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Abstract: Constructing a precise and effective evaluation index system is crucial to flood disaster
prevention and management in coastal areas. This study takes Lucheng District, Wenzhou City,
Zhejiang Province, southeastern China, as a case study and constructs an evaluation index system
comprising three criterion levels: disaster-causing factors, disaster-gestation environments, and
disaster-bearing bodies. The weights of each evaluation index are determined by combining the
Analytic Hierarchy Process (AHP) and the entropy method. The fuzzy matter-element model
is utilized to assess the flood disaster risk in Lucheng District quantitatively. By calculating the
correlation degree of each evaluation index, the comprehensive index of flood disaster risk for each
street area is obtained, and the flood disaster risk of each street area is classified according to the risk
level classification criteria. Furthermore, the distribution of flood disaster risks in Lucheng District
under different daily precipitation conditions is analyzed. The results indicate that: (1) the study
area falls into the medium-risk category, with relatively low flood risks; (2) varying precipitation
conditions will affect the flood resilience of each street in Lucheng District, Wenzhou City. The
flood disaster evaluation index system and calculation framework constructed in this study provide
significant guidance for flood risk assessment in coastal plain cities.

Keywords: coastal plain cities; flood disasters; risk assessment; index system; fuzzy matter-element model

1. Introduction

With the change in climate and the increasing speed of urbanization, the recurrence
and concentration of urban waterlogging disasters and misfortunes increase yearly [1–3].
Hence, urban waterlogging has become one of the most common catastrophes influencing
the advancement and economy, and it has also been recognized by the world as the greatest
challenge for sustainable water management in the 21st century [4,5].

Zhejiang Province is on the southeast coast of China, with a land area of 105,500 square
kilometers. The landscape of this region slopes from southwest to northeast. The northeast
and east coasts are mostly fields shaped by waterways and lake alluvial and shallow ocean
stores. From north to south, it is divided into five plains: Hangjiahu, Xiaoshao, Ningbo,
Taizhou, and Wenzhou Coastal. The five plains account for 15% of the province’s land
area, 50% of the province’s population, and more than 70% of its businesses and occupy a
significant position within the financial and social improvement of the area [6].

The reasons for waterlogging in cities and towns in the coastal plain and river network
area are first that the geographical location is vulnerable to tropical storms and downpours;
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the territory is low-lying, and the mountains face the ocean. The upper part of the moun-
tains is overwhelmed, while the tide supports the lower part. Additionally, the drainage
conditions are innately poor. Secondly, with the increasing speed of urbanization, the
expansion of urban ranges, the solidifying of the basic surface, the occupation of water
areas, and the construction of foundations, damage to the initial stream arrangement and
water system occurs which changes the storage capacity of the coastal plain zone. Finally,
due to the extraordinary climate, wind, storm, and tides are unpredictable. The probability
of these elements combining increases, causing floods to return to the channel within the
polder area or flood control encirclement. As the water level of the external waterway
continues to rise, the drainage outlets expand into the ocean, resulting in a severe flood
drainage situation in the coastal plain river network [7–11].

Urban waterlogging drainage relies primarily on self-draining using the tide in the
coastal plain river network area and is augmented by forced drainage. The main issue
is that the water level of the inland river and the tide level of the outer river severely
limit the ability of the region to drain [12,13]. Inland river water is suitable for daily tidal
drainage, but the time is limited. When heavy rainfall occurs, the consistently high level
of inland rivers obstructs urban drainage, causing widespread flooding in the metropolis.
Floods, waterlogging, and tides all impact flood disasters in coastal plain river network
cities. The boundary hydrological conditions are complicated and unique, with distinct
systems and processes that might cause disasters [14,15]. To increase the precision of
disaster prediction, attention should be paid to developing an efficient and real-time
flood forecasting mathematical model. Additionally, it is necessary to create and innovate
drainage system risk management and assessment methods and formulate corresponding
drainage scheduling decision-making systems to improve urban waterlogging emergency
management and scheduling capabilities [16,17].

A flood loss evaluation model based on spatial analysis technology that integrates
GIS technology, database technology, flood forecasting and numerical simulation, remote
sensing analysis, asset evaluation, and prediction analysis is known as GIS-based flood loss
analysis technology [18,19]. Integrating GIS spatial analytic technology into the earlier loss
assessment method is key [20–22]. In contrast to traditional statistical assessment results,
which have a weaker ability to reflect the spatial characteristics of data, GIS spatial analytic
technology uses various types of spatial data as the primary data source, and the output
results contain a large amount of spatial data information. As a result, it can better support
disaster relief and disaster reduction plans [23–25].

The typical Zhejiang Province district, especially the Lucheng district in the Wenzhou
coastal plain, was chosen as the case study. The primary objectives of this study are (1) to
develop a comprehensive index system for evaluating flood disaster risk, particularly in the
context of the unique hydrological conditions of the coastal plain river network, and (2) to
apply and validate this index system using a case study in the Lucheng district of Wenzhou,
Zhejiang Province, by integrating GIS technology with flood forecasting models, numerical
simulations, and spatial analysis techniques. Through this integrated approach, we aim
to enhance the accuracy of flood disaster risk assessment and provide valuable insights
for improving urban waterlogging emergency management and scheduling capabilities.
This paper is organized as follows: Section 2 introduces the study area and data; the basic
methods, including the construction of the index system, the data processing technique,
and the fuzzy matter-element model, are described in Section 3; Section 4 presents the
findings and discussions; finally, the conclusions are described in Section 5.

2. Study Area and Data
2.1. Study Area

Lucheng District, located in the southeast of Zhejiang Province, is a district under the
jurisdiction of Wenzhou City. It is the seat of the Wenzhou Municipal People’s Government
and serves as the political, economic, and cultural center of Wenzhou City. Figure 1
illustrates the location of the study area. The district boasts a developed economy and a
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dense population of 1.209 million. It covers a total land area of 292.8 square kilometers,
including 15,549.99 hectares of agricultural land, 8700.00 hectares of construction land,
and 3850.10 hectares of water. For our study, we selected eight highly urbanized sub-
district administrative units within Lucheng District, including Nanjiao, Puxie, Wuma,
Binjiang, Guanghua, Danan, Nanhui, and Songtai (the area enclosed by the bold red
wireframe in Figure 1). This district experiences subtropical ocean monsoons. The hottest
month is July, with an average temperature of 27 ◦C, while January is the coldest with
an average temperature of 7.6 ◦C. The annual average temperature is 18 ◦C. The annual
precipitation ranges from 1100 to 2200 mm, and the frost-free period lasts roughly 280 days.
The Lucheng district’s terrain consists primarily of plains, mountains, hills, and islands.
Typhoons, rainstorms, floods, droughts, hot temperatures, lightning strikes, and landslides
are natural disasters that occasionally happen.
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Figure 1. Location of the study area and the eight highly urbanized sub-districts.

2.2. Data

The main objective of urban flood disaster risk assessment is to use socio-economic
data, such as population and property in the demonstration area, to calculate the flood
risk and property and personnel losses based on the spatial and temporal distribution data
obtained from rainfall-runoff and flood forecasting models, as well as using GIS platform. It
provides a basis for decision-making regarding flood control and scheduling. The following
is a list of the data that were used in the study:

Digital elevation model (DEM) data with a resolution of 30 m were downloaded from
the Geospatial Data Cloud (http://www.gscloud.cn (accessed on 5 September 2024), the
highest resolution available for the public); land cover data with a resolution of 1 km
were downloaded from the Global Land Cover 2000 project (https://globalmaps.github.io/
glcnmo.html (accessed on 5 September 2024)); the daily data of meteorological/hydrological
stations and the control operation data of various water conservancy facilities in the
Lucheng district were obtained from the Wenzhou Bureau of Hydrology and Water Re-

http://www.gscloud.cn
https://globalmaps.github.io/glcnmo.html
https://globalmaps.github.io/glcnmo.html
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sources; economic and social data were obtained from the Wenzhou Bureau of Statistics,
including road traffic, administrative area, industrial area, and population distribution.

3. Methodology

The process of this study is outlined in Figure 2. Initially, a database is constructed to
systematically collect topographic, hydrometeorological, and socio-economic data, provid-
ing a comprehensive and accurate information foundation for the assessment. Subsequently,
the data are imported into an indexing system, encompassing both subjective and objec-
tive enabling indicators to reflect the diverse characteristics of disaster risks fully. On the
ArcGIS platform, a consistency check is conducted to ensure the accuracy and uniformity
of all data, laying a solid foundation for subsequent assessment tasks. Next, game theory
methods are utilized to perform weight combinations for various indicators, scientifically
determining their importance in risk assessment, thus making the assessment results more
objective and reasonable. Then, a fuzzy matter-element model based on correlation degree
is employed to deeply analyze the internal relationships among indicators, further enhanc-
ing the precision and reliability of the risk assessment. Finally, the risk assessment stage
begins, where a comprehensive evaluation of flood disaster risks is conducted by analyzing
multiple aspects such as historical flood characteristics, hazard factors, risk responses, and
changes in the disaster management environment. This provides scientific evidence and
decision-making support for disaster management and response.
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3.1. Flood Disaster Risk System

The regional flood disaster system consists of disaster-gestation settings, disaster-
causing forces, and disaster-bearing bodies and is a system of abnormal changes on the
earth’s surface [26–29]. The hydrological, climatic, and underlying surface conditions are
among the habitats that are disaster-prone. The degree of dynamic changes in the envi-
ronment, or its stability or sensitivity, will impact the frequency and intensity of disasters.
Instead of the atmospheric and hydrometeorological environments, the underlying surface
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environment has a greater impact on the geographical distribution of flood disaster risk
for small and local locations. The underlying surface environment, river networks, surface
cover, and soil influence the likelihood of flooding. Therefore, to assess the stability of flood
disaster-prone ecosystems, topography, river and lake distribution, land use, and vegeta-
tion coverage are chosen as evaluation indices. The bodies susceptible to disasters contain
people and their activities, society, and resources. Varied disaster-bearing bodies frequently
exhibit different vulnerability characteristics. Age, gender, and physical condition are
three variables that directly determine how badly floods can hurt people. The capacity of
buildings to withstand flood disasters is directly influenced by their material, construction,
number of floors, and lifespan. The amount of annual precipitation, the anomaly of precipi-
tation during the rainy season, the average maximum 3-day precipitation, the number of
annual rainstorm days, and the peak discharge of the standard area are currently the main
indicators for determining the extent of damage caused by flood disasters [30–33].

3.2. Assessment Index System

Construction of the flood disaster risk assessment index system is highly difficult due
to the complexity of the flood disaster system, the unpredictability of the flood disaster risk,
and the variety of flood disaster influencing elements [34–36]. The following guidelines
should be followed in order to create a system for measuring flood disaster risk that is
scientific, thorough, reasonable, and useful: (1) the index must be connected in some way
to the risk, and this relationship may be quantitative or semi-quantitative, and it may
reflect the risk’s hazard, magnitude, and level directly or indirectly; (2) to quantify and
visualize the fuzzy risks, the data are as spatial as possible and strive to reflect the spatial
distribution pattern of regional flood disaster risks; (3) indexes should be acquired using
global positioning, geographic information systems, and remote sensing technologies;
(4) the index system should be functional and accurately reflect all of the information in the
flood disaster system.

In flood disaster risk assessment, adopting a hierarchical structure is grounded in
the intricate and multifaceted nature of flood disasters. This structural framework is
meticulously designed to encapsulate the relationships among the various components
of risk assessment, ensuring a comprehensive and systematic evaluation process. At the
Target Level, the primary focus is quantifying and understanding the regional flood disaster
risk. This level serves as the macro-perspective, assessing the size and severity of potential
flood risks. It provides a holistic view, enabling decision-makers to grasp the broader
implications of flood disasters on a regional scale. The Criterion Level is established based
on the recognition that risk is a multifaceted concept, encompassing the likelihood of an
event, its stability (or predictability), and the vulnerability of the affected area. These three
factors—risk, stability, and vulnerability—form the cornerstone of our assessment criteria.
By evaluating these dimensions, the complex interplay between risk factors and their
potential impacts can be better understood. The Index Level refines the assessment into
specific, measurable indicators. This level is highly flexible, allowing for the inclusion of
multiple degrees of index layers tailored to the specific needs of the assessment. For instance,
disaster-causing factors such as typhoons, tsunamis, dike breaches, and severe rainfall are
crucial indicators of the potential for flood events. Similarly, the environment’s vulnerability,
including terrain, water systems, flora, and land type, significantly determines the severity
and spread of floods. Additionally, population, housing, agriculture, and economic indexes
reflect the potential socio-economic impacts of flood disasters, highlighting the disaster-
prone entities within the region (Figure 3).
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This hierarchical classification justifies its ability to provide a structured yet flexible
flood disaster risk assessment framework. Decomposing the complex risk into manageable
components facilitates a detailed and precise analysis of each factor’s contribution to the
overall risk. Furthermore, this approach ensures that no crucial aspect is overlooked,
enhancing the comprehensiveness and accuracy of the assessment. Ultimately, such a
hierarchical structure supports evidence-based decision-making, enabling stakeholders to
develop and implement effective flood disaster management strategies (Table 1).

Table 1. Flood disaster risk assessment index system in Lucheng district.

Target Level Criterion Level Index Level Meaning Attribute

Disaster-causing
factors (A1)

Rainfall
(B1)

Precipitation (C1)
The amount of water that

falls to the ground within a
certain period

Negative correlation

Rainstorm duration (C2) The duration of continuous or
intermittent rainstorms Negative correlation

Sink flow (C3)

The amount of water that
seeps into the soil through a

unit area of soil layer per
unit time

Positive correlation

Disaster-
gestation

environment (A2)

Vegetation (B2) Vegetation cover (C4) The degree to which plants
cover the surface Positive correlation

Rivers (B3) River network density (C5) The number of total length of
rivers per unit area Negative correlation

Topography (B4) Elevation standard
deviation (C6)

The degree of
terrain undulation Negative correlation

Disaster-bearing
body (A3)

Population (B5)

Total population per unit
area (C7) Population density Negative correlation

Old and young population per
unit area (C8)

The number of elderly and
children per unit area Negative correlation

GDP output value per unit
area (C9)

Economic density of
the region Negative correlation

Housing (B6) House value (C10) The market price or assessed
value of a house Negative correlation

Agriculture (B7) Type and area of crops (C11) Types of crops planted and
land area occupied

Determined by
crop tolerance
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3.3. Combination of Weighting Methods

Index weights can be calculated using one of two basic approaches, namely subjective
and objective weighting methods [37]. The primary subjective weighting methods are
the Delphi method, binomial coefficient method, analytic hierarchy process, and chain
ratio scoring method. It is a technique for allocating weights based on individuals’ subjec-
tive relevance on each evaluation index [38]. The principal component analysis method,
the average method, and the entropy approach are the key components of the objective
weighing methods. The matching index weight is determined depending on the volume
of the original data [39]. Each of these two different approaches has benefits and draw-
backs [40,41]. Using the objective weighting method to determine the weight coefficient
is more objective in most cases, but it is at odds with the actual importance of each index,
making it challenging to explain the results clearly. The subjective weighting method
has weak objectivity but strong interpretation. This paper adopted the analytic hierarchy
process as the analysis method of the subjective weighting method. The entropy method
was used as the analysis method of the objective weighting method.

By combining subjective and objective weighting methods, this study aims to balance
the interpretability of subjective insights and the objectivity of data-driven analysis. Inte-
grating the Analytic Hierarchy Process (AHP) and the entropy method allow for a dual
validation of weights, where subjective assessments are cross-checked against objective
data patterns. This hybrid approach enhances the credibility and transparency of the
weighting process and ensures that the final weights are contextually meaningful and
statistically sound. Furthermore, the complementarity between subjective and objective
methods can address potential biases and limitations inherent in each method. Subjective
methods can be corrected for any undue emphasis on variability that might be overstated
by objective methods, especially in cases where certain indices, despite low variability, are
critical for capturing the essence of the phenomenon under study. Conversely, objective
methods can counteract potential over-reliance on subjective judgments, ensuring that the
weights are grounded in the actual data characteristics and are not unduly influenced by
individual biases or preferences.

The concept of the system analysis is embodied in the combination weighting ap-
proach, which integrates subjective and objective weighing data [42]. The combined
weighting approach was used to establish the index weight because both the subjective and
the objective weighing methods have benefits and drawbacks of their own. A combination
of weighting methods can consider decision-makers preferences for attributes and reduce
the subjective arbitrariness of weighting. Decision-making outcomes are more realistic and
reliable when subjective and objective weighting of index attributes is achieved.

Before adopting the combined weighting method, we must first check the consistency
of the weight results calculated by different weight calculation methods since the weight
indexes calculated by different weights will be different and even in conflict. Suppose that
the weights determined by k weight calculation methods are to be combined weighting.
When k = 2, the consistency test of the subjective and objective weighting method uses the
Spearman rank correlation coefficient to characterize. Distance function, d

(
W(1), W(2)

)
=[

1
2 ∑n

j=1

(
w(1)

j − w(2)
j

)2
] 1

2
, can describe the degree of consistency of subjective and objective

empowerment methods. When 0 ≤ d
(

W(1), W(2)
)
≤ 1, the smaller d

(
W(1), W(2)

)
, the

closer the result of subjective and objective empowerment [43].
Game theory analyzes rational behavior and decision balance when multiple decision-

making subjects influence each other [44]. According to game theory, each strategy is
the outcome of rational decision-making, wherein each player seeks to maximize their
interests or minimize their losses. The decision-makers of all parties work together to reach
the desired outcome, which is not under the power of any one party. By minimizing the
difference between the total weight and each weight, Nash equilibrium seeks consistency
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and compromise between various weights to reduce the total variances and maximize
shared interests. The steps of weighting combination based on game theory are:

(1) For a basic weight set U|= {u1, u2, . . . , un} , n vectors are arbitrarily combined into
a set of possible weights:

u∗ = ∑n
k=1 α

∗
kuk (1)

where u is a possible weight vector of the set of possible weight vectors, αk is weight coefficient.
(2) The combination of weighting methods of game theory can find the most satisfac-

tory u∗ in possible vector sets. The basic idea is to minimize the deviations between the
possible weights and the basic weights, that is, to find agreement or compromise between
different weights. Therefore, finding the most satisfactory weight vector is equivalent to
optimizing the linear combination coefficient αk, so that the dispersion between u and each
uk is minimized:

min
∥∥∥∑n

j=1 αj × uT
j − uT

i

∥∥∥
2
(i = 1, 2, . . . , n) (2)

According to the differential properties of the matrix, it can be concluded that the
optimal first derivative condition of the above formula is:

∑n
j=1 αj × ui × uT

j = ui × uT
i (i = 1, 2, . . . , n) (3)

(3) Due to the selected indicators’ different data sources, units, and dimensions, to
effectively reflect each indicator’s impact on the risk of rainstorms and flood disasters, it is
necessary to normalize the indicator data. During the normalization process, indicators
are classified as positive and negative attributes. Positive indicators refer to those where
a higher numerical value indicates a greater likelihood or impact of flood disasters; con-
versely, negative indicators refer to those where a higher numerical value indicates a lower
likelihood or impact of flood disasters.

For positive indicators, the normalization formula is:

y =
x − xmin

xmax − xmin
(4)

For negative indicators, the normalization formula is:

y =
xmax − x

xmax − xmin
(5)

where x and y represent the original and normalized values of the indicator, respec-
tively, and xmin and xmax represent the minimum and maximum values of the indicator,
respectively.

Get (α1,α2, . . . ,αn), normalize, and finally get the combined weight as:

u∗ = ∑n
k=1 α

∗
kuk (6)

Firstly, the comparison of the judgment matrix of the analytic hierarchy process is
obtained, as shown in Table 2. Afterwards, the weights of the flood risk assessment index
system in Lucheng District were calculated using the Analytic Hierarchy Process (Table 3)
and Entropy Method (Table 4) respectively.
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Table 2. Judgment matrix and determined weights in the analytic hierarchy process.

Judgment Index Eigenvector Consistency Check

A1 B1 1B1 1

A2 B2 B3 B4
λmax = 3.0503
C.R. = 0.043

B2 1 1/3 1/3 0.1800
B3 3 1 1 0.4100
B4 3 1 1 0.4100

A3 B5 B6 B7
λmax = 3.029
C.R. = 0.028

B5 1 1/3 1/5 0.1140
B6 3 1 1 0.4054
B7 5 1 1 0.4806

B1 C1 C2 C3
λmax = 3.0503
C.R. = 0.043

C1 1 1/3 1/3 0.1800
C2 3 1 1 0.4100
C3 3 1 1 0.4100

B2 C4 1C4 1

B3 C5 1C5 1

B4 C6 1C6 1

B5 C6 C7 C8
λmax = 3.029
C.R. = 0.028

C6 1 1/3 1/5 0.1140
C7 3 1 1 0.4054
C8 5 1 1 0.4806

B6 C10 1C10 1

B7 C11 1C11 1

Table 3. Weight values of the flood disaster risk assessment index system in Lucheng district (Analytic
Hierarchy Process).

Target Level Criterion Level Index Level

Disaster-causing
factors

(A1)
Rainfall (B1 = 1)

Precipitation (C1 = 0.1800)
Rainstorm duration (C2 = 0.4100)

Sink flow (C3 = 0.4100)

Disaster-gestation
environment

(A2)

Vegetation (B2 = 0.1800) Vegetation cover (C4 = 1)
Rivers (B3 = 0.4100) River network density (C5 = 1)

Topography (B4 = 0.4100) Elevation standard deviation (C6 = 1)

Disaster-bearing
body
(A3)

Population (B5 = 0.1140)
Total population per unit area (C7 = 0.1140)

Old and young population per unit area (C8 = 0.4054)
GDP output value per unit area (C9 = 0.4806)

Housing (B6 = 0.4054) House value (C10 = 1)
Agriculture (B7 = 0.4806) Type and area of crops (C11 = 1)

After calculation, the weight of d
(

w(1), w(2)
)

calculated by the two methods is 0.38,
which is between 0 and 1, meets the standard of the consistency of the test method, indicat-
ing that the weights obtained by the two weighting methods in this study are consistent.
MATLAB (version R2023a) was adopted to execute the weighting combination method
using the game theory, and the results are shown in Table 5. The flood disaster risk assess-
ment results are expressed in the form of risk level and risk index. Risk levels can generally
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be divided into 3 levels, 5 levels, and 10 levels. This paper uses five levels: highest-risk
area, higher-risk area, medium-risk area, lower-risk area, and lowest-risk area (Table 6).

Table 4. Weight values of the flood disaster risk assessment index system in Lucheng district
(Entropy Method).

Target Level Criterion Level Index Level

Disaster-causing
factors

(A1)
Rainfall (B1 = 1)

Precipitation (C1 = 0.1753)
Rainstorm duration (C2 = 0.2206)

Sink flow (C3 = 0.4497)

Disaster-gestation
environment

(A2)

Vegetation (B2 = 0.384) Vegetation cover (C4 = 1)
Rivers (B3 = 0.508) River network density (C5 = 1)

Topography (B4 = 0.108) Elevation standard deviation (C6 = 1)

Disaster-bearing
body
(A3)

Population (B5 = 0.4497)
Total population per unit area (C7 = 0.327)

Old and young population per unit area (C8 = 0.405)
GDP output value per unit area (C9 = 0.268)

Housing (B6 = 0.2206) House value (C10 = 1)
Agriculture (B7 = 0.3297) Type and area of crops (C11 = 1)

Table 5. Calculated weights using the weighting combination method.

Unit System w(1) w(2) w

A1 B1 1 1 1

A2

B2 0.1800 0.384 0.282
B3 0.4100 0.508 0.459
B4 0.4100 0.108 0.259

A3

B5 0.1140 0.4497 0.292
B6 0.4054 0.2206 0.303
B7 0.4806 0.3297 0.405

B1

C1 0.1800 0.1753 0.178
C2 0.4100 0.2206 0.325
C3 0.4100 0.4497 0.427

B2 C4 1 1 1

B3 C5 1 1 1

B4 C6 1 1 1

B5

C7 0.1140 0.327 0.231
C8 0.4054 0.405 0.405
C9 0.4806 0.268 0.364

B6 C10 1 1 1

B7 C11 1 1 1

Table 6. Classification of flood disaster risk.

Comment Rating Lowest-Risk Lower-Risk Medium-Risk Higher-Risk Highest-Risk

Composite index 0.90~1.0 0.75~0.90 0.5~0.75 0.25~0.5 0~0.25

3.4. Fuzzy Matter-Element Model Based on Degree of Relevance
3.4.1. Hierarchy Extension of Matter-Element Method

Given the name of a factor N, the value of this name concerning feature c is v. Matter
element refers to the use of ordered triples R = (N, c, v) as the basic element to describe
factors [45–49]. According to the definition of matter element, v is determined by N
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and c, denoted as v = c(N). Therefore, the matter element can also be expressed as
R = (N, c, c(N)).

A factor has multiple characteristics, if the factor n characteristics describe N c1, c2, . . . , cn
and its corresponding values are v1, v2, . . . , vn, it can be expressed as:

R =


N, c1, v1
N, c2, v2
...

N

...
cn

...
vn

 = (N, C, V) (7)

Call R the n-dimensional matter element, in which:

C =


c1
c2
...

cn

, V =


v1
v2
...

vn

 (8)

The matter-element model with the extension set theory is organically combined
with the matter-element extension set. The matter element is a perfect carrier that carries
quantitative and qualitative information. According to the matter-element model and
extension of the set theory, the specific evaluation steps are as follows:

(1) To determine the classic domain

R0j =
(
N0j, C, x0ji

)
=


N0j c1 x0j1
N0j c2 x0j2
...

N0j

...
cn

...
x0jn

 =


N0j c1

〈
a0j1, b0j1

〉
N0j c2

〈
a0j2, b0j2

〉
...

N0j

...
cn

...〈
a0jn, b0jn

〉
 (9)

where N0j is the j-th security level of the evaluation object N, j = 1, 2, . . . , h; ci is the i-th
evaluation index, i = 1, 2, . . . , m; x0ji does the security level specify the value range N0j
concerning the index ci, that is, the data range (classical domain) of each evaluation index
ci concerning each level N0j. The classic domain of all security levels can be expressed as
a matrix:

R0 =


N0 N01 N02 . . . N0h
c1 ⟨a011, b011⟩ ⟨a021, b021⟩ . . . ⟨a0h1, b0h1⟩

c2
...

cm

⟨a012, b012⟩
...

⟨a01m, b01m⟩

⟨a022, b022⟩
...

⟨a02m, b02m⟩

. . .

. . .

. . .

⟨a0h2, b0h2⟩
...

⟨a0hm, b0hm⟩

 (10)

(2) To determine the section domain

RP = (P, C, xP) =


P c1 xP1
P c2 xP2
...
P

...
cn

...
xPn

 =


P c1 ⟨a0P1, b0P2⟩
P c2 ⟨a0P2, b0P2⟩
...
P

...
cn

...
⟨a0Pn, b0Pn⟩

 (11)

where P is the entire security level, and xPi = ⟨a0Pi, b0Pi⟩ is the range of the value specified
by P on the index ci, that is, the data range (section domain) obtained by the index ci for all
the security levels, obviously x0ji ⊂ xPi.
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(3) To evaluate the determined matter, the data or analysis results related to the
evaluation object are expressed as:

R =


P c1 x1
P c2 x2
...
P

...
cm

...
xm

 (12)

where P is the object to be evaluated, and xi is the value of the object P to be evaluated
concerning the index ci.

(4) To evaluate the degree of relevance of each index of the object concerning each
level in extended mathematics, a set A in the universe U (−∞,+∞) is used to describe the
degree to which the element u in U belongs to and does not belong to A. This degree is
represented by K(u), −∞ < K(u) < +∞. The function K(u) is the relevance function of U
on the set A, and the function value of the relevance function is called the relevance. The
degree of relevance is calculated using the following formula:

Kj(xi) =


ρ(xi,x0ji)

ρ(xi,xPi)−ρ(xi,x0ji)
, ρ(xi, xPi)− ρ

(
xi, x0ji

)
̸= 0

−ρ
(
xi, x0ji

)
− 1, ρ(xi, xPi)− ρ

(
xi, x0ji

)
̸= 0

(13)

ρ
(
xi, x0ji

)
=

∣∣∣∣xi −
1
2
(
a0ji + b0ji

)∣∣∣∣− 1
2
(
b0ji − a0ji

)
(14)

ρ(xi, xPi) =

∣∣∣∣xi −
1
2
(aPi + bPi)

∣∣∣∣− 1
2
(bPi − aPi) (15)

where ρ
(
xi, x0ji

)
and ρ(xi, xPi), respectively, represent the distance between the point and

the interval, ρ
(
xi, x0ji

)
represents the distance between point xi and interval x0ji, and

ρ(xi, xPi) represents the distance between point xi and interval xPi.
If the weight coefficient of the index ci is λi, and ∑n

i=1 λi = 1, then Kj(P) = ∑n
i=1 λiKj(xi).

Kj(P) is the degree of relevance of each index of the object to be evaluated concerning
each level, and the combined value in the case of considering the importance of the index,
indicating the degree to which the object p0 to be evaluated belong to the set P0.

(5) To rate the category, the degree of association Kj(P) has a certain physical meaning.
When it is greater than 0, the evaluated object fully meets the level j; when it is less than
−1, it does not belong to the level j. When it is between −1 and 0, it indicates that the
evaluated object meets the level j, and the degree of compliance depends on the specific
value of the degree of relevance. It is divided according to the optimal principle if it meets
multiple levels.

If Kj0(P) = max
j∈{1,2,...,m}

Kj(P), then p0 belongs to rank j0. Make Kj(P) =
Kj(P)−minKj(P)

maxKj(P)−minKj(P)
,

j∗ =
∑m

j=1 jKj(P)

∑m
j=1 Kj(P)

. Call j∗ the characteristic value of the level variable of p0. From the value of

j∗, it can be judged that the degree to which the object to be assessed is biased toward the
adjacent category.

3.4.2. Improvement of Single-Level Fuzzy Optimal Evaluation Model

The theoretical underpinnings of fuzzy optimization include fuzzy set theory and
relative membership theory [50–54]. Multi-objective decision-making issues are frequently
solved using fuzzy optimization. The target relative superiority degree and the decision
relative superiority degree are two categories under which the relative membership de-
gree can be subdivided in the optimization. The relative membership of the target to the
superior is abbreviated as the target’s relative superiority degree, and the relative superi-
ority of decision-making is abbreviated as the decision-relative making’s membership to
the superior.
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In multi-objective decision-making, the fuzzy optimization theory is frequently uti-
lized, but a full judgment of the evaluation object is typically required in real-world
situations. Therefore, comprehensive category differentiation is more important than rank-
ing alone [55–58]. According to this theory, the membership degree calculation in the fuzzy
optimization model is improved to achieve the purpose of ranking and optimization and
reflect the grade level of the evaluation object through the superiority degree.

The relative superiority utility function is created by employing fuzzy theory to
quantify and synthesize each target. Its value not only reflects the relative benefits and
drawbacks of the scheme but also the worth and difficulty of the scheme, making it fea-
sible to carry out grade evaluation using the fuzzy optimization theory. Because of the
constrained decision-making framework of the fuzzy optimal decision-making issue, the
maximum and minimum values of the indexes calculated by the maximum and minimum
operators typically do not represent the ideal degree of the indexes. Therefore, the relative
degree of membership obtained through this standardization method can only reflect a sin-
gle index’s relative strengths and weaknesses in a scheme. The model needs to be updated
to give the degree of superiority a specific objective value reflecting the program’s level.

The fundamental idea behind relative membership degree is to seek out the mapping
relationship on the continuum by designating 1 and 0 to the maximum and minimum
values of the scheme sample indexes as the poles of the reference system. The maximum
and minimum values of the reference continuum are gradually approaching the continuum,
which indicates that the relative membership degree is gradually approaching the absolute
membership degree. This is the relationship between the relative and absolute membership
degrees. The membership degree in the fuzzy optimization theory can be enhanced and
optimized to give the index relative membership degree and the scheme superiority degree
an “absolute” meaning, allowing fuzzy optimization to be applied to the evaluation of
scheme levels. Using analogy and expert advice, the left and right basis points are created,
and they are utilized in place of the minimum and maximum operators to calculate the
degree of membership. The “unallowable value” of the evaluation index corresponds to
the value of the left base point, and the “ideal value” corresponds to the value of the right
base point. In the relative sense, the membership degree derived from this might be called
the “absolute membership degree.”

Let x(a)i and x(b)i be the left and right base point values of the index set Pi, where

x(a)i < x(b)i , the improved membership degree calculation formula is as follows:
(1) When the benefit index i ∈ O1

rij =


1 xij ≥ x(b)i

xij−x(a)i

x(b)i −x(a)i

x(a)i < xij < x(b)i

0 xij ≤ x(a)i

(16)

(2) When the cost index i ∈ O2

rij =


0 xij ≥ x(b)i

x(b)i −xij

x(b)i −x(a)i

x(a)i < xij < x(b)i

1 xij ≤ x(a)i

(17)

(3) When the middle index i ∈ O3

rij =



xij−x(a)i

x(∗)i −x(a)i

x(a)i < xij ≤ x(∗)i

xij−x(a)i

x(∗)i −x(a)i

x(∗)i < xij < x(b)i

0 x(a)i orxij ≥ x(∗)i

(18)
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According to the above formula, the transformed node domain is < 0, 1 >, and the
classical domain is a single interval within < 0, 1 >. This conversion idea is similar to the
index membership degree calculation method. The node domain breakpoint value and the
central optimal value as the conversion standard are equivalent to the base point value in
the membership degree calculation.

4. Results and Discussion
4.1. Calculation of Disaster-Causing Factors

The eigenvalues of flood disaster risk assessment indexes in the Lucheng district
were obtained, and the eigenvalues of each index were standardized using the vector
normalization method. The flood disaster risk was divided into 5 levels, from highest to
lowest, and standardized processing was performed according to the attributes of each
index. Similarly, the threshold value of each index level is standardized according to the
vector normalization method. The results of the standardization process are shown in
Table 7. The range of values for each level, namely the classic domain and the section
domain, are shown in Table 8.

Table 7. Grade standardization results of evaluation indexes.

Criterion
Layer Index Layer Actual Value of

Index (2017)
Index Evaluation

Value
Forward/
Inverse

Rainfall
(B1)

Precipitation (C1) 0.35 0.87 -
Rainstorm duration (C2) 0.66 0.58 -

Infiltration rate (C3) 0.58 0.7 +

Table 8. Classical domain and sectional domain of evaluation index.

Evaluation Index N01 N02 N03 N04 N05

Precipitation (C1) <0.8, 1> <0.5, 0.8> <0.2, 0.5> <0.05, 0.2> <0, 0.05>

Rainstorm duration (C2) <0.7, 1> <0.55, 0.7> <0.35, 0.55> <0.2, 0.35> <0, 0.2>

Infiltration rate (C3) <0.7, 1> <0.5, 0.7> <0.4, 0.5> <0.25, 0.4> <0, 0.25>

The first-level lower bound and the fifth-level upper bound are used, respectively,
as the base point values for the evaluation levels according to the standards of the five
evaluation levels divided by the table, and the membership degree matrix is calculated
using the membership degree calculation method (Table 9).

Table 9. Basepoint value and subordination degree of flood disaster risk evaluation index in
Lucheng district.

Criterion
Layer Index Layer Left Base

Point
Right Base

Point
Subordination

Degree
Weighted

Value

Rainfall
(B1)

Precipitation (C1) 0.05 0.8 0.9653
0.2620Rainstorm duration (C2) 0.2 0.7 0.7850

Infiltration rate (C3) 0.25 0.7 0.8431

4.2. Calculation of Disaster-Gestation Environments and Disaster-Bearing Bodies

In this study, we first delineated the extent of vegetation cover and utilized Digital Ele-
vation Model (DEM) data to assess terrain variability by calculating the elevation standard
deviation for each street. Subsequently, a hydrological analysis was conducted on the study
area to map the distribution of the river network. Further, we calculated the density of the
river network based on the river length and watershed area within each street’s watershed.
Additionally, information such as total population per unit area, proportion of young and
elderly populations, GDP output, housing prices, crop types, and disaster-affected areas
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was directly obtained from yearbook data. To ensure data comparability and accuracy, these
data were normalized. Next, we employed the Grey Relational Analysis method (Table 10)
to conduct correlation analysis on various indicators and performed weighted calculations
using weights determined by the combination weighting method. Ultimately, we derived
the scores for each indicator and the comprehensive evaluation results (Table 11).

Table 10. Relevance calculation.

Vegetation
Cover

River
Network
Density

Elevation
Standard
Deviation

Total
Population

per Unit Area

Old and
Young

Population
per Unit Area

GDP per
Unit Area

House
Value

Type and
Area of
Crops

Nanjiao 0.3766 0.6740 0.3596 0.3620 1.0000 0.7698 0.7333 0.3333
Puxieshi 0.3598 0.6636 0.3702 1.0000 0.3619 0.6143 0.7720 0.3333
Wuma 0.4044 0.3836 0.4530 0.9066 0.3636 1.0000 0.8020 0.3333

Binjiang 0.5036 0.6584 0.4057 0.4537 0.4159 0.3820 0.6235 0.3333
Guanghua 1.0000 0.5571 1.0000 0.4635 0.4159 0.3820 0.6235 0.3333

Danan 0.4721 1.0000 0.3830 0.7897 0.3668 0.7919 0.7173 0.3333
Nanhui 0.3627 0.5838 0.3742 0.4574 0.4137 0.4787 1.0000 0.3333
Songtai 0.5061 0.6261 0.4062 0.3935 0.5087 0.3762 0.9963 0.3333

Table 11. Score of each index factor and total evaluation.

Disaster-
Causing
Factors

(1/3)

Disaster-Pregnant Environments
(1/3)

Disaster-Bearing Bodies
(1/3)

Regional
Index
Factor

Vegetation
Cover

River
Network
Density

Elevation
Standard
Deviation

Total
Population

per Unit
Area

Old and
Young

Population
per Unit

Area

GDP
per

Unit
Area

House
Value

Type and
Area of
Crops

Overall
Evaluation

Nanjiao 0.2620 0.1062 0.3094 0.0931 0.0244 0.1183 0.0818 0.2222 0.1350 0.626
Puxieshi 0.2620 0.1015 0.3046 0.0959 0.0675 0.0428 0.0653 0.2339 0.1350 0.611
Wuma 0.2620 0.1141 0.1761 0.1173 0.0612 0.0430 0.1063 0.2430 0.1350 0.594

Binjiang 0.2620 0.1420 0.3022 0.1051 0.0306 0.0492 0.0406 0.1889 0.1350 0.594
Guanghua 0.2620 0.2820 0.2557 0.2590 0.0313 0.0492 0.0406 0.1889 0.1350 0.676

Danan 0.2620 0.1331 0.4590 0.0992 0.0533 0.0434 0.0842 0.2173 0.1350 0.670
Nanhui 0.2620 0.1023 0.2679 0.0969 0.0308 0.0489 0.0509 0.3030 0.1350 0.608
Songtai 0.2620 0.1427 0.2874 0.1052 0.0265 0.0602 0.0400 0.3019 0.1350 0.628

According to the classification of the comprehensive index in Table 6, corresponding
to the data in Table 11, under the design rainfall conditions, the comprehensive index of
flood disasters of each street in the Lucheng district varies in size, and there is a slight
difference. However, each street’s comprehensive index of flood disaster varies between 0.5
and 075. All of them are in the medium-risk zone. The exponential distribution is shown in
Figures 4 and 5.
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According to the data analysis results, the quantitative values for disaster-causing
factors across all regions are 0.262, indicating that these regions have identical rainfall
conditions in assessing disaster-causing factors. Regarding disaster-gestation environments,
the Guanghua region has the highest quantitative value of 0.2656, while the Wuma region
has the lowest value of 0.1358, demonstrating significant differences in disaster-gestation
environments among different regions. Regarding disaster-bearing bodies, the Wuma
region has the highest quantitative value of 0.1962, and the Binjiang region has the lowest
value of 0.1481, indicating that there are also certain differences among regions in assessing
disaster-bearing bodies.

The hazard factors (long rainfall and heavy rain) contribute to most of the total flood
risk and are the main causes of urban flood disasters. The disaster-bearing body comes
in second after the disaster-gestation conditions when there is little variation in rainfall
across the different areas of the Lucheng district. The limit of the difference in the disaster-
gestation environment score is 0.13, and the mean square error is 0.0018. The score of
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difference limit of the disaster-bearing bodies is 0.5, and the mean square error is 0.0004. In
contrast, there are significant differences between streets in the disaster-prone locations.

Figure 6 displays the secondary index score of the disaster-causing environment. By
analyzing the trend of three secondary indexes, the river network density evaluation has the
highest positive association with the evaluation of disaster-prone areas, except Guanghua
Street. In disaster-prone areas, river network density is the most significant secondary
index compatible with factor weighting. The ability to mitigate danger is generally higher
in the denser the river network. Therefore, the total deployment should concentrate on
regions with comparatively low river network density under severe weather conditions.
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The regional change trends of the elevation standard deviation and vegetation cover-
age in each region are essentially parallel, demonstrating the strong correlation between the
two indices. Moreover, Guanghua Street is distinctive in these regions. The terrain is steep,
and there is good vegetation cover because the region is within the city’s upper reaches.
Although the river network has a low density, the combined effect of the two makes up
for it, causing Guanghua Street to score highly and have a superior risk assessment than
other regions. On the contrary, the probability of flooding is unpredictable in some dense
river networks and downstream locations. In summary, low-lying areas downstream
and areas with sparse river network density comprise most of the flood-risk areas in the
Lucheng district.

4.3. Calculation of Risk Assessment Based on Precipitation

According to applicable criteria, the Lucheng district experiences rainstorms when
the average daily precipitation exceeds 50 mm. This computation is intended to set the
daily precipitation as 50 mm, 150 mm, 250 mm, 350 mm, and 403.8 mm, respectively, in
five scenarios, considering the local historical maximum 24 h precipitation of 403.8 mm.
The comprehensive flood disaster index for the relevant street is calculated and analyzed
using ArcGIS (version 10.8). Analysis chart, as shown in Figure 7.
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Figure 7. Distribution map of flood risk assessment in Lucheng district under different daily precipi-
tation conditions. The areas (a–e) depict the distribution maps of flood risk assessments under daily
precipitation conditions of 403.8 mm, 350 mm, 250 mm, 150 mm, and 50 mm.

From Figure 7, it can be seen that precipitation is an important factor in changing the
flood disaster level in the Lucheng district. (1) In the Lucheng District, a medium-risk area
with a relatively low risk of flooding, the comprehensive index value of flood assessment
is higher than 0.75 when the day precipitation is 50 mm. However, Guanghua Street and
Wuma Street have comprehensive index values close to 0.75, indicating a high level of risk.
(2) As the precipitation intensifies, the comprehensive flood disaster index for the three
streets—Binjiang, Danan, and Puxie—begins to decline below 0.50, indicating that the risk
level in the area above has increased to that of a greater risk area. The remaining streets
are still in a medium-risk area. (3) Six areas (Binjiang, Puxie, Nanhui, Danan, Nanjiao, and
Songtai) will have a greater danger of flooding when the precipitation continues to rise
to 250 mm. (4) However, it could be found that the distribution of flood catastrophe risk
areas remains the same as the precipitation continues to rise, reaching 350 mm or even
403.88 mm. The following six streets are the highest-risk locations, while Wuma Street and
Guanghua Street remain medium-risk zones.

In summary, varied rainfall conditions will affect how well each street in Wenzhou’s
Lucheng area can handle flood disasters. While Binjiang, Puxue, and Danan are more sus-
ceptible, Guanghua and Wuma are the best among them, followed by Nanhui, Nanjiao, and
Songtai. Despite the remarkable achievements of this study, it is important to acknowledge
the following limitations: this research primarily conducted flood risk assessment based
on current environmental and climatic conditions, yet it did not fully consider potential
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future changes, such as climate change and accelerated urbanization. These factors may
significantly impact flood disaster risks and warrant further exploration in future studies.

A comparative analysis was conducted to further validate the model’s reliability
between the region’s risk index of rainstorms and flood disasters from 1987 to 2022 and the
disaster grade during the same period (Figure 8). The results revealed a strong correlation
between the risk index and the total disaster grade, with a correlation coefficient of 0.8837,
reaching a significant level. This indicates that the evaluation indicators are highly accurate.
This also indirectly confirms the applicability of the AHP and the entropy method.
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Flood disaster management in coastal plain river network areas requires integrating
various flood risk management measures to help reduce urban flood risks. These measures
can be primarily categorized into engineering measures and non-engineering measures.
Engineering measures aim to decrease flood risks by controlling water inflow outside urban
residential areas. Non-engineering measures focus on ensuring safety through optimizing
urban development planning and management. The two complement each other. Com-
prehensive strategies should be integrated with existing urban planning and management
policies and practices. Furthermore, engineering and non-engineering measures are not
mutually exclusive; optimized urban flood management often necessitates the combination
of both. Additionally, it is essential to understand the extent and characteristics of existing
risks and potential future changes in risks to achieve a balance between short-term and
long-term investments in integrated flood risk management. With the acceleration of
urbanization and climate change, there is a need to shift from the current over-reliance on
engineering flood control infrastructure to more adaptive non-engineering solutions.

5. Conclusions

This study conducted a systematic flood risk assessment targeting coastal plain cities,
taking Lucheng District in Wenzhou City, Zhejiang Province, as an example. A quantitative
assessment of flood disaster risks in typical plain river network areas was carried out by
establishing a set of flood disaster evaluation index systems adapted to environmental
changes, combining subjective and objective weighting methods, and introducing a fuzzy
matter-element model based on correlation degree. Further analysis was conducted on the



Water 2024, 16, 3208 20 of 23

distribution of flood disaster risks in Lucheng District under different daily precipitation
conditions. The conclusions are as follows:

(1) Regarding hazard-inducing factors, Lucheng District is primarily influenced by
precipitation amount and duration. As precipitation increases, flood disaster risks rise in
some street areas, but the overall risk level remains stable. Regarding the disaster-forming
environment, factors such as topography, river network density, and vegetation cover
significantly impact flood disaster risks in Lucheng District. The study found that areas
with higher river network density generally have lower flood risks, while low-lying areas
and those with sparse river networks have higher risks. Regarding disaster-bearing bodies,
factors such as population density and economic development level in Lucheng District
affect flood disaster risks. However, compared to hazard-inducing factors and the disaster-
forming environment, the differences in disaster-bearing bodies among different street
areas in Lucheng District are relatively small, with limited impact on the overall risk level.

(2) Five different daily precipitation scenarios (50 mm, 150 mm, 250 mm, 350 mm, 403.8
mm) were set, and flood disaster risk assessment maps were created using ArcGIS software
(version 10.8). The results indicate that as precipitation increases, the flood disaster risk
level rises in some street areas of Lucheng District, but the overall risk level remains within
a moderate range.

(3) By comparing flood disaster risk indices with concurrent disaster levels, it was
demonstrated that the flood disaster evaluation index system constructed through inte-
grating GIS technology with flood forecasting models, numerical simulations, and spatial
analysis techniques possesses strong reliability and accuracy.

In summary, the quantitative assessment of flood disaster risks in Lucheng District
provides a scientific basis for local governments and relevant departments to formulate
flood control and disaster reduction measures. The flood disaster evaluation index system
and calculation framework developed in this study have important guiding significance
for flood risk assessments in coastal plain cities.
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