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Abstract: Emptying processes are operations frequently required in hydraulic installations by water
utilities. These processes can result in drops to sub-atmospheric pressure pulses, which may lead to
pipeline collapse depending on soil characteristics and the stiffness of a pipe class. One-dimensional
mathematical models and 3D computational fluid dynamics (CFD) simulations have been employed
to analyse the behaviour of the air–water interface during these events. The numerical resolution
of these models is challenging, as 1D models necessitate solving a system of algebraic differential
equations. At the same time, 3D CFD simulations can take months to complete depending on the
characteristics of the pipeline. This presents a mathematical approach for directly solving air–water
interactions in emptying processes involving entrapped air, providing a predictive tool for water
utilities. The proposed mathematical approach enables water utilities to predict emptying operations
in water pipelines without needing 2D/3D CFD simulations or the resolution of a differential
algebraic equations system (1D model). A practical application is demonstrated in a case study of
a 350 m long pipe with an internal diameter of 350 mm, investigating the influence of air pocket
size, friction factor, polytropic coefficient, pipe diameter, resistance coefficient, and pipe slope. The
mathematical approach is validated using an experimental facility that is 7.36 m long, comparing
it with 1D mathematical models and 3D CFD simulations. The results confirm that the derived
mathematical expression effectively predicts emptying operations in single water installations.

Keywords: emptying processes; mathematical approach; Simpson’s 1/3 rule; transient event; trapped
air; water distribution networks

1. Introduction

The study of water emptying processes in pressurised pipelines has received limited
attention from researchers worldwide, although water utilities routinely conduct this op-
eration [1]. The accurate prediction of emptying processes is crucial to prevent pipeline
collapses, as sub-atmospheric pressure pulses may develop during transient events de-
pending on soil conditions and pipe stiffness. An efficient emptying process should ensure
that the pipeline is free of air pockets, as large air pockets are recommended before ini-
tiating filling operations. This is because more oversized air pockets tend to lower air
pocket pressures, which helps mitigate the risk of pipeline failure due to peak pressures.
Moreover, these procedures are vital for expelling sediments and minimising issues related
to pipe corrosion.

Water utilities should perform this operation to achieve appropriate emptying times
and restore the regular operation of water installations as swiftly as possible. In developing
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countries, frequent interruptions in water services often occur due to pipeline failures,
leaving many communities without access to a reliable water supply.

The emptying process modelling involves multiphase flows (air and water), which should
be simulated using thermodynamics and hydraulic formulations. Tijsseling et al. (2016) [2]
proposed a 1D model for predicting emptying processes considering a stratified air–water
interaction based on a holdup coefficient, which has been experimentally validated [3].
Coronado-Hernández et al. (2018) [4] and Fuertes-Miquel et al. (2019) [1] proposed
a 1D mathematical model for analysing emptying operations using pressurised air in
combination with a piston flow approach using experimental measurements during the
validation model stage. These formulations are based on physical equations considering
the rigid water model, a perpendicular air–water interface, and the polytropic law for the
air phase, which can be applied for single and irregular profile water installations. When
air valves are installed, the air valve characterisation and mass balance equations must be
considered. The air balance is composed of air pocket density mixing with the air density
in normal conditions. Chen et al. (2024) [5] presented a dataset of laboratory experiments
in a large-scale PVC pipeline 275.2 m long with a diameter of 0.25 m, which presents inlet,
bridge, and horizontal branches for studying emptying processes.

The 3D computational fluid dynamics (CFD) model allows for the numerical resolution
of Navier–Stokes partial differential equations describing fluid behaviour. This technique
predicts fluid movement within water installations, including two phases (water and
air) [6]. In practise, CFD models are widely accepted by the scientific community as a
reliable means of solving the Navier–Stokes equations, as well as the continuity and energy
formulations [7–9]. Because of the computational power, one can use CFD quickly and
effectively. Another essential feature of CFD models is that their solutions can be as precise
as prototype models. Liu et al. (2019) [10] have investigated the emptying operation of an
oil pipeline with a complex longitudinal profile, analysing air–water behaviour through 3D
simulations using OLGA v7.0 software. Additionally, a 3D analysis of emptying processes
was conducted to capture backflow air, employing OpenFOAM software in an experimental
facility measuring 4.36 m long. The PVoF model was used with a two-equation turbulence
model for the simulation [11].

Currently, the literature outlines two main approaches for solving emptying processes;
(i) for 1D models, numerical methods such as Runge–Kutta or Rosenbrock can be imple-
mented using solvers from computational packages like Matlab R2024b [12] and Octave
7.0 [13], among others, and (ii) for 3D CFD models, software packages such as Ansys 2024
R2 [14], OpenFOAM v2012 [15], OLGA 7.0 [10], Flow-3D v12.0 [16], and STAR-CCM+
2402 [17] are commonly used. The numerical resolution of 1D models necessitates a system
of equations that must be carefully integrated to solve the complex differential equations.
Three-dimensional CFD models require significant computational times, with simulations
of actual pipelines potentially taking several months to complete. In summary, the com-
putation of the main hydraulic and thermodynamic behaviours of emptying processes
have been addressed using 2D/3D CFD [11,18] models or applying a differential algebraic
equations system [1,2].

This research presents a mathematical approach for directly solving air–water in-
teraction in water emptying processes with entrapped air based on a one-dimensional
formulation of the rigid water model, piston flow, and the polytropic law. The system,
composed of differential algebraic equations proposed by the authors in previous publi-
cations, has been solved numerically and analytically to provide a solution applicable to
water utilities for simulating these operations. The approach accounts for an instantaneous
valve opening manoeuvre. A practical application to an extensive pipeline is demonstrated,
offering a much faster solution than those produced by 3D CFD models. Furthermore,
the proposed method is validated through experimental measurements and compared
with 1D and 3D CFD models, demonstrating good accuracy in predicting this biphasic
transient event.
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2. Material and Methods
2.1. One-Dimensional Mathematical Model

The authors have investigated the transient behaviour of water emptying processes
in pipelines in references [1,4]. These processes commence with assuming the pipes are
initially filled with water. The entrapped air pocket expands upon opening the regulating
valves, decreasing air pocket pressure. Typically, the initial air pocket is assumed to be at
atmospheric pressure, and sub-atmospheric conditions are reached during these events. The
current mathematical model, consisting of differential algebraic equations, was developed
by the authors in earlier publications as follows:

dL
dt

= −v (1)

dv
dt

=
p∗1 − p∗atm

ρL
+ gsin θ − f

2D
v|v| − RvgA2

L
v|v| (2)

p∗1 =
p∗1,0xk

0

(LT − L)k (3)

where p*
1 = air pocket pressure; v = water velocity; L = length of the water emptying column;

p*
atm = atmospheric pressure; ρ = water density; g = gravitational acceleration; g = friction

factor; θ = pipe slope (rad); A = cross-sectional area of pipe; Rv = resistance coefficient;
D = internal pipe diameter; LT = total pipe length; and k = polytropic coefficient.

The initial conditions of the system are given by v0 = 0, L0 = LT − x0, and
p*

1,0 = p*
atm = 101,325 Pa. The subscript 0 indicates an initial condition of analysed variables.

Figure 1 illustrates the scheme of an emptying process in a single pipeline with
entrapped air. The system starts at rest with zero water velocity (Figure 1a). Subsequently,
when a regulating valve is opened, the emptying process begins, as depicted in Figure 1b.
The system again reaches zero water velocity at the end of the biphasic transient event.

2.2. Proposed Mathematical Approach

This section shows the proposed model developed in this research. The model is based
on the following assumptions: (i) water movement is described by the Euler equation;
(ii) the air–water interface is considered perpendicular to the main direction of a pipeline;
(iii) the friction factor is constant during the transient event; (iv) the air phase follows the
polytropic law; and (v) the model applies to single water installations with a sufficient
pipe slope.

The 1D mathematical model, consisting of Equations (1)–(3), can be rearranged to
eliminate dependence on time t.

By substituting Equation (3) into Equation (2), the system of differential equations can
be expressed by Equations (1) and (4).

dv
dt

=
p∗1,0xk

0

ρL(LT − L)k − p∗atm
ρL

+ gsin θ − f
2D

v|v| − RvgA2

L
v|v| (4)

The system comprising Equations (1) and (4) is autonomous [19]; thus, its numerical
solution can be carried out in the vL plane by tracking its trajectory. The trajectory consists
of points (L(t), v(t)), which satisfy Equations (1) and (4). The system can be simplified
as follows:

dv
dL

=
dv
dt
dL
dt

=

p*
1,0xk

0

ρL(LT−L)k −
p*

atm
ρL + gsin θ − f

2D v|v| − RvgA2

L v|v|

−v
(5)



Water 2024, 16, 3203 4 of 16
Water 2024, 16, x FOR PEER REVIEW 4 of 17

Figure 1. Scheme of water emptying process: (a) initial condition, (b) intermediate position, and (c) 
final position.
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sufficient pipe slope.

The 1D mathematical model, consisting of Equations (1)–(3), can be rearranged to 
eliminate dependence on time 𝑡.

By substituting Equation (3) into Equation (2), the system of differential equations 
can be expressed by Equations (1) and (4).

Figure 1. Scheme of water emptying process: (a) initial condition, (b) intermediate position, and
(c) final position.

Considering Equation (5), it is possible to compute dv
dL . Equation (5) is a single first-

order linear differential equation, where L is the independent variable and v is a function
of L with no dependence on t. From Equation (5),

−v
dv
dL

=
p∗1,0xk

0

ρL(LT − L)k − p∗atm
ρL

+ gsin θ − f
2D

v|v| − RvgA2

L
v|v| (6)

Multiplying Equation (6) by 2, then

2v
dv
dL

=
−2p∗1,0xk

0

ρL(LT − L)k +
2p∗atm

ρL
− 2gsinθ +

f
D

v|v|+ 2RvgA2

L
v|v| (7)
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Since
d(v2)

dL = 2v dv
dL and considering the region with the lowest values of sub-atmospheric

pressure pulses (where v ≥ 0), then

d
(
v2)

dL
=

−2p∗1,0xk
0

ρL(LT − L)k +
2p∗atm

ρL
− 2gsinθ +

f
D

v2 +
2RvgA2

L
v2 (8)

By defining the auxiliary variable z as v2, Equation (8) can be expressed in terms of z
as follows:

d(z)
dL

−
(

f
D

+
2RvgA2

L

)
z =

−2p∗1,0xk
0

ρL(LT − L)k +
2p∗atm

ρL
− 2gsinθ (9)

It is observed that Equation (9) is a first-order linear differential equation with variable
coefficients, where z is the unknown variable. Additionally, since the equation is non-
homogeneous, its solution involves multiplying both sides by an integrating factor eh(L),

where h(L) = −
∫ f

D + 2RvgA2

s ds is the integral of the second coefficient. Therefore, the
integrating factor becomes

eh(L) = e−
∫ f

D +
2Rv gA2

s ds = e−(
f
D L+2RvgA2(lnL) ) (10)

Multiplying Equation (9) by the integrating factor in (10) yields the following result:

eh(L) d(z)
dL

− eh(L)
(

f
D

+
2RvgA2

L

)
z = eh(L)

(
−2p∗1,0xk

0

ρL(LT − L)k +
2p∗atm

ρL
− 2gsinθ

)
(11)

By the definition of h(L) and calculating h′(L) = −
(

f
D + 2RvgA2

L

)
, the chain rule gives

d(eh(L))
dL = h′(L)eh(L)

= −
(

f
D + 2RvgA2

L

)
eh(L). This allows the left-hand side of Equation (11)

to be rewritten using the product rule as follows:

d
(

zeh(L)
)

dL
= eh(L)

(
−2p∗1,0xk

0

ρL(LT − L)k +
2p∗atm

ρL
− 2gsinθ

)
(12)

By integrating Equation (12) with limits from L0 to L, where v(L) > 0, and v(S) > 0
for all S values, thus

zeh(L) =
∫ L

L0

(
e(−

f
D S)(S)−2RvgA2

)( −2p∗1,0xk
0

ρS(LT − S)k +
2p∗atm

ρS
− 2gsinθ

)
dS (13)

Dividing Equation (12) by Equation (10) yields

z =

(
e

f
D L(L)2RvgA2

) L∫
L0

(
e

f
D S(S)2RvgA2

)−1
(

−2p∗1,0xk
0

ρS(LT − S)k +
2p∗atm

ρS
− 2gsinθ

)
dS (14)

Considering that z = v2, then the water velocity can be computed as

v(L) =

√√√√√(e
f
D L(L)2RvgA2

) L∫
L0

(
e

f
D S(S)2RvgA2

)−1
(

−2p∗1,0xk
0

ρS(LT − S)k +
2p∗atm

ρS
− 2gsinθ

)
dS (15)

Equation (14) is valid for L values between L0 and L f , where v(L) ≥ 0.
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The solution of Equation (14) yields the integral of Equation (15).

L∫
L0

(
e

f
D S(S)2RvgA2

)−1
(

−2p∗1,0xk
0

ρS(LT − S)k +
2p∗atm

ρS
− 2gsinθ

)
dS (16)

Defining M(S) as the integrand of Equation (15), then

M(S) =
(

e
f
D S(S)2RvgA2

)−1
(

−2p*
1,0xk

0

ρS(LT − S)k +
2p*

atm
ρS

− 2gsinθ

)
(17)

The function M(S) results in very small values that can cause an unstable solution, as
demonstrated in Section 3.

In this sense, the average of the term
(

e
f
D L(L)2RvgA2)

is selected for the solution.

z =

L∫
L0

(
e

f
D (L−S)

(
L
S

)2RvgA2) ( −2p∗1,0xk
0

ρS(LT − S)k +
2p∗atm

ρS
− 2gsinθ

)
dS (18)

Denoting N (S) as the integrand of Equation (17) with z =
∫ L

L0
N (S)dS, then

N (S) =

(
e

f
D (L−S)

(
L
S

)2RvgA2)( −2p∗1,0xk
0

ρS(LT − S)k +
2p∗atm

ρS
− 2gsinθ

)
(19)

The resulting values of N (S) are bigger compared to M(S), yielding a reliable solution
for emptying processes.

For the numerical solution of z, the Simpson’s 1/3 rule with a fifth-order error was
employed [20,21]. To approximate the integral of a function N (S) over the interval [a, b],
it is divided into n equal sub-intervals, each of length h = b−a

n . It is important to note
that in Simpson’s 1/3 rule, n must be an even number to ensure a suitable solution. By
dividing the interval into n parts, the integral of N (S) for the values si with i = 0, . . . , n,
and considering that z =

∫ L
L0
N (S)dS with N (S), then

L∫
L0

N (S)dS ≈ (L − L0)
N (L0) + 4∑

n−2
2

i=0 N (S2i+1) + 2∑
n−2

2
i=1 N (S2i) +N (L)

3n
(20)

The final solution is yielded by v =
√
−
∫ L0

L N (S)dS.

3. Results
3.1. Dataset

This section shows the proposed approach’s application. The model was developed to
predict the minimum value of air pocket pressure pulses during an emptying procedure
in a single installation. The proposed approach is applied to a water pipeline considering
the dataset as follows: LT = 350 m, k = 1.2, x0 = 50 m, D = 0.25 m, f = 0.017, θ = 0.10 rad,
and Rv = 0.15 ms2/m6. The Supplementary Materials section provides the code created
using the proposed approach to model the emptying process, with calculations performed
in Octave v7.1.0.

3.2. Application of the Proposed Approach

For a numerical resolution, a value of n = 30 was considered for the proposed approach.
Figure 2 shows the obtained results that relate to the three analysed variables of the problem
(water velocity, air pocket pressure, and length of the water column). The water velocity
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starts with a null value, reaching a maximum of 4.77 m/s. The proposed approach predicts
only the behaviour until the minimum value of the sub-atmospheric pressure head is 1.34 m.
At this point, the water velocity once again reaches a zero value.
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Figure 2. An analysis of hydraulic variables applying the proposed approach.

3.3. Effect of Main Parameters

The effects of the main parameters involved in this process are studied using the
proposed approach. Figure 3 illustrates the relationship between the air pocket pressure
head and the length of the water column, with variations in air pocket size. As expected,
the smaller the air pocket size, the lower the values of sub-atmospheric pressure pulses
achieved. In this instance, the air pocket size ranges from 10 to 150 m. An air pocket
pressure of 0.205 m was found for an air pocket size of 10 m, while a value of 4.4 m was
attained for a size of 150 m. It is paramount to remember that smaller air pocket sizes can
lead to issues related to damaging pressure collapse depending on installation conditions
and soil characteristics.
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Another significant parameter is the selection of the polytropic coefficient. In practise,
it is challenging to establish this coefficient a priori. During the design phase, engineers
typically define an intermediate behaviour of the air phase (k = 1.2). The polytropic
coefficient ranges between 1.0 (isothermal evolution) and 1.4 (adiabatic evolution). Figure 4
presents the minimum values of sub-atmospheric pressure heads against variations in the
polytropic coefficient (k). Lower polytropic coefficients result in smaller sub-atmospheric
pressure heads. However, there are no significant discrepancies across the entire range of
the polytropic coefficient. In this sense, using k = 1.0, a minimum sub-atmospheric pressure
of 1.31 m is obtained, while with k = 1.4, the air pressure reaches 1.37 m.
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The internal pipe diameter was also varied to observe the behaviour of the proposed
approach. Pipe diameters ranged between 0.15 and 0.40 m. No significant differences were
detected when varying this parameter. For example, with a pipe diameter of 0.15 m, an air
pocket pressure of 1.37 m is observed, whereas for a pipe diameter of 0.40 m, the air pocket
pressure trends towards 1.31 m, as shown in Figure 5.
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Figure 5. Variation in internal pipe diameter versus minimum sub-atmospheric pressure pulses.

Considering that the friction factor indicates how roughness can affect pipe resistance,
various values ranging from 0.013 to 0.020 were analysed to observe the variations in
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minimum sub-atmospheric pressure heads, as shown in Figure 6. The smaller the friction
factor, the more significant the reduction in sub-atmospheric pressure. In this case, friction
factor values of 0.013 and 0.020 resulted in minimum sub-atmospheric pressures of 1.32
and 1.35 m, respectively. This parameter does not significantly affect the phenomenon’s
behaviour during drainage events.
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Figure 6. An analysis of the friction factor and its effect on the minimum sub-atmospheric pres-
sure head.

Figure 7 analyses the variation in the resistance coefficient of a regulating valve,
considering different aperture degrees ranging from 0.06 to 150 ms2/m6. The higher the
resistance coefficient, the greater the air pocket pressure achieved, with values ranging
from 1.34 to 1.38 m for the full range of analysed resistance coefficients.
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Figure 7. An analysis of the resistance coefficient of regulating valves on the minimum sub-
atmospheric pressure heads.

As demonstrated in Figure 8, the bed slope significantly influences air pocket pressure
pulses during emptying manoeuvres. To analyse these variations, pipe slopes from 0.05
to 0.20 radians were examined. The greater the bed slope, the lower the minimum sub-
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atmospheric pressure heads attained. For instance, with a pipe slope (from 0.2 to 0.50 rad),
a minimum pressure head of 1.96 m is reached, while a pipe slope of 0.20 rad results in a
value of 1.13 m under the proposed approach.
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4. Discussion
4.1. Numerical Resolution

A 1D mathematical model is compared to assess the proposed approach. The math-
ematical model is solved using Equations (1)–(3), which involve mass oscillation, piston
flow, and polytropic formulations. These are based on physical formulations representing
the emptying phenomena with entrapped air. The proposed approach uses these equations
but only captures water movement until the minimum sub-atmospheric pressure occurs.
As expected, both models exhibit the same behaviour, as illustrated in Figure 9. Indeed, the
1D mathematical model can replicate the transient event, but its numerical resolution is
complex, as it involves a system of differential algebraic equations. The advantage of the
proposed approach is that it offers a more straightforward numerical resolution.

Additionally, the results of Simpson’s 1/3 rule approximation were compared with
those of the trapezoidal rule, which has a third-order error, to evaluate the behaviour of the
proposed approach. Both approximations yield reliable values for computing this process.
For the interval [si, si+1], the approximation of the trapezoidal rule for z is

L∫
L0

N (S)dS ≈
n

∑
i=1

(
L − L0

n

)(
N (Si−1) +N (Si)

2

)
(21)

Since the numerical resolution requires the number of intervals (n) to be specified, both
even and odd numbers were utilised to assess their influence on the numerical approach. In
this regard, the numerical resolution was performed using values of 2, 3, 7, 8, 30 (baseline
solution), and 35, as shown in Figure 10. Even numbers provided a better fit compared to
odd numbers. The greater the selected value of n, the more accurate the solution for the
proposed approach. For example, using an odd number of n = 3, the water column length
is 86.04 m for a null water velocity (the instant when the minimum air pocket pressure is
reached), whereas using an even number of n = 4 results in a value of 82.8 m. The even
number is more closely aligned with the final behaviour of the process, where a value of
76.33 m was obtained for the baseline solution (n = 30).
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The validation of the proposed approach also considers the assessment of M(S) and
N (S), as shown in Figure 11. Figure 11a presents that the resulting M(S) values have a
maximum in an order of magnitude around 10−4, which is very small, and precision errors
may arise during integration, causing the simulation to become unstable. In contrast, the
N (S) values present a suitable value for integration purposes, as despicted in Figure 11b.
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4.2. Validation Employing Experimental Measurements

The proposed approach was validated using real-time measurements in a simple water
pipeline, which the authors conducted. Data were obtained using a pressure transducer
located at the highest point of the water installation, which consisted of a 4.36 m long pipe
with an internal diameter of 42 mm. During the measurements, twelve (12) tests were
carried out, varying the air pocket sizes from 0.205 to 0.450 m, with two slopes (0.457 and
0.515 rad) and employing opening manoeuvres in the regulating valve with resistance
coefficients ranging from 11.89 to 138.41 ms2/m6. During the experiments, the opening
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times of the regulating valve ranged from 0.15 to 0.75 s. Details of the experiments can be
found in the publication conducted by Fuertes-Miquel et al. (2018).

The proposed approach considers an instantaneous opening of regulating valves,
expected to yield sub-atmospheric pressure values lower than those observed in real-time
experiments. This is significant, as the approach provides values that water utilities can use
to plan emptying operations in real-world water installations. The proposed approach was
validated by comparing the minimum sub-atmospheric pressure values obtained through
real-time measurements. Additionally, both a one-dimensional (1D) mathematical model
(comprising the numerical resolution of Equations (1)–(3)) and a three-dimensional (3D)
CFD model were employed to simulate the current emptying operation.

Notably, for the current problem, the following equations are required:
Continuity equation:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (22)

X-momentum equation:

∂(ρu)
∂t

+
∂
(
ρu2)
∂x

+
∂(ρuv)

∂y
+

∂(ρuw)

∂z
= −∂p

∂x
+

1
Re,t

[
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

]
(23)

Y-momentum equation:

∂(ρv)
∂t

+
∂(ρuv)

∂x
+

∂
(
ρv2)
∂y

+
∂(ρvw)

∂z
= −∂p

∂y
+

1
Re,t

[
∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z

]
(24)

Z-momentum equation:

∂(ρw)

∂t
+

∂(ρuw)

∂x
+

∂(ρvw)

∂y
+

∂
(
ρw2)
∂z

+ = −∂p
∂z

+
1

Re,t

[
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z

]
(25)

Energy equation:

∂(ET)
∂t + ∂(uET)

∂x + ∂(vET)
∂y + ∂(wET)

∂z

= − ∂(up)
∂x − ∂(vp)

∂y − ∂(wp)
∂z − 1

Re,tPrt

[
∂qx
∂x +

∂qy
∂y + ∂qz

∂z

]
+ 1

Re,t

[
∂

∂x
(
uτxx + vτxy + wτxz

)
+ ∂

∂y
(
uτxy + vτyy + wτyz

)
+ ∂

∂z
(
uτxz + vτyz + wτzz

)] (26)

where x, y, and z = tridimensional coordinate system; t = time; p = fluid pressure; ρ = fluid
density; τ = fluid stress; q = heat flux; ET = total energy of a fluid; Re,t = Reynolds num-
ber; u, v, and z = fluid velocity components in direction x, y, and z, respectively; and
Prt = Prandtl number.

According to Paternina-Verona et al. (2023) [11], a 3D CFD model for emptying
processes can be implemented based on the following assumptions: (i) non-isothermal and
immiscible compressible flows; (ii) the air phase can be treated as an ideal gas; (iii) water
density remains constant over time, as air elasticity is significantly higher compared to the
water phase; and (iv) the pipe walls are modelled as rigid elements. The k-ω SST turbulence
model was employed for the simulations, a model widely adopted by researchers to
address air–water interface issues. Simulations were conducted using the OpenFOAM
v2012 software with the compressibleInterFoam solver, which is well suited for modelling
mixtures of air and water. For the calculations, the aspect ratio, non-orthogonality, and
skewness were analysed across five meshes to validate the adopted 3D configuration.

The results of the 1D mathematical model and the 3D CFD model were compared to
assess the proposed approach, as shown in Figure 12. As expected, the 1D mathematical
model and 3D CFD model calibrated better than the proposed approach, since they are
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based on physical formulations. However, applying the proposed approach is more
accessible than these models. The 1D mathematical model requires a numerical resolution
that involves ordinary differential equations, while the 3D CFD needs high computational
times. The proposed approach is suitable for computing minimum values of air pocket
pressure heads, being a practical tool that water utilities can use to predict rapidly emptying
operations in actual water installations.
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The root mean square error (RMSE) and the correlation coefficient were computed
to assess the fit of the proposed approach numerically and its corresponding comparison
with the 1D mathematical model and 3D CFD model, as presented in Table 1. It is essential
to highlight that the proposed approach has good accuracy, with an RMSE of 1.13% and an
R2 of 0.95. The used formulations are described as follows:

RMSE =

√√√√ 1
N

N

∑
j=1

(
p∗1,cal − p∗1,exp

p∗1,exp

)2

(27)

R2 =
∑N

j=1

(
p∗1,cal,j − p∗1,cal

)(
p∗1,exp,j − p∗1,exp

)
√

∑N
j=1

(
p∗1,cal,j − p∗1,cal

)2
√

∑N
j=1

(
p∗1,exp,j − p∗1,exp

)2
(28)

where RMSE = root mean square error; R2 = correlation coefficient; p∗1,cal = air pocket
pressure calculated using the proposed approach, 1D mathematical model, or 3D CFD
model; p∗1,exp = experimental measurement; and N = total analysed points.

Table 1. Computation of root mean square errors and correlation coefficients.

Model RMSE (%) R2

Proposed approach 1.13 0.95
1D mathematical model 0.33 0.99

3D CFD model 0.47 0.96

5. Conclusions

In this study, a new mathematical expression was developed to directly model the tran-
sient events in emptying operations within single water installations, including biphasic
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flow. The mathematical approach was derived by solving the system of algebraic differ-
ential equations from the 1D model proposed by the authors. This method offers a more
straightforward computational approach compared to previous models. The proposed
approach was validated using an experimental facility with a pipe length of 4.36 m and
an internal diameter of 42 mm. The mathematical approach can compute the minimum
values of the sub-atmospheric air pocket pressure head with a root mean square error of
1.13%, slightly higher than the 1D mathematical model (0.33%) due to the consideration of
instantaneous valve opening manoeuvres.

This research provides a foundation for water utilities to estimate the minimum sub-
atmospheric air pressure pulses that may occur during emptying processes. Incorporating
such expressions in digital twin models should be considered for predicting these phenom-
ena. The proposed mathematical approach enables water utilities to select an appropriate
pipe stiffness class based on soil characteristics and the drop in sub-atmospheric pressure
pulses calculated by the model.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w16223203/s1. This section includes the code programmed in Octave
v7.1.0, which solved the emptying process for the dataset presented in Section 3.1.

Author Contributions: Conceptualization, D.M.B.-C. and O.E.C.-H.; methodology, D.M.B.-C., O.E.C.-H.
and M.P.-S.; formal analysis, D.M.B.-C., A.A.-P., O.E.C.-H. and H.M.R.; writing—original draft
preparation, A.A.-P., V.S.F.-M. and O.E.C.-H.; supervision, A.A.-P., V.S.F.-M. and H.M.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient Phenomena during the Emptying

Process of a Single Pipe with Water–Air Interaction. J. Hydraul. Res. 2019, 57, 318–326. [CrossRef]
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