 | 45.7 | 75.6 | 0.6 | 92.7 |
DB5 | 11,638 | 97.2 | 529.6 | 117.6 | 10.9 | 53.7 | 2.1 | 86.2 |
DB6 | 16,399 | 27.6 | 101.0 | 28.0 | 5.4 | 31.1 | 0.6 | 33.4 |
DB7 | 41,262 | 140.8 | 1936.1 | 151.3 | 25.7 | 127.0 | 4.1 | 125.4 |
DS1 | 46,023 | 104.3 | 957.9 | 126.8 | 17.2 | 86.6 | 1.6 | 118.2 |
DS2 | 47,610 | 85.7 | 1124.0 | 69.0 | 21.6 | 84.8 | 1.9 | 117.3 |
DS3 | 24,863 | 105.5 | 587.6 | 43.7 | 9.5 | 39.4 | 1.0 | 18.2 |
DS4 | 46,552 | 118.9 | 738.0 | 33.0 | 25.1 | 100.6 | 1.6 | 49.8 |
DS5 | 47,610 | 91.4 | 1508.2 | 128.4 | 21.6 | 108.4 | 1.9 | 117.0 |
DS6 | 42,320 | 77.0 | 2245.2 | 124.8 | 17.1 | 83.4 | 1.6 | 127.9 |
DS7 | 55,545 | 117.2 | 1734.1 | 60.1 | 32.4 | 126.6 | 2.3 | 127.6 |
DS8 | 49,197 | 106.1 | 1591.1 | 132.5 | 24.2 | 103.8 | 1.9 | 108.4 |
DS9 | 49,197 | 127.8 | 1869.9 | 134.0 | 28.6 | 110.5 | 2.0 | 170.4 |
DS10 | 49,197 | 79.9 | 1830.2 | 126.9 | 19.6 | 87.7 | 1.9 | 122.9 |
DS11 | 37,559 | 102.2 | 1217.0 | 88.6 | 18.6 | 70.0 | 1.7 | 105.2 |
DS12 | 48,139 | 61.4 | 1597.3 | 128.9 | 21.3 | 77.1 | 1.8 | 94.1 |
DS13 | 51,842 | 98.4 | 1739.3 | 134.5 | 27.1 | 120.9 | 2.5 | 107.1 |
DS14 | 51,842 | 100.1 | 2423.3 | 144.3 | 27.4 | 109.9 | 2.1 | 125.1 |
DS15 | 59,777 | 119.1 | 1533.6 | 142.2 | 34.4 | 145.7 | 2.6 | 125.3 |
DS16 | 52,371 | 98.7 | 2178.7 | 87.3 | 32.7 | 150.5 | 3.2 | 128.9 |
DS17 | 43,907 | 80.7 | 1907.0 | 126.7 | 18.5 | 85.3 | 1.9 | 86.6 |
DS18 | 52,900 | 107.9 | 1520.0 | 66.7 | 29.0 | 107.0 | 1.8 | 126.7 |
Parameter | Unit | Cr | Mn | Ni | Cu | Zn | Cd | Pb | Reference | |
Geochemical background | UCC | mg kg−1 | 92 | 774 | 47 | 28 | 67 | 0.09 | 17 | [39] |
Cb | 95 | 720 | 35 | 45 | 71 | 0.2 | 26 | [78] | ||
C0 | 41 | 347 | 25 | 30 | 37.4 | 0.24 | 18 | [50,57] | ||
Toxic response factor | Tr | unitless | 2 | 1 | 5 | 5 | 1 | 30 | 5 | [38,42] |
Sediment quality guidelines * | TELf | mg kg−1 | 37.3 | – | 18 | 35.7 | 123 | 0.596 | 35 | [79,80] |
ERLf | 80 | – | 30 | 70 | 120 | 5 | 35 | [79] | ||
PELf | 90 | – | 36 | 197 | 315 | 3.53 | 91.3 | [79,80] | ||
ERMf | 145 | – | 50 | 390 | 270 | 9 | 110 | [79] | ||
TELs | 52.3 | – | 15.9 | 18.7 | 124 | 0.68 | 30.24 | [35,80] | ||
ERLs | 81.8 | – | 20.9 | 34 | 150 | 1.2 | 46.7 | [80,81] | ||
PELs | 160 | – | 42.8 | 108 | 271 | 4.21 | 112 | [35,80] | ||
ERMs | 370 | – | 51.6 | 270 | 410 | 9.6 | 218 | [80,81] |
Index | Class | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Negligible | Warning Limit | Low | Moderate | Considerable | High | Very High | Extreme | |||
Enrichment | EF | ≤1 | – | 1–3 | 3–5 | 5–10 | 10–25 | 25–50 | >50 | [40] |
Pollution | Igeo * | ≤0 (0) | – | 0–1 (1) | 1–2 (2) | 2–3 (3) | 3–4 (4) | 4–5 (5) | >5 (6) | [74] |
PI | ≤1 | – | 1–2 | 2–3 | – | 3–5 | >5 | – | [70] | |
NPI | ≤0.7 | 0.7–1 | 1–2 | 2–3 | – | >3 | – | – | [75] | |
CF | – | – | <1 | 1–3 | 3–6 | – | ≥6 | – | [42] | |
mCd | <1.5 | – | 1.5–2 | 2–4 | – | 4–8 | 8–16 | 16–32 | [71] | |
MPI | <1 | 1 | – | – | >1 | – | – | – | [76] | |
Ecological Risk | Er | – | – | <40 | 40–80 | 80–160 | 160–320 | ≥320 | – | [42] |
RI | – | – | <150 | 150–300 | 300–600 | – | ≥600 | – | [42] | |
ERMQ | – | – | <0.1 | 0.1–0.5 | 0.5–1.5 | ≥1.5 | – | – | [43] | |
MERMQ | – | – | <0.1 | 0.1–0.5 | 0.5–1.5 | ≥1.5 | – | – | [43] | |
TRI | ≤5 | – | 5–10 | 10–15 | 15–20 | – | >20 | – | [2] |
References
- Silva, M.C.; do Nascimento Monte, C.; de Souza, J.R.; Selfe, A.C.C.; Ishihara, J.H. Mapping of Metals Contamination in Coastal Sediments around the World in the Last Decades: A Bibliometric Analysis and Systematic Review. Mar. Pollut. Bull. 2024, 205, 116572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, J.; Zhao, Q.; Lu, Q.; Jia, J.; Wen, X. Heavy Metals in Wetland Soils along a Wetland-Forming Chronosequence in the Yellow River Delta of China: Levels, Sources and Toxic Risks. Ecol. Indic. 2016, 69, 331–339. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Allison, M.A. Large-River Delta-Front Estuaries as Natural “Recorders” of Global Environmental Change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [CrossRef] [PubMed]
- Sedakov, R.; Osadchiev, A.; Barnier, B.; Molines, J.M.; Colombo, P. Large Chocked Lagoon as a Barrier for River–Sea Flux of Dissolved Pollutants: Case Study of the Azov Sea and the Black Sea. Mar. Pollut. Bull. 2023, 187, 114496. [Google Scholar] [CrossRef]
- Phillips, O.A.; Fajemila, O.T. Contamination Levels of Potentially Toxic Elements within the Ogun River Estuary Sediments, Southwest Nigeria: Ecological and Human Health Risk Assessments. J. Trace Elem. Miner. 2024, 8, 100120. [Google Scholar] [CrossRef]
- Meng, L.; Wang, L.; Wang, Q.; Zhao, J.; Zhang, G.; Zhan, C.; Liu, X.; Cui, B.; Zeng, L. Geochemical Characteristics of the Modern Yellow River Delta Sediments and Their Response to Evolution of the Sedimentary Environment. Front. Mar. Sci. 2024, 11, 1370336. [Google Scholar] [CrossRef]
- Liu, D.; Lin, Y.; Zhang, T.; Huang, E.; Zhu, Z.; Jia, L. Impact of Anthropogenic Activities on Sedimentary Records in the Lingdingyang Estuary of the Pearl River Delta, China. J. Mar. Sci. Eng. 2024, 12, 1139. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Q.; Meadows, M.E.; Luo, X.; Wang, Z. Grain Size and Organic Geochemistry of Recent Sediments in Lingding Bay, Pearl River Delta, China: Implications for Sediment Dispersal and Depositional Processes Perturbed by Human Activities. Anthr. Coasts 2021, 4, 147–167. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.L. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China—Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Fedorova, I.; Chetverova, A.; Bolshiyanov, D.; Makarov, A.; Boike, J.; Heim, B.; Morgenstern, A.; Overduin, P.P.; Wegner, C.; Kashina, V.; et al. Lena Delta Hydrology and Geochemistry: Long-Term Hydrological Data and Recent Field Observations. Biogeosciences 2015, 12, 345–363. [Google Scholar] [CrossRef]
- Mandour, A.S.; Ghezzi, L.; Lezzerini, M.; El-Gamal, A.A.; Petrini, R.; Elshazly, A. Geochemical Characterization of Recent Nile Delta Inner Shelf Sediments: Tracing Natural and Human-Induced Alterations into a Deltaic System. Egypt. J. Aquat. Res. 2020, 46, 355–361. [Google Scholar] [CrossRef]
- Nascimento, S.C.; Parbhakar-Fox, A.; Cracknell, M.J.; Cooke, D.R.; Miller, C.B.; Heng, W.X. Geochemical, Mineralogical, and Geophysical Methods to Establish the Geoenvironmental Characteristics of the King River Delta, Queenstown, Western Tasmania. Appl. Geochem. 2023, 159, 105820. [Google Scholar] [CrossRef]
- Passalacqua, P.; Lanzoni, S.; Paola, C.; Rinaldo, A. Geomorphic Signatures of Deltaic Processes and Vegetation: The Ganges-Brahmaputra-Jamuna Case Study. J. Geophys. Res. Earth Surf. 2013, 118, 1838–1849. [Google Scholar] [CrossRef]
- Duţu, L.; Secrieru, D.; Duţu, F.; Lupaşcu, N. Geochemical Dataset of the Danube Delta Sediments. Data Brief 2021, 39, 107529. [Google Scholar] [CrossRef]
- Lee, G.; Jung, N.; Dellapenna, T.; Ra, K.; Chang, J.; Kong, G.S.; Nahm, W.-H.; Park, B.S.; Jeong, H. Pace of Heavy Metal Pollution in the Anthropogenically Altered and Industrialized Nakdong River Estuary, South Korea: Implications for the Anthropocene. Mar. Pollut. Bull. 2024, 205, 116678. [Google Scholar] [CrossRef]
- Berdnikov, S.V.; Sorokina, V.V.; Kleshchenkov, A.V.; Tyutyunov, Y.V.; Kulygin, V.V.; Kovaleva, G.V.; Bulysheva, N.I. Marine Indicators of Climate Change in the Azov Sea Ecosystem. J. Sea Res. 2023, 193, 102373. [Google Scholar] [CrossRef]
- Mostafa, M.T.; El-Nady, H.; Gomaa, R.M.; Salman, S.A.; Khalifa, I.H. Evaluation of Urbanization Influences on Beach Sediment Contamination with Heavy Metals Along the Littoral Zone of Alexandria City, Egypt. Water Air Soil Pollut. 2024, 235, 759. [Google Scholar] [CrossRef]
- Jolivet, M.; Dauteuil, O.; Dia, A.; Davranche, M.; Pierson-Wickmann, A.-C.; Barrier, L.; Murray-Hudson, M.; Mazrui, N.; Marsac, R.; Cheng, F.; et al. Highly Contrasted Geochemical Pattern in Sediments of the Okavango Delta, Botswana Driven by Dust Supply, Hydrological Heritage and Biogeochemical Reactions. Geochem. Geophys. Geosystems 2023, 24, e2023GC010978. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.; Lian, M.; Wang, J.; Xin, M.; Wang, B.; Ouyang, W.; He, M.; Liu, X.; Lin, C. Occurrence, Geochemical Characteristics, Enrichment, and Ecological Risks of Rare Earth Elements in Sediments of “the Yellow River−Estuary−bay” System. Environ. Pollut. 2023, 319, 121025. [Google Scholar] [CrossRef]
- Duman, M.; Kucuksezgin, F.; Eronat, A.H.; Talas, E.; İlhan, T.; Aydın, Ş. Combining Single and Complex Indices of Pollution with Grain Size Trend Analysis of Surficial Sediments in Edremit Gulf, Western Turkey. Environ. Sci. Pollut. Res. 2022, 29, 55609–55629. [Google Scholar] [CrossRef]
- Sachithanandam, V.; Parthasarathy, P.; Sai Elangovan, S.; Kasilingam, K.; Dhivya, P.; Mageswaran, T.; Mohan, P.M. A Baseline Study on Trace Metals Concentration and Its Ecological Risk Assessment from the Coast of South Andaman Island, India. Reg. Stud. Mar. Sci. 2020, 36, 101242. [Google Scholar] [CrossRef]
- Thabet, W.M.; Moneer, A.A.; Abdelwahab, O.; Ahdy, H.H.H.; Khedawy, M.; Shabaan, N.A. Ecological Risk Assessment of Metal Pollution in the Surface Sediments of Delta Region, Egypt. Environ. Monit. Assess. 2024, 196, 351. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, A.; Dong, J.; Pei, W.; Feng, X.; Wang, H. The Effect of Typhoon Talim on the Distribution of Heavy Metals on the Inner Shelf of the East China Sea. Cont. Shelf Res. 2021, 229, 104547. [Google Scholar] [CrossRef]
- Szczuciński, W.; Niedzielski, P.; Rachlewicz, G.; Sobczyński, T.; Zioła, A.; Kowalski, A.; Lorenc, S.; Siepak, J. Contamination of Tsunami Sediments in a Coastal Zone Inundated by the 26 December 2004 Tsunami in Thailand. Environ. Geol. 2005, 49, 321–331. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Rahman, M.A.; Onyena, A.P.; Kumar, R.; Sarker, A.; Hossain, M.B.; Islam, A.R.M.T.; Islam, M.S.; Rahman, M.M.; Jolly, Y.N.; et al. A Comprehensive Review of Heavy Metal Pollution in the Coastal Areas of Bangladesh: Abundance, Bioaccumulation, Health Implications, and Challenges. Environ. Sci. Pollut. Res. 2022, 29, 67532–67558. [Google Scholar] [CrossRef]
- Hatje, V.; Pedreira, R.M.A.; de Rezende, C.E.; Schettini, C.A.F.; de Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The Environmental Impacts of One of the Largest Tailing Dam Failures Worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef]
- Onyena, A.P.; Nkwoji, J.A.; Chukwu, L.O.; Walker, T.R.; Sam, K. Risk Assessment of Sediment PAH, BTEX, and Emerging Contaminants in Chanomi Creek Niger Delta, Nigeria. Environ. Monit. Assess. 2023, 195, 1080. [Google Scholar] [CrossRef]
- Cundy, A.B.; Rowlands, F.M.; Lu, G.; Wang, W.-X. A Systematic Review of Emerging Contaminants in the Greater Bay Area (GBA), China: Current Baselines, Knowledge Gaps, and Research and Management Priorities. Environ. Sci. Policy 2022, 131, 196–208. [Google Scholar] [CrossRef]
- Piskareva, V.M.; Gennadiev, A.N.; Lychagin, M.Y. The fluxes of polyarenes in the Don, Kuban and Volga river deltas. Lomonosov Geogr. J. 2021, 5, 14–23. [Google Scholar]
- Caballero-Gallardo, K.; Olivero-Verbel, J.; Corada-Fernández, C.; Lara-Martín, P.A.; Juan-García, A. Emerging Contaminants and Priority Substances in Marine Sediments from Cartagena Bay and the Grand Marsh of Santa Marta (Ramsar Site), Colombia. Environ. Monit. Assess. 2021, 193, 596. [Google Scholar] [CrossRef]
- Pavlenko, L.F.; Korablina, I.V.; Barabashin, T.O.; Ekilik, V.S. Priority Toxicants in Elements of Lower Don Ecosystem. Water Resour. 2022, 49, 440–447. [Google Scholar] [CrossRef]
- Strady, E.; Dang, T.H.; Dao, T.D.; Dinh, H.N.; Do, T.T.D.; Duong, T.N.; Duong, T.T.; Hoang, D.A.; Kieu-Le, T.C.; Le, T.P.Q.; et al. Baseline Assessment of Microplastic Concentrations in Marine and Freshwater Environments of a Developing Southeast Asian Country, Viet Nam. Mar. Pollut. Bull. 2021, 162, 111870. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.R.M.; Ying, P.X.; Zainuddin, A.H.; Razak, M.R.; Aris, A.Z. Occurrence, Abundance, and Distribution of Microplastics Pollution: An Evidence in Surface Tropical Water of Klang River Estuary, Malaysia. Environ. Geochem. Health 2021, 43, 3733–3748. [Google Scholar] [CrossRef] [PubMed]
- Bagaev, A.; Esiukova, E.; Litvinyuk, D.; Chubarenko, I.; Veerasingam, S.; Venkatachalapathy, R.; Verzhevskaya, L. Investigations of Plastic Contamination of Seawater, Marine and Coastal Sediments in the Russian Seas: A Review. Environ. Sci. Pollut. Res. 2021, 28, 32264–32281. [Google Scholar] [CrossRef]
- Apitz, S.E.; Agius, S. Anatomy of a Decision: Potential Regulatory Outcomes from Changes to Chemistry Protocols in the Canadian Disposal at Sea Program. Mar. Pollut. Bull. 2013, 69, 76–90. [Google Scholar] [CrossRef]
- Mîndrescu, M.; Haliuc, A.; Zhang, W.; Carozza, L.; Carozza, J.-M.; Groparu, T.; Valette, P.; Sun, Q.; Nian, X.; Gradinaru, I. A 600 Years Sediment Record of Heavy Metal Pollution History in the Danube Delta. Sci. Total Environ. 2022, 823, 153702. [Google Scholar] [CrossRef]
- Birch, G.F. A Review and Critical Assessment of Sedimentary Metal Indices Used in Determining the Magnitude of Anthropogenic Change in Coastal Environments. Sci. Total Environ. 2023, 854, 158129. [Google Scholar] [CrossRef]
- Damasceno, F.L.; Alves Martins, M.V.; Senez-Mello, T.M.; Santos, L.G.C.; Mendonça Filho, J.G.; Pereira, E.; Figueira, R.; do Nascimento, C.A.; Arruda, S.; Castelo, W.F.L.; et al. Potential Ecological Risk by Metals in Sepetiba Bay (SE Brazil): Exporting Metals to the Oceanic Region. J. S. Am. Earth Sci. 2024, 141, 104934. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 4.1—Composition of the Continental Crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 1–51. ISBN 978-0-08-098300-4. [Google Scholar]
- Jaskuła, J.; Sojka, M.; Fiedler, M.; Wróżyński, R. Analysis of Spatial Variability of River Bottom Sediment Pollution with Heavy Metals and Assessment of Potential Ecological Hazard for the Warta River, Poland. Minerals 2021, 11, 327. [Google Scholar] [CrossRef]
- El Ouaty, O.; El M’rini, A.; Nachite, D.; Marrocchino, E.; Rodella, I. Sediment Quality Indices for the Assessment of Heavy Metal Risk in Nador Lagoon Sediments (Morocco) Using Multistatistical Approaches. Sustainability 2024, 16, 1921. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Birch, G.F.; Lee, J.-H.; Tanner, E.; Fortune, J.; Munksgaard, N.; Whitehead, J.; Coughanowr, C.; Agius, J.; Chrispijn, J.; Taylor, U.; et al. Sediment Metal Enrichment and Ecological Risk Assessment of Ten Ports and Estuaries in the World Harbours Project. Mar. Pollut. Bull. 2020, 155, 111129. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, E.; Minkina, T.; Nevidomskaya, D.; Mandzhieva, S.; Bauer, T.; Zamulina, I.; Burachevskaya, M.; Sushkova, S. Exchangeable Form of Potentially Toxic Elements in Floodplain Soils along the River-Marine Systems of Southern Russia. Eurasian J. Soil Sci. 2021, 10, 132–141. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Nevidomskaya, D.; Mandzhieva, S.; Bauer, T.; Zamulina, I.; Voloshina, M.; Lobzenko, I.; Maksimov, A.; Sushkova, S. Potentially Toxic Elements in Surface Soils of the Lower Don Floodplain and the Taganrog Bay Coast: Sources, Spatial Distribution and Pollution Assessment. Environ. Geochem. Health 2023, 45, 101–119. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Mandzhieva, S.; Nevidomskaya, D.; Bauer, T.; Zamulina, I.; Sushkova, S.; Lychagin, M.; Rajput, V.D.; Wong, M.H. Ecological and Human Health Risks of Metal–PAH Combined Pollution in Riverine and Coastal Soils of Southern Russia. Water 2023, 15, 234. [Google Scholar] [CrossRef]
- Minkina, T.M.; Fedorov, Y.A.; Nevidomskaya, D.G.; Pol’shina, T.N.; Mandzhieva, S.S.; Chaplygin, V.A. Heavy Metals in Soils and Plants of the Don River Estuary and the Taganrog Bay Coast. Eurasian Soil Sci. 2017, 50, 1033–1047. [Google Scholar] [CrossRef]
- Minkina, T.M.; Nevidomskaya, D.G.; Pol’shina, T.N.; Fedorov, Y.A.; Mandzhieva, S.S.; Chaplygin, V.A.; Bauer, T.V.; Burachevskaya, M.V. Heavy Metals in the Soil–Plant System of the Don River Estuarine Region and the Taganrog Bay Coast. J. Soils Sediments 2017, 17, 1474–1491. [Google Scholar] [CrossRef]
- Minkina, T.; Fedorenko, G.; Nevidomskaya, D.; Konstantinova, E.; Pol’shina, T.; Fedorenko, A.; Chaplygin, V.; Mandzhieva, S.; Dudnikova, T.; Hassan, T. The Morphological and Functional Organization of Cattails Typha Laxmannii Lepech. And Typha Australis Schum. and Thonn. under Soil Pollution by Potentially Toxic Elements. Water 2021, 13, 227. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Fedorov, Y.A.; Dotsenko, I.V. Heavy Metals in the Components of the Landscape of the Sea of Azov; Southern Federal University: Rostov-on-Don, Russia, 2018. [Google Scholar]
- Matishov, G.G.; Bufetova, M.V.; Egorov, V.N. The Regulation of Flows of Heavy Metals Into the Sea of Azov According to the Intensity of Sedimentation of Water Self-Purification. Sci. South Russ. 2017, 13, 44–58. [Google Scholar] [CrossRef]
- Sheverdyaev, I.V.; Kleschenkov, A.V. Revealing the Surge Phenomena Contribution of the Heavy Metals Inflow to the River Don Delta. Morskoy Gidrofiz. Zhurnal 2020, 36, 582–594. [Google Scholar] [CrossRef]
- Tkachenko, A.N.; Tkachenko, O.V.; Lychagin, M.Y.; Kasimov, N.S. Heavy Metal Flows in Aquatic Systems of the Don and Kuban River Deltas. Dokl. Earth Sci. 2017, 474, 587–590. [Google Scholar] [CrossRef]
- Tkachenko, O.V.; Tkachenko, A.N.; Lychagin, M.Y. Content of Heavy Metals in Water Objects of the Delta of Don: Seasonal and Spa-Tial Dynamics. Geol. Geogr. Glob. Energy 2016, 2, 76–84. [Google Scholar]
- Sazykina, M.; Barabashin, T.; Konstantinova, E.; Al-Rammahi, A.A.K.; Pavlenko, L.; Khmelevtsova, L.; Karchava, S.; Klimova, M.; Mkhitaryan, I.; Khammami, M.; et al. Non-Corresponding Contaminants in Marine Surface Sediments as a Factor of ARGs Spread in the Sea of Azov. Mar. Pollut. Bull. 2022, 184, 114196. [Google Scholar] [CrossRef] [PubMed]
- Bufetova, M.V. Estimation of Heavy Metal Fluxes (Pb, Cd) in the Abiotic Components of the Azov Sea Ecosystem. Reg. Environ. Issues 2018, 4, 70–73. [Google Scholar] [CrossRef]
- Bufetova, M.V.; Fen, O.N. Assessment of Pollution of Azov Sea Bottom Sediments with Heavy Metals. Proc. High. Educ. Establ. Geol. Explor. 2016, 3, 45–51. [Google Scholar]
- Mikhaylenko, A.V. Assessment of Mercury Content in Soils and Sediments of the Don River Delta. Eng. J. Don 2015, 3, 170. [Google Scholar]
- Shishkin, A.N. (Ed.) Environmental Atlas of the Black and Azov Seas; Foundation “National Intellectual Resource”: Moscow, Russia, 2019. [Google Scholar]
- Venevsky, S.; Berdnikov, S.; Day, J.W.; Sorokina, V.; Gong, P.; Kleshchenkov, A.; Kulygin, V.; Li, W.; Misirov, S.; Sheverdyaev, I.; et al. Don River Delta Hydrological and Geomorphological Transformation under Anthropogenic and Natural Forcings. Dynamics of Delta Shoreline, Risk of Coastal Flooding and Related Management Options. Ocean Coast. Manag. 2024, 258, 107364. [Google Scholar] [CrossRef]
- Tsygankova, A.E.; Bespalova, L.A. Intensity of Manifestation of Coastal Processes of the Sea of Azov for 1980–2020. Ecol. Econ. Inform. Syst. Anal. Math. Model. Ecol. Econ. Syst. 2022, 1, 132–138. [Google Scholar] [CrossRef]
- Matishov, G.; Matishov, D.; Gargopa, Y.; Dashkevich, L.; Berdnikov, S.; Kulygin, V.; Arkhipova, O.; Chikin, A.; Shabas, I.; Baranova, O. Climatic Atlas of the Sea of Azov; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service: Silver Spring, MD, USA, 2008.
- Matishov, G.G.; Grigorenko, K.S. Causes of Salinization of the Gulf of Taganrog. Dokl. Earth Sci. 2017, 477, 1311–1315. [Google Scholar] [CrossRef]
- Korotaev, V.N.; Chernov, A.V. Formation of Floodplains in the Lower Reaches of Large Plain Rivers under Base Level Fluctuations. Vestn. Mosk. Univ. Ser. 5 Geogr. 2018, 4, 29–38. [Google Scholar]
- Vorobyova, L.A. Theory and Practice of Chemical Analysis of Soils; GEOS: Moscow, Russia, 2006. [Google Scholar]
- Nikitin, B.A. Utochnenie k Metodike Opredeleniya Gumusa v Pochve. Agrokhimiya 1983, 8, 18–26. [Google Scholar]
- Shaimukhametov, M.S. On the Method of Determination of Adsorbed Ca and Mg in Chernozemic Soils. Pochvovedenie 1993, 12, 105–111. [Google Scholar]
- Gorbunov, N.I. Procedure of Sample Preparation to Mineralogical Analysis. In Methods of Mineralogical and Micromorphological Study of Soils; Gorbunov, N.I., Ed.; Nauka: Moscow, Russia, 1971; pp. 5–15. [Google Scholar]
- FR.1.31.2018.32143; Measurement Technique M-049-PDO/18 “Methodology for Measuring the Mass Fraction of Metals and Metal Oxides in Powder Samples of Soils and Bottom Sediments Using the X-ray Fluorescence Method”. Spectron NPO Ltd.: Saint Petersburg, Russia, 2018.
- Badawy, W.M.; Duliu, O.G.; El Samman, H.; El-Taher, A.; Frontasyeva, M.V. A Review of Major and Trace Elements in Nile River and Western Red Sea Sediments: An Approach of Geochemistry, Pollution, and Associated Hazards. Appl. Radiat. Isot. 2021, 170, 109595. [Google Scholar] [CrossRef] [PubMed]
- Abrahim, G.M.S.; Parker, R.J. Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Marchellina, A.; Soegianto, A.; Putranto, T.W.C.; Payus, C.M.; Irnidayanti, Y. Spatial Distribution and Pollution Assessment of Metals in Sediments along the Industrialized Coast of East Java, Indonesia. Environ. Geochem. Health 2024, 46, 205. [Google Scholar] [CrossRef]
- Shabanov, M.V.; Marichev, M.S.; Minkina, T.M.; Rajput, V.D.; Bauer, T.V. Change in Eco-Geochemistry of Bottom Sediments in Copper–Pyrite Mining Area: A Case-Study of Karabash Copper Deposits. Min. Inf. Anal. Bull. 2023, 5, 117–134. [Google Scholar] [CrossRef]
- Müller, G. Schadstoffe in Sedimenten-Sedimente Als Schadstoffe. Mitt. Osterr. Geol. Ges. 1986, 79, 107–126. [Google Scholar]
- Nemerow, N.L. Stream, Lake, Estuary, and Ocean Pollution; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Usero, J.; González-Regalado, E.; Gracia, I. Trace Metals in the Bivalve Mollusc Chamelea Gallina from the Atlantic Coast of Southern Spain. Mar. Pollut. Bull. 1996, 32, 305–310. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A Free Online Platform for Data Visualization and Graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Nevidomskaya, D.; Bauer, T.; Fedorov, Y.; Zamulina, I.; Mandzhieva, S.; Kravtsova, N.; Voloshina, M.; Dudnikova, T.; et al. Establishment of Regional Background for Heavy Metals in the Soils of the Lower Don and the Taganrog Bay Coast. In Proceedings of the E3S Web of Conferences, Hyderabad, India, 24–26 September 2021; Volume 265. [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Buchman, M.F. Screening Quick Reference Tables (SQuiRTs); Office of Response and Restoration Division, National Oceanic and Atmospheric Administration: Seattle, WA, USA, 2008. [Google Scholar]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef] [PubMed]
Area | Elements | Effects Range | Effects Level | ||||
---|---|---|---|---|---|---|---|
<ERL | ERL–ERM | ≥ERM | <TEL | TEL–PEL | ≥PEL | ||
Taganrog Bay | Cr | 62.1 | 37.9 | 0 | 17.2 | 82.8 | 0 |
Ni | 3.4 | 27.6 | 69 | 0 | 31 | 69 | |
Cu | 79.3 | 20.7 | 0 | 51.7 | 44.8 | 3.4 | |
Zn | 89.7 | 3.4 | 6.9 | 86.2 | 6.9 | 6.9 | |
Cd | 37.9 | 62.1 | 0 | 10.3 | 72.4 | 17.2 | |
Pb | 55.2 | 44.8 | 0 | 17.2 | 72.4 | 10.3 | |
Don River Delta | Cr | 20 | 80 | 0 | 4 | 24 | 72 |
Ni | 4 | 12 | 84 | 0 | 12 | 88 | |
Cu | 100 | 0 | 0 | 96 | 4 | 0 | |
Zn | 80 | 20 | 0 | 84 | 16 | 0 | |
Cd | 100 | 0 | 0 | 4 | 92 | 4 | |
Pb | 16 | 36 | 48 | 16 | 16 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinova, E.; Minkina, T.; Nevidomskaya, D.; Bauer, T.; Zamulina, I.; Latsynnik, E.; Dudnikova, T.; Yadav, R.K.; Burachevskaya, M.; Mandzhieva, S. Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River. Water 2024, 16, 3200. https://doi.org/10.3390/w16223200
Konstantinova E, Minkina T, Nevidomskaya D, Bauer T, Zamulina I, Latsynnik E, Dudnikova T, Yadav RK, Burachevskaya M, Mandzhieva S. Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River. Water. 2024; 16(22):3200. https://doi.org/10.3390/w16223200
Chicago/Turabian StyleKonstantinova, Elizaveta, Tatiana Minkina, Dina Nevidomskaya, Tatiana Bauer, Inna Zamulina, Elizaveta Latsynnik, Tamara Dudnikova, Rajendra Kumar Yadav, Marina Burachevskaya, and Saglara Mandzhieva. 2024. "Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River" Water 16, no. 22: 3200. https://doi.org/10.3390/w16223200
APA StyleKonstantinova, E., Minkina, T., Nevidomskaya, D., Bauer, T., Zamulina, I., Latsynnik, E., Dudnikova, T., Yadav, R. K., Burachevskaya, M., & Mandzhieva, S. (2024). Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River. Water, 16(22), 3200. https://doi.org/10.3390/w16223200