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Abstract: Water scarcity and climate change present substantial obstacles for Sudan, resulting in
extensive migration. This study seeks to evaluate the effectiveness of machine learning models in
forecasting the green water footprint (GWFP) of sugarcane in the context of climate change. By
analyzing various input variables such as climatic conditions, agricultural data, and remote sensing
metrics, the research investigates their effects on the sugarcane cultivation period from 2001 to 2020.
A total of seven models, including random forest (RF), extreme gradient boosting (XGBoost), and
support vector regressor (SVR), in addition to hybrid combinations like RF-XGB, RF-SVR, XGB-SVR,
and RF-XGB-SVR, were applied across five scenarios (Sc) which includes different combinations of
variables used in the study. The most significant mean bias error (MBE) was recorded in RF with
Sc3 (remote sensing parameters), at 5.14 m3 ton−1, followed closely by RF-SVR at 5.05 m3 ton−1,
while the minimum MBE was 0.03 m3 ton−1 in RF-SVR with Sc1 (all parameters). SVR exhibited the
highest R2 values throughout all scenarios. Notably, the R2 values for dual hybrid models surpassed
those of triple hybrid models. The highest Nash–Sutcliffe efficiency (NSE) value of 0.98 was noted
in Sc2 (climatic parameters) and XGB-SVR, whereas the lowest NSE of 0.09 was linked to SVR in
Sc3. The root mean square error (RMSE) varied across different ML models and scenarios, with
Sc3 displaying the weakest performance regarding remote sensing parameters (EVI, NDVI, SAVI,
and NDWI). Effective precipitation exerted the most considerable influence on GWFP, contributing
81.67%, followed by relative humidity (RH) at 7.5% and Tmax at 5.24%. The study concludes that
individual models were as proficient as, or occasionally surpassed, double and triple hybrid models
in predicting GWFP for sugarcane. Moreover, remote sensing indices demonstrated minimal positive
influence on GWFP prediction, with Sc3 producing the lowest statistical outcomes across all models.
Consequently, the study advocates for the use of hybrid models to mitigate the error term in the
prediction of sugarcane GWFP.

Keywords: sugarcane GWFP; climate parameters; remote sensing indices; machine learning models;
single and hybrid models
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1. Introduction

Sudan ranks among the three largest countries in Africa in terms of land area and
holds significant importance globally due to its abundant water and fertile agricultural
land, covering approximately one-third of its total area of 1,886,068 square kilometres [1].
Additionally, Sudan boasts a wealth of natural agricultural resources such as fertile lands
and animal, mineral, plant, and water resources.

Sugarcane is a vital crop worldwide for sugar production and renewable bioenergy,
typically cultivated in dry and semiarid regions. China, the world’s fourth largest sugar
producer following Brazil, India, and the European Union, collectively accounts for about
80% of global production, while the remaining 20% is derived from sugar beets mainly
grown in temperate regions of the Northern Hemisphere, utilized as a raw material for
bioethanol production for renewable energy [2]. In Sudan, sugarcane is a key cash crop
used for sugar production and other goods for both local consumption and export [3].

The concept of water footprint refers to the amount of fresh water utilized in the
production process, encompassing all stages of the production chain. This water footprint
comprises three components: green, blue, and grey water footprints. The green water
footprint pertains to the consumption of green water resources (rainwater that does not
turn into runoff), while the blue water footprint denotes the consumption of blue water
resources (surface and groundwater). Lastly, the grey water footprint concerns pollution
and represents the volume of fresh water necessary to absorb pollutants based on natural
background concentrations and prevailing water quality standards [4–6].

The quantity of water used throughout the crop growth period directly influences the
production, serving as the ultimate objective of agricultural endeavours. The assessment of
the relationship between water usage and crop yield through water footprint accounting
proves to be a suitable method [7]. Water footprint (WF) investigations primarily aim
to decrease the global average of freshwater consumption. It is projected that the water
footprint may rise by as much as 22% due to climate variations and alterations in land use
by the year 2090 [8].

Xu, Chen [9] emphasized that water footprint, scarcity, and productivity serve as the
primary metrics for assessing sustainable irrigated agriculture. Nevertheless, it has been
established that water footprint (WF) is more practical and reliable when compared to other
methodologies. This WF comprises green and blue components, denoting precipitation
and irrigation water, respectively. Through WF assessment, the sustainability of water
resources can be gauged, and the correlation between water usage and crop yield can
be examined [10]. The evaluation of WF necessitates data collection and the creation of
inventory analyses to elucidate the link between water utilization and crop yield [11].
Green water evapotranspiration (ETgreen) represents the rainwater stored in the soil
available for crop evapotranspiration, akin to effective precipitation (Peff) [12], while blue
water evapotranspiration (ETblue) pertains to irrigation water sourced from groundwater
aquifers and surface water during the growing seasons [13].

Remote sensing is described as the discipline of acquiring information about objects
or regions from a distance without direct physical contact. It serves as a tool for monitoring
the earth’s resources through space technology alongside ground observations [14]. Remote
sensing (RS) technologies offer a diagnostic mechanism acting as an early warning system,
enabling timely interventions by the agricultural sector to mitigate potential issues before
they escalate and detrimentally affect crop productivity. Despite the availability of various
RS options due to advancements in sensor technologies, data management, and analytics,
the agricultural industry has yet to fully embrace RS technologies due to uncertainties
regarding their adequacy, suitability, and techno-economic viability [15,16]. RS technologies
can aid in making site-specific management decisions at different crop production stages,
thereby optimizing crop yield while addressing concerns related to environmental impact,
profitability, and sustainability [15,16].

Machine learning (ML) has become a specialized field within Artificial Intelligence
(AI) that uses algorithms to extract insights from large datasets and apply this knowledge
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for self-improvement in making accurate calculations or predictions [17]. The application of
machine learning techniques is widely seen in predicting evaporation from water surfaces,
evapotranspiration, and various factors related to water resources, hydrology, water quality,
and reservoir operations [18,19].

Computational intelligence and machine learning methodologies have evolved for the
assessment, quantification, monitoring, and prediction of crops. The reliability of machine
learning approaches and computational tools has facilitated the generation of accurate,
timely future forecasts. By analyzing and processing historical data, future predictions can
be derived. This research underscores the assessment and utilization of machine learning
for predicting crop yields [20,21].

ML has exhibited remarkable performance in diverse challenging tasks such as image
categorization, facial recognition, parameter estimation, and natural language processing
through learning intricate characteristics and connections from extensive training datasets.
Recent investigations have delved into its application in yield prediction [22,23]. Machine
learning models expedite swift and optimal decision-making. The ML framework entails
training and evaluation to forecast result accuracy. Recent methodologies have highlighted
the merits and demerits of approaches proposed in the last five years, also comparing dif-
ferent machine learning algorithms utilized in contemporary agriculture [24]. Everingham,
Sexton [25] highlighted the effectiveness of the random forest (RF) model in predicting
sugarcane yields early in the season.

The purpose of estimating or predicting the water footprint is to estimate the amount
of water a plant needs to produce a unit weight of the crop and is calculated as (m3 kg−1).
Accordingly, following sustainable water management systems for irrigation water reduces
the water footprint of a single crop, which allows the use of the water that has been saved
to increase the cultivated area and achieve food security. This is in general. As for countries
that rely on rainwater for irrigation, estimating the green water footprint contributes
significantly to determining the amount of water consumed for each crop. Accordingly,
in the event of drought or lack of rainfall, water footprint calculations allow focusing on
crops with a high economic return and a low water footprint while importing crops with a
high water footprint from countries that do not suffer from drought at a low price, which
achieves sustainable water and economic management for the country and integration
between different countries.

Limited research has addressed the sustainable management of current water resources
by integrating the concept of water footprint with the use of remote sensing indicators to
monitor plant health, soil salinity, and plant water stress over a period of about 20 years
using machine learning algorithms to analyze large datasets and provide recommendations
to combat climate change and promote sustainable water management. In addition, there
is a lack of research conducted on sugarcane cultivation areas in Sudan, and most of it
focused more on irrigation methods and did not link the green water footprint with remote
sensing indicators and machine learning algorithms to predict the green water footprint
of sugarcane, which enables sustainable water management of irrigation water and its
preservation to increase the agricultural area and achieve food security in Sudan.

Therefore, the primary objectives of this study are as follows: (i) assess the response of
sugarcane’s green water footprint (GWFP) to climate variations over the period from 2001
to 2020; (ii) utilize four remote sensing indices to monitor the current status of sugarcane
throughout the same timeframe and their impact on GWFP; (iii) develop and compare
three machine learning models (SVM, RF, and XGB) individually and in a hybrid form over
sugarcane; (iv) identify the most effective model under optimal conditions, achieving high
accuracy and minimal error in predicting the GWFP of sugarcane. This investigation can
thus introduce an innovative modelling approach that will bolster endeavours to address
GWFP forecasting, which helps in implementing strategies to mitigate issues like water
usage regulations and enhancing food safety protocols.
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2. Materials and Methods
2.1. Study Area and Workflow

The field experiment was carried out in White Nile State, Sudan, focusing on sugar
cane, as this region stands out as one of the primary sugarcane cultivation areas in the
country (Figure 1). Situated in the southern part of Sudan, the White Nile State spans
latitudes 12.00 to 13.30 ◦ N and longitudes 31.00 to 33.30 ◦ E and is at an elevation of 384 m
above sea level, covering an area of 39,701 square kilometres. Characterized by an arid to
semi-arid climate, the state experiences varying annual rainfall levels ranging from 300 mm
in the north to over 600 mm in the south. White Nile State was specifically chosen due to
its status as a leading sugarcane producer in Sudan.
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The methodology of this research is depicted in Figure 2. The initial phase of the
methodology involves the gathering of climate and crop data. Subsequently, three machine
learning models (SVR, RF, and XGB) were utilized independently and in a hybrid form,
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incorporating four remote sensing indices (EVI, NDVI, SAVI, and NDWI) to forecast the
GWFP based on five scenarios that combine climate, crop data, and remote sensing indices.

Water 2024, 16, x FOR PEER REVIEW 5 of 34 
 

 

The methodology of this research is depicted in Figure 2. The initial phase of the 
methodology involves the gathering of climate and crop data. Subsequently, three ma-
chine learning models (SVR, RF, and XGB) were utilized independently and in a hybrid 
form, incorporating four remote sensing indices (EVI, NDVI, SAVI, and NDWI) to forecast 
the GWFP based on five scenarios that combine climate, crop data, and remote sensing 
indices. 

 
Figure 2. Workflow of the research. Note: Tmax: maximum temperature; Tmin: minimum temper-
ature; RH: relative humidity; WS: wind speed; Peeff: effective precipitation; Kc: crop coefficient; SVR: 
support vector regression; RF: random forest; XGB: extreme gradient boosting; EVI: Enhanced Veg-
etation Index; NDVI: the normalized difference vegetation index; SAVI: soil-adjusted vegetation 
index; NDWI: the normalized difference water index; Sc: scenario. 

2.2. Climate Conditions 
The climate data encompassed monthly readings of minimum and maximum air 

temperature (Tmax and Tmin in °C), wind speed (WS in ms−1), relative humidity (RH in 
%), and precipitation (P in mm) collected between 2001 and 2020 from freely accessible 
data sourced from the NASA website, with a high-resolution daily time series of 0.5 × 0.5 
degrees [26,27]. Additionally, solar radiation (SR) and vapour pressure deficit (VPD) data 
were obtained from https://climate.northwestknowledge.net/ accessed on 1 March 2024. 
[28]. 

  

1. Datasets 3. Analysis 2. Methodology 

Remote 

Sensing 

Mache 

Learning 

Water 

Footprint 

EVI 

NDVI 

SAVI 

NDWI 

RF 

XGB 

SVR 

RF-XGB 

RF-SVR 

SVR-XGB 

RF-XGB 

SVR 

Sc2 

Sc3 

Sc1 

Sc4 

Sc5 

GWFP 

The hybrid  

RF-SVR  

and 

RF-XGB-SVR 

was the best 

model for GWFP 

Prediction 

Sc4 and Sc5 

were the best 

Scenarios for 

Estimating 

the GWFP 

4. Highlights 

Climate 2001–2020 

GWFP (2001–2020) 

Crop data 2001–2020 

Climate data 

Peeff 

Tmin 

Rn 

WS 

Tave 

Tmax 

RH 

Kc Yield 

Crop data 

Figure 2. Workflow of the research. Note: Tmax: maximum temperature; Tmin: minimum tem-
perature; RH: relative humidity; WS: wind speed; Peeff: effective precipitation; Kc: crop coefficient;
SVR: support vector regression; RF: random forest; XGB: extreme gradient boosting; EVI: Enhanced
Vegetation Index; NDVI: the normalized difference vegetation index; SAVI: soil-adjusted vegetation
index; NDWI: the normalized difference water index; Sc: scenario.

2.2. Climate Conditions

The climate data encompassed monthly readings of minimum and maximum air
temperature (Tmax and Tmin in ◦C), wind speed (WS in ms−1), relative humidity (RH
in %), and precipitation (P in mm) collected between 2001 and 2020 from freely acces-
sible data sourced from the NASA website, with a high-resolution daily time series of
0.5 × 0.5 degrees [26,27]. Additionally, solar radiation (SR) and vapour pressure deficit
(VPD) data were obtained from https://climate.northwestknowledge.net/ accessed on 1
March 2024. [28].

2.3. Remote Sensing Calculations and Field Measurements

This study employed Landsat time series data and GEE cloud computing to estimate
four vegetation indices, with the GEE cloud computing process proving to be both rapid
and effective. The computation of four remote sensing vegetation indices (EVI, NDVI,
SAVI, and NDWI) was conducted using Landsat 7 and 8 Images through the Google Earth

https://climate.northwestknowledge.net/
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Engine (GEE) (https://earthengine.google.com/) at a spatial resolution of 30 m at data
level 2, with temporal resolution limited to the period from 2001 to 2020, focusing on the
same season from April to November (Table 1). The Google Earth Engine (GEE) functions
as a collaborative platform developed by Google, Carnegie Mellon University, and the
United States Geological Survey, offering access to a wide array of functions and a vast
archive of global satellite imagery and thematic maps spanning nearly four decades [29].

Table 1. Vegetation indices and remote sensing data description.

Index Platform Spatial Resolution
(m)

Temporal
Resolution (d) Data Level Years

EVI Landsat7 ETM + Sensor
Landsat8 OLI Sensor 30 2 L2 2001–2005, 2006–2010,

2011–2015, 2016–2020

NDVI Landsat7 ETM + Sensor
Landsat8 OLI Sensor 30 2 L2 2001–2005, 2006–2010,

2011–2015, 2016–2020

SAVI Landsat7 ETM + Sensor
Landsat8 OLI Sensor 30 2 L2 2001–2005, 2006–2010,

2011–2015, 2016–2020

NDWI Landsat7 ETM + Sensor
Landsat8 OLI Sensor 30 2 L2 2001–2005, 2006–2010,

2011–2015, 2016–2020

2.3.1. Multi-Temporal Image Analysis
Soil-Adjusted Vegetation Index (SAVI)

The SAVI is a commonly recognized and robust method utilized for vegetation de-
lineation by exploiting the unique absorption property in the red spectrum and the high
reflectance in the near-infrared (NIR) spectrum [30]. These specific spectral regions corre-
spond to bands 3 and 4 in the Enhanced Thematic Mapper Plus (ETM+) and bands 4 and 5
in the Operational Land Imager (OLI) sensor image datasets. An advantageous aspect of
employing SAVI is its normalization to a standardized reference point, with values ranging
from −1 to 1, ensuring comparability among SAVIs derived from different images. SAVI
was applied to ETM+ and OLI images in the White Nile study region to assess vegetation
cover density as per Qi, Chehbouni [31].

SAVI =
NIR − RED

(NIR + RED + L)
× (1 + L) (1)

where L is the soil-brightness correction factor ranging from 0 to 1. In this study, L was 0.5
by default.

Normalized Difference Vegetation Index (NDVI)

The NDVI is the most widely used vegetation index, originally introduced by Rouse [32]
It can be expressed mathematically as follows:

NDVI =
NIR − IR
NIR + IR

(2)

Due to the normalization process in its computation, NDVI values range from −1 to
1, displaying a heightened sensitivity to green vegetation, even in regions with limited
vegetation cover.

The Normalized Difference Water Index (NDWI)

The NDWI quantifies variations in leaf water content by utilizing the near-infrared
(NIR) and shortwave infrared (SWIR) spectral bands. Being sensitive to both plant water

https://earthengine.google.com/
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content and water bodies, NDWI is frequently utilized for monitoring droughts, tracking
yield reductions, assessing reservoir discharge, groundwater level decreases, etc. [33].

NDWI =
(NIR − SWIR)
(NIR + SWIR)

(3)

Values above 0.5 are indicative of water bodies, while vegetation typically exhibits
lower values, facilitating the differentiation between vegetation and water bodies.

The Enhanced Vegetation Index (EVI)

EVI is a valuable method in remote sensing for evaluating vegetation health and
monitoring changes over time. Derived from satellite imagery, EVI offers a quantitative
assessment of vegetation density and vigour. Unlike conventional vegetation indices like
NDVI, EVI factors in aerosol scattering and canopy background reflectance, making it more
suitable for heavily vegetated regions or areas affected by atmospheric disturbances. EVI
values range from −1 to 1, with higher values denoting healthier and denser vegetation.
Through the analysis of EVI data, the formula for Enhanced Vegetation Index (EVI) analysis
is provided by the following:

EVI = 2.5 × NIR − RED
NIR + RED + 1

(4)

where NIR represents the near-infrared band reflectance, and Red represents the red band
reflectance.

2.4. Green Water Footprint

The Penman–Monteith equation [33–36] was utilized to determine the reference
evapotranspiration (ETo), a method endorsed by the Food and Agriculture Organization
(FAO) [37] and proven effective by [38,39]. This equation is widely preferred for assess-
ing water footprints [40]. The ETo calculator software (http://www.fao.org/land-water/
databases-and-software/eto-calculator/en/, version 3.2, September 2012, accessed on 15
April 2022) was employed along with meteorological data to compute the ETo. The compu-
tation of the green water footprint adhered to the guidelines outlined in FAO Irrigation and
Drainage Paper No. 56 [41], involving the determination of daily crop evapotranspiration
(ETc, mm) and effective precipitation (Peeff, mm) throughout the growing season.

ETC = Kc × ETO (5)

Reference evapotranspiration (ETO) is calculated in mm d−1, with the adjusted crop
coefficient denoted as KC. ETO is estimated using the Penman–Monteith equation through
the ETO calculator software. Additional information on data and calculations for ETO can
be found in Mokhtar, He [34]. Adjustments to KC are made based on FAO guidelines when
RHmin deviates from 45% or when U2 exceeds or falls below 2.0 m s−1.

Kc adjusted = Kc reference + [0.04(U2 − 2)− 0.004(RHmin − 45)]
(

h
3

)0.3
(6)

Pe is the effective precipitation (mm) over the growing season, and it was calculated
using the following equation:

Pe =

{
P(4.17−0.2P)

4.17 , P < 8.3
4.17 + 0.1P, P ≥ 8.3

}
(7)

where P and Pe are the monthly precipitation and effective precipitation [20], respec-
tively [42,43]. Effective precipitation (Pe) over the growing period was calculated using
the following formula. The water footprint (WF) is categorized into green water footprint

http://www.fao.org/land-water/databases-and-software/eto-calculator/en/
http://www.fao.org/land-water/databases-and-software/eto-calculator/en/
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classifications [40]. As per Hoekstra [4] terminology, the water footprint of the crop season
(WFc) is the summation of the green components (WFgreen) and is typically expressed in
m3 ton−1, equivalent to L Kg−1.

The green Water Footprint
(
WFgreen

)
=

CWRgreen

Y
= 10 ×

ETgreen

Y
(8)

The green water footprint (WF green

)
= Max(0, ETc − pe) (9)

The green water footprint (WF green

)
= Min(0, ETc − pe) (10)

WFgreen denotes the green water footprint, Y represents crop yield (ton ha−1), and
CWRgreen signifies green water utilization (m3 ha−1); ETgreen and ETgreen denote green
(effective precipitation) and green (evapotranspiration) water, respectively. ETc stands for
crop evapotranspiration during the growing season [44].

CWRgreen = 10∑ ETgreen (11)

2.5. Machine Learning Implementations

In order to quantify the green water footprint, this study will employ three machine
learning models: support vector regression (SVR), random forest (RF), and extreme gradient
boosting (XGBoost). Two important processes for the machine learning models are training
and testing. The data will be divided into two groups: the first group (65%) will be used
for “training” the model, and the second group (35%) will be used for “testing” the model,
which will evaluate the accuracy of the results produced by the calibrated learning machines
by comparing the expected family water footprint values with the actual calculated values.

2.5.1. Random Forest (RF)

An ensemble of decision trees with controlled variance serves as the foundation for the
RF model, which was created by Breiman [45] and Chen, Zhu [46]. One kind of bootstrap
assembly is a random forest regression. It works with random binary trees that employ
bootstrapping, a technique that involves selecting a random subset of the training dataset
from the raw dataset and using it to grow the model using a portion of the observations.
According to Chutia, Borah [47] and Ghorbani, Deo [48], RF is made up of an ensemble of
chosen independent decision trees (DTs) that are identically distributed. The calculating
process and comprehensive data are available in [45,49]. The following parameters were
used to train the RF: 100 for the batch size, 100 for the bag size percent, 0 for the maximum
depth, 1 for the number of execution slots, 100 for the number of iterations, and 1 for the
random seed.

2.5.2. Extreme Gradient Boosting (XGBoost)

The XGB algorithm introduced by Chen and Guestrin [50] presents a new approach
to implementing the Gradient Boosting Machine through regression trees. It relies on the
concept of “boosting”, which involves aggregating predictions from a group of “weak”
learners to create a “strong” learner through iterative training strategies. The formula for
predicting at step t is as follows:

f(t)i =
t

∑
k=1

fk(xi) = f(t−1)
i + ft(xi) (12)

where ft (xi) is the learner at step t, fi (t) and fi (t − 1) are the predictions at steps t and t − 1,
and xi is the input variable. The XGB uses the following analytical equation to determine
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the “goodness” of the model derived from the original function in order to prevent the
overfitting issue without affecting the computing performance of the model:

Obj(t) =
n

∑
k=1

l(yi, yi) +
t

∑
k=1

Ω(fi) (13)

where l is the loss function, n is the number of observations, and Ω is the regularization
term, which is defined as follows:

Ω(f) = γT +
1
2
λ∥ω∥2 (14)

where ω is the vector of scores in the leaves, λ is the regularization parameter, and γ is
the minimum loss needed to further partition the leaf node. XGBoost is an advanced
algorithm that enhances the gradient-boosting decision tree methodology, excelling in the
efficient construction of boosted trees and supporting parallel computation. It categorizes
these boosted trees into regression and classification trees. The algorithm’s core focus
lies in optimizing the objective function, as highlighted in previous studies [51,52]. The
primary objective of XGBoost is to improve prediction accuracy by leveraging insights
from previous weak learners and introducing tailored weak learners to address and rectify
residual errors. This iterative process of combining multiple learners leads to predictions
that outperform those of individual learners.

2.5.3. Support Vector Regression (SVR)

SVM is a supervised learning algorithm that can also function as a regression model
while retaining key characteristics such as maximal margin. SVR shares a similar theory
with SVM in terms of classification methodology, with minor adjustments. The primary
goal is error minimization by customizing the hyperplane to increase the tolerance limit,
considering that a portion of the error is acceptable. The approximate function in the SVM
algorithm is as follows:

f(x) =
1

∑
i=1

(αi+α*
i )kxi, k + b (15)

where f(x) is the relationship between dependent and independent variables, (α i,α
*
i
)

is
the Lagrangian multipliers, (kxi, k) is the kernel function, and b = the function bias.

2.5.4. Hybrid Model Building

For the earlier generations, the following four hybrid combinations were used: RF-
XGB, RF-SVR, XGB-SVR, and RF-XGB-SVR. By using hybrid models, the results were
expected to be more accurate and the inaccuracy in calculating the sugarcane crop’s green
water footprint was to be minimized. It was carried out with the earlier hybrid method.

A hybrid approach involving random forest (RF) and extreme gradient boosting
(XGB), known as RF-XGB, has been implemented to enhance tree-based algorithms for
predictive modelling. In the context of decision trees, weak learners are typically shallow
trees, sometimes as small as decision stumps (trees with two leaves). Boosting continuously
updates the weights of the training set based on previous weaker learners to improve the
importance of misclassified data. The function within XGB aims to enhance the majority
vote value in RF while also aiding in the formation of individual trees within the bagging
process of RF. The RF-XGB hybrid improves the RF model by reducing errors in MBE, MSE,
and MAE values, consequently increasing model accuracy. This improvement is crucial as
RF often struggles with overfitting due to challenges in determining the optimal number of
trees [53].

The suggested approach used a meta-heuristic methodology to train the membership
function parameters and layer weights of the basic RF model in an effort to increase the
model’s efficiency for GWFP simulation. The suggested approach combined an SVR with
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an RF to create a hybrid RF-SVR model, in which the SVR was used to optimize the RF
settings. It is necessary to perform the optimization in the new n-dimensional space (RF-
SVR) before using the SVR for training of RF weight updates. Under this configuration, the
RF is viewed as a whale in a d-dimensional space, where d is the sum of the weights and
the bias of the RF, varying the local and global optima of the search. Weights are assigned
at random throughout the weight optimization procedure. If the difference between the
output of the support vector regression and the output related to the real inputs is less than
a certain limit, the initial weights are then adjusted and modified in each repeat. Every
hybrid model with two algorithm models underwent the same processes.

XGB, SVR, and RF are combined in the hybrid model. The hybrid model is divided
into three sections. The first component selects and pre-processes the data, ranking the
relevance of each variable using the random forest method. The RF model’s input data are
then chosen according to the variable’s relevance. Because the input variables in the model
had varying dimensions, normalizing them was important to improve computing efficiency,
convergence accuracy, and estimation precision. Equation (16) was used to normalize the
variables to do this [54].

X’ =
X − Xmin

Xmax − Xmin
(16)

where Xmin and Xmax are the minimum and maximum of all input variable values; X is the
measured values of all the input variables; X′ is the normalized values of measured values.
The model simulation is covered in the second section. It starts with the initialization of
the XGB model’s hyper-parameters, such as the regulatory coefficient (C) and the RBF
parameters µ and ε. The model then estimates GWFP and computes the relevant error after
defining the optimization accuracy requirement.

The model moves on to the third section, which entails applying the SVR method
to optimize the XGB model’s hyper-parameters if the intended goal is not accomplished.
The goal of optimizing the SVR model and raising the precision of the GWFP estimate is
accomplished by returning the SVR hyper-parameters with the highest fitness.

2.6. Input Combination and Performance Evaluation of the Models

To investigate the weights and relationships between the available data and GWFP,
this study used five scenarios, each consisting of different combinations of crop data,
temperature data, and remote sensing indices (Table 2).

Table 2. The summary of the scenarios applied in this study.

Sc
en

ar
io Input Parameters

Pe T
m

ax

T
m

in

R
H

T
av

e

R
n

W
S

K
c a

dj

SA EV
I

N
D

V
I

SA
V

I

N
D

W
I

Sc1
√ √ √ √ √ √ √ √ √ √ √ √ √

Sc2
√ √ √ √ √ √ √

Sc3
√ √ √ √

Sc4
√ √ √ √

Sc5
√ √

Notes: Pe: effective precipitation; Tmax: maximum temperature; Tmin: minimum temperature; RH: relative
humidity; WS: wind speed; Kcadj: adjusted crop coefficient; SA: sown area; EVI: Landsat Enhanced Vegetation
Index; NDVI: the normalized difference vegetation index; SAVI: soil-adjusted vegetation index; NDWI: the
normalized difference water index; Sc: scenario.

Two subsets of the data were created: one from 2001 to 2020 for training, and the
other from. By contrasting the projected and actual GWFP values from the models with
the testing data, the models’ performance was verified. The models that were used were
evaluated using the Nash–Sutcliffe model efficiency (NSE), the root mean squared error
(RMSE), the mean absolute error (MAE), and the mean bias error (MBE) [55]. Furthermore,
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the mean average percentage error (MAPE), accuracy (A), and coefficient of determination
(R2) were employed.

The data from the twenty seasons were split into two subsets: 30% of the data were
set aside for testing and 70% of the data were used for training. The applied models were
assessed using the mean absolute error (MAE), the root mean square error (RMSE), and the
mean bias error [56]. Additionally, the T-Statistic test (Tstat) and uncertainty with a 95%
confidence level (U95) are used to assess significance.

R2 =

 ∑n
i=1

(
Oi − O

)
(Pi − p)√(

∑n
i=1

(
Oi − Oi

)2
)(

∑n
i=1

(
Pi − P

) 2
)


2

(17)

Higher R2 values correspond to higher prediction accuracy, and lower RMSE values
suggest superior model performance. The applicable models were evaluated using the
mean bias error (MBE).

MBE =
1
n

n

∑
i=1

(Oi − Pi) (18)

Mean absolute error (MAE) measures the average magnitude of errors in projections
without considering their signs. The absolute deviations between calculated and predicted
yields are averaged across the test sample [57,58].

MAE =
1
n∑n

i=1|Oi − Pi| (19)

Moreover, the accuracy (A) and the coefficient of determination (R2) are as follows:

A = 1 − abs
(

Pi − Oi

Oi

)
(20)

T sat =

√
(1 − n)MBE2

RMSE2 − MBE2 (21)

MSE =
1
n∑(Pi − OI)

2 (22)

CC =
∑n

i=1
(
Oi − O

)
(Pi − p)√(

∑n
i=1

(
Oi − Oi

)2
)(

∑n
i=1

(
Pi − P

))2
) (23)

The efficiency coefficient (NSE) of the Nash–Sutcliffe model, a normalized statistic that
measures the relative size of residual variance to data variance, was used in this study’s
performance statistics. The accuracy of the models displayed in Table 3 is indicated by
the range of the scatter index (SI) [59] and the Nash–Sutcliffe efficiency coefficient (NSE)
value [55]. As per Downing, Greenberg [60], the mean average percentage error (MAPE)
was established. Furthermore, the purpose of the 95% uncertainty interval for model
deviations is to evaluate significant differences between the estimated and forecasted GWFP
to provide additional insight into the model’s effectiveness, which is characterized as

MAPE =
1
n

n

∑
i=1

∣∣∣∣Pi − Oi

Oi

∣∣∣∣ ∗ 100 (24)

MARE =
1
N

n

∑
i=1

⌈RE⌉i (25)
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U95 = 1.96
√(

SD2 + RMSE2
)

(26)

Table 3. The range of NSE and SI.

NSE Classifications SI Classifications

NSE = 1 Perfect SI < 0.1 Excellent
NSE > 0.75 very good 0.1 < SI < 0.2 Good

0.74 > NSE > 0.64 Good 0.2 < SI < 0.3 Fair
0.64 > NSE > 0.5 Satisfactory SI > 0.3 Poor

NSE < 0.5 Unsatisfactory

In this context, Oi and Pi represent the actual and forecasted values and denote the
actual and projected mean values. The relative error (RE) and standard difference (SD)
between estimated and calculated values are also considered.

3. Results and Discussion
3.1. The Spatiotemporal Changes in Climate Variables (2001–2020)

Weather conditions play a crucial role in managing water resources, with their fluctua-
tions being observed over the period from 2001 to 2020 (Figure 3). The range of temperatures
varied significantly during this time, with the lowest recorded for maximum temperature
(Tmax) in 2014 at 36.83 ◦C and the highest in 2015 at 38.40 ◦C, averaging at 37.53 ◦C.
Similarly, the lowest and highest values for minimum temperature (Tmin) were noted in
2018 (25.06 ◦C) and 2010 (26.0 ◦C), respectively, with an average of 25.49 ◦C (Figure 3A).

The maximum relative humidity (RH) valued ranged from 40.85% in 2015 to 50.52%,
which was recorded in 2019, with an average value over the time period equal to 46.03%.
While the trend of wind speed (WS) values has the maximum value in 2017 of 5.02 ms−1,
the lowest value of wind speed was recorded in 2007 with 4.39 m s−1 having a mean value
of 4.66 m s−1 (Figure 3B).

The highest values of effective precipitation were observed in 2007 at 120.45 mm and
in 2019 (75.04 mm), while the lowest value was recorded in 2015 at 23.94, with an average
value equal to 48.0 mm, where the rainfall season extends from May to October, while the
sugarcane growing season extends from May to November, and there was no rainfall in
November recorded through the time series 2001–2020. In the same context, the lowest and
highest ETo values were reported in 2007 with 5.01 mm d−1 and in 2017 with 6.16 mm d−1,
having an average of 5.60 mm d−1 (Figure 3C).

The variations in ETc, yield, and GWFP values related to sugarcane growing seasons
over the time series from 2001 to 2020 were highly related to the climate changes which have
a great impact on climatic parameters and so on crop evapotranspiration, yield, and subse-
quently, the GWFP, where the maximum ETc was achieved in 2017 at 64.72 m3 ha−1 followed
by 60.11 m3 ha−1 in 2015, while the lowest value was recorded in 2007 at 47.30 m3 ha−1

with a mean value equal to 55.36 m3 ha−1. Consequently, the maximum yield was achieved
in 2008 at 48.40 ton ha−1 m3 ha−1 followed by 48.20 ton ha−1 in 2004, while the lowest
value was recorded in 2016 at 34.60 ton ha−1 with a mean value equal to 42.71 ton ha−1.
Accordingly, the GWFP had the maximum in 2007 of 25.46 m3 ton−1 m3 ha−1 followed by
19.19 m3 ton−1 in 2019, while the lowest value was recorded in 2017 at 5.90 m3 ton−1 with
a mean value equal to 11.27 m3 ton−1 (Figure 4).
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Figure 3. The climatic parameters and reference evapotranspiration from 2001 to 2020 in the study
area are (A) Tmax and Tmin, (B) relative humidity and wind speed, and (C) effective precipitation
and reference evapotranspiration.
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Figure 4. The evapotranspiration, yield, and green water footprint of sugarcane for the time series
from 2001 to 2020.

3.2. The Spatiotemporal Changes in Vegetation Indices (2001–2020)

Figure 5 shows the locations of climate stations, each of which stands for a particular
geographic area where climate data are gathered, as well as the average values of vegetation
indices over 20 years. Four vegetation indices are linked to each station: the normalized
difference water index (NDWI), the soil-adjusted vegetation index (SAVI), the Enhanced
Vegetation Index (EVI), and the normalized difference vegetation index (NDVI).

Water 2024, 16, x FOR PEER REVIEW 15 of 34 
 

 

 

Station Index Values 
STAT−1 EVI 0.12 
STAT−1 NDVI 0.17 
STAT−1 SAVI 0.26 
STAT−1 NDWI −0.07 
STAT−2 EVI 0.17 
STAT−2 NDVI 0.25 
STAT−2 SAVI 0.37 
STAT−2 NDWI −0.06 
STAT−3 EVI 0.20 
STAT−3 NDVI 0.28 
STAT−3 SAVI 0.47 
STAT−3 NDWI −0.01 
STAT−4 EVI 0.21 
STAT−4 NDVI 0.37 
STAT−4 SAVI 0.64 
STAT−4 NDWI 0.15 
STAT−5 EVI 0.21 
STAT−5 NDVI 0.38 
STAT−5 SAVI 0.52 
STAT−5 NDWI 0.07 
STAT−6 EVI 0.25 
STAT−6 NDVI 0.42 
STAT−6 SAVI 0.58 
STAT−6 NDWI 0.12 

 
Figure 5. Mean of the vegetation indices EVI, NDVI, SAVI, and NDWI over the time series from 
2001 to 2020. 

The NDVI was measured between the years 2000 and 2005; it showed low values in 
the north and almost nonexistent values in the extreme north. On the other hand, it 
showed a strong presence that increased with distance to the extreme south (Figure 6). 

From 2006 to 2010, there was an increasing tendency in the normalized differential 
vegetation index towards the southern regions, with the far south experiencing the high-
est density. The normalized difference vegetation index decreased between 2011 and 2015, 
especially in the north, with nearly nonexistent levels in the far north; in contrast, vegeta-
tion density rose as we got closer to the southern regions. Regarding the time frame from 
2016 to 2020, the normalized difference vegetation index was scarce, perhaps absent in the 
north, but it rose as we approached the south, resulting in higher vegetation densities, 
likely due to heavier precipitation (Figure 6). According to Balaghi, Tychon [61], NDVI 
data are especially thought to be most helpful in arid areas or where there are significant 
interannual fluctuations in the vegetation status. Therefore, when the yield forecasting 
model was being developed, it was anticipated that NDVI would offer more information. 

Figure 5. Mean of the vegetation indices EVI, NDVI, SAVI, and NDWI over the time series from 2001
to 2020.



Water 2024, 16, 3241 15 of 34

The EVI values at each station vary from 0.12 to 0.25. Denser and healthier vegetation
cover is generally indicated by higher EVI readings. The range of NDVI values is 0.17 to
0.42. NDVI counts the amount of vegetation and is a popular tool for evaluating the density
and health of vegetation. The range of SAVI values is 0.26 to 0.64. With the adjustment
of soil brightness, SAVI, a modified version of NDVI, offers a more realistic depiction
of vegetation cover particularly in regions with elevated soil reflectance. The range of
NDWI values is −0.07 to 0.15. The water content of vegetation can be detected and tracked
using NDWI. Delineating spatial configurations, temporal developments, and relationships
between the health of the vegetation and environmental characteristics such as land use,
land cover, and climate are made possible by this dataset.

The NDVI was measured between the years 2000 and 2005; it showed low values in
the north and almost nonexistent values in the extreme north. On the other hand, it showed
a strong presence that increased with distance to the extreme south (Figure 6).
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From 2006 to 2010, there was an increasing tendency in the normalized differential
vegetation index towards the southern regions, with the far south experiencing the highest
density. The normalized difference vegetation index decreased between 2011 and 2015,
especially in the north, with nearly nonexistent levels in the far north; in contrast, vegetation
density rose as we got closer to the southern regions. Regarding the time frame from 2016
to 2020, the normalized difference vegetation index was scarce, perhaps absent in the north,
but it rose as we approached the south, resulting in higher vegetation densities, likely
due to heavier precipitation (Figure 6). According to Balaghi, Tychon [61], NDVI data are
especially thought to be most helpful in arid areas or where there are significant interannual
fluctuations in the vegetation status. Therefore, when the yield forecasting model was
being developed, it was anticipated that NDVI would offer more information.

The soil-adjusted vegetation index (SAVI) was measured between 2000 and 2005, with
lower values in the northern parts and essentially no measurements in the northernmost
sections (Figure 7).
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In contrast, the southern extremes of the White Nile district saw a significant in-
crease in density. From 2006 to 2010, SAVI values decreased as one travelled towards
northern territories that may have lacked SAVI presence, whereas SAVI levels gradually
increased towards the southern regions, culminating in density at the farthest southern
points (Figure 7). The period from 2011 to 2015 showed lower SAVI in the northern loca-
tions, almost nonexistent in the northernmost regions, and increasing vegetation density in
the southern locations. For the years 2016 to 2020, there was a small amount of SAVI found,
which may not have existed in the north. SAVI values increased in the south, especially in
the extreme south, where they were linked to higher precipitation levels.

The normalized difference water index (NDWI) was observed during the time frame
spanning from 2000 to 2005, exhibiting low values in the northern regions of the White Nile
district and being almost nonexistent in the far north (Figure 8).
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Conversely, a higher density of NDWI was noted in the southern regions, gradually
increasing towards the far south. Between 2006 and 2010, a decline in the normalized
difference water index (NDWI) was observed as one moves towards the northern areas. In
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these regions, the NDWI might be absent, while its values rise as we move southwards,
peaking in density in the far southern areas. From 2011 to 2015, a decrease in the NDWI
was observed, particularly in the northern and far northern regions, with water density
increasing as we approach the southern areas. As for the period spanning from 2016 to
2020, there were minimal quantities of the NDWI, possibly lacking in the northern regions,
with an increase in NDWI values towards the south. The density of the NDWI peaks in the
far south due to higher rainfall intensity (Figure 8).

The Enhanced Vegetation Index (EVI) had low values in the White Nile State’s northern
regions from 2000 to 2005 but was higher in the southern regions. Between 2006 and 2010,
EVI decreased moving north and increased moving south. From 2011 to 2015, EVI decreased
in the north and increased in the south. From 2016 to 2020, EVI was minimal in the north
and increased towards the south, peaking in the far south due to high rainfall (Figure 9).
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Table 4 shows the areas that vary at regular intervals for every vegetation index. This
draws attention to the variations in the planted cane areas between 2001 and 2020, which
are a reflection of shifting climatic conditions, variations in rainfall, and the consequent
availability of water needed for sugar cane irrigation. Since these regions were the least
attainable during the period, we discovered that there was a significant fluctuation in the
areas that were evident in the vegetation indices. The agricultural area declined between
2001 and 2005, then increased between 2005 and 2010; however, it was still greater than in
the first era. From 2016 to 2020, the cultivated area increased once more.

Table 4. The changes in areas occur through periodic intervals for each vegetation index.

Vegetation Index Classes

Area

(2000–2005) (2006–2010) (2011–2015) (2016–2020)

(km2) (%) (km2) (%) (km2) (%) (km2) (%)

NDVI
No Veg. 816.46 2.04 837.64 2.10 851.378 2.13 761.27 816.46

Low 37,199.34 93.09 33,347.96 83.46 34,352.1 85.97 32,210.81 37,199.34
Moderate 1942.90 4.86 5773.10 14.45 4755.19 11.90 6986.57 1942.90

SAVI
No Veg. 702.94 1.76 760.40 1.90 730.998 1.83 622.38 702.94

Low 38,933.90 97.44 38,606.98 96.62 38,572.5 96.53 38,838.59 38,933.90
Moderate 321.76 0.81 591.32 1.48 655.174 1.64 497.72 321.76

NDWI
No Veg. 39,111.52 97.88 34,207.52 85.61 34,056.7 85.23 33,498.87 39,111.52

Low 320.63 0.80 5374.52 13.45 4874.58 12.20 6382.57 320.63
Moderate 32.06 0.08 372.66 0.93 678.6 1.70 77.26 32.06

EVI
No Veg. 921.86 2.31 960.04 2.40 952.29 2.38 885.93 921.86

Low 37,911.68 94.88 37,515.68 93.89 37,648.95 94.22 34,761.71 37,911.68
Moderate 544.5 1.36 902.07 2.26 776.80 1.94 3730.40 544.5

3.3. Evaluation of the Machine Learning Models

Five input scenarios were produced by combining all 13 inputs, and the models now
need to be trained on these. After being randomly assigned to the training and testing
phases, the input scenarios were fed into the models. The models were put into practice,
and the MBE, MAPE, and MARE criteria were used to assess the estimations of the models
(Table 5). While there are clear distinctions between the models, there are also significant
parallels concerning certain situations. The closer the MAPE, MBE, and MARE are to one,
the better the model performance.

The models demonstrate good performance in GWFP estimation as the greatest MAPE
value of 120.97 was attained under RF and Sc3, while the lowest value of −8.30 was noted
under the SVR model and Sc3. The finest MBE under RF and Sc3 was 5.14 m3 ton−1,
the highest reported MBE under RF-SVR was 5.05 m3 ton−1, and the lowest MBE under
RF-SVR and Sc1 was 0.03. Table 5 shows that the maximum MARE values for RF and XGB
with Sc3 were 59.23 and 57.82, respectively, while the lowest values were −4.05 and −3.99
for SVR with Sc2 and Sc1, respectively.

The relationship between the actual and predicted GWFP values is represented in
Table 6 with a coefficient of determination (R2) and the best-fitting equation for the relation-
ship. Among the various equations tested, the linear equation yielded the highest R2 value
compared to exponential and logarithmic equations. The analysis revealed that the lowest
R2 values were observed for Sc3, which represented remote sensing indices (EVI, NDVI,
SAVI, and NDWI), across all single and hybrid ML models. Conversely, the highest R2

values were obtained for Sc1 (all parameters), Sc2 (climatic parameters), and Sc4 (Pe, Tmax,
Tmin, and SA). Notably, the SVR model consistently achieved the highest R2 values across
all scenarios. Interestingly, the R2 values for double hybrid models were higher than those
for triple hybrid models, and the SVR model outperformed both double and triple hybrid
models. The lowest R2 value of 0.232 was observed for XGB and Sc3, while the highest R2

value of 0.9846 was achieved for SVR and Sc4.
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Table 5. Performance statistics of ML models applied to the five distinct climate and remote sensing
variable scenarios.

Model Index
Input Scenario

Sc1 Sc2 Sc3 Sc4 Sc5

RF MBE (m3 ton−1) 0.48 0.65 0.34 0.54 0.57
MAPE 2.58 1.29 120.97 1.48 1.51
MARE 1.26 0.63 59.28 0.73 0.74

XGB MBE (m3 ton−1) 1.01 0.96 −1.51 1.05 1.05
MAPE −6.28 −6.83 118.00 −8.05 −1.56
MARE −3.08 −3.35 57.82 −3.95 −0.76

SVR MBE (m3 ton−1) 1.10 1.09 5.14 0.87 1.13
MAPE −8.14 −8.30 98.31 −2.36 1.06
MARE −3.99 −4.07 48.17 −1.16 0.52

RF-XGB MBE (m3 ton−1) 0.98 1.17 1.87 0.75 1.09
MAPE −2.58 −1.53 92.66 3.78 −1.35
MARE −1.26 −0.75 45.40 1.85 −0.66

RF-SVR MBE (m3 ton−1) 0.03 −0.06 5.05 0.22 0.15
MAPE −1.83 −1.12 64.53 −0.72 0.25
MARE −0.90 −0.55 31.62 −0.35 0.12

XGB-SVR MBE (m3 ton−1) 0.33 0.48 2.86 0.06 0.26
MAPE 0.06 −1.13 60.44 5.48 0.87
MARE 0.03 −0.55 29.61 2.68 0.43

RF-XGB-SVR MBE(m3 ton−1) 0.97 1.32 2.44 1.25 0.88
MAPE 3.61 −0.47 99.89 −0.71 5.16
MARE 1.77 −0.23 48.94 −0.35 2.53

Table 6. The coefficient of determination between actual and predicted GWFP values and the
best-fitting equation.

Model Input Scenario R2 Fitting Equation

RF Sc1 0.9662 y = 0.8619x + 2.581
Sc2 0.9621 y = 0.8532x + 2.604
Sc3 0.2407 y = 0.222x + 16.925
Sc4 0.9680 y = 0.8633x + 2.49
Sc5 0.9680 y = 0.8633x + 2.49

XGB Sc1 0.9671 y = 0.8757x + 1.7511
Sc2 0.9688 y = 0.8759x + 1.7894
Sc3 0.2322 y = 0.3305x + 16.37
Sc4 0.9618 y = 0.874x + 1.7483
Sc5 0.9499 y = 0.8541x + 2.1941

SVR Sc1 0.9816 y = 0.8826x + 1.503
Sc2 0.9802 y = 0.8798x + 1.5772
Sc3 0.2390 y = 0.0959x + 14.929
Sc4 0.9846 y = 0.8807x + 1.7732
Sc5 0.9730 y = 0.8647x + 1.8714

RF-XGB Sc1 0.9727 y = 0.8873x + 1.8993
Sc2 0.9625 y = 0.8943x + 1.9451
Sc3 0.2528 y = 0.1897x + 15.18
Sc4 0.9683 y = 0.8743x + 2.2113
Sc5 0.9601 y = 0.8829x + 2.1468
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Table 6. Cont.

Model Input Scenario R2 Fitting Equation

RF-SVR Sc1 0.971 y = 0.9155x + 1.8096
Sc2 0.9668 y = 0.9155x + 1.8931
Sc3 0.2811 y = 0.1536x + 13.344
Sc4 0.9714 y = 0.8969x + 2.022
Sc5 0.9692 y = 0.9013x + 1.9928

XGB-SVR Sc1 0.9781 y = 0.9203x + 1.3998
Sc2 0.9809 y = 0.9198x + 1.2626
Sc3 0.3409 y = 0.2536x + 13.368
Sc4 0.9782 y = 0.9094x + 1.907
Sc5 0.9683 y = 0.9167x + 1.5544

RF-XGB-SVR Sc1 0.9593 y = 0.7911x + 3.4766
Sc2 0.9555 y = 0.7801x + 3.3624
Sc3 0.4960 y = 0.3492x + 11.399
Sc4 0.9549 y = 0.785x + 3.3223
Sc5 0.9487 y = 0.777x + 3.8615

During the test period, bar charts were utilized to compare the ML models, whether
single or hybrid, and scenarios based on the CC, NSE, MAE, and Tstat criteria. These
comparisons were made separately for each scenario. The comparison charts, also known
as combo bar charts, revealed significant variations in the values of CC. The analysis
indicated that the highest CC value of 0.99 was observed under Sc1 and Sc4 for SVR,
RF-XGB, RF-SVR, XGB-SVR, and RF-XGB-SVR, surpassing both XGB and RF with a CC
value of 0.98. Following closely were Sc2, Sc4, and Sc5, with differences ranging from 0.01
to 0.02, making all scenarios, except Sc3, relatively similar. However, in the case model,
the lowest CC value of 0.48 was achieved under Sc3, which took into consideration NDVI,
SAVI, and NDWI (Figure 10).

On the contrary, the NSE exhibited a similar pattern of data to CC, with slight discrep-
ancies in values. The highest NSE of 0.98 was observed under Sc2 (climatic parameters) and
XGB-SVR. The variance between ML models, whether single or hybrid, ranged from 0.01
to 0.03 under the same conditions, except for Sc2, where the difference between XGB-SVR
and XGB was 0.05 higher for hybrid models. The lowest NSE value of 0.09 was recorded
with SVR and Sc3. NSE values for Sc1, Sc2, Sc4, and Sc5 were considered very good across
all models, while for Sc3, the data from all single and hybrid models were classified as
satisfactory to unsatisfactory (Figure 10).

Similarly, the MAE displayed a similar trend to MSE and CC, with the highest MAE
of 1.00 under Sc1 (all parameters) and RF-XGB-SVR. The lowest MAE value of 0.18 was
recorded with SVR and Sc3. The lowest-performing scenario across all ML models, whether
single or hybrid, was Sc3. The highest Tstat value of 2.26 was observed under Sc1 (all
parameters) and the SVR model. Conversely, the lowest Tstat value of 0.06 was recorded
with RF-SVR and Sc1 (Figure 10).

Scenarios Sc4 and Sc5 were found to be favourable for all models compared to Sc1 and
Sc2 due to having fewer parameters, high accuracy, and low errors, which closely resembled
Sc1 and Sc2. Therefore, if remote sensing images are available, weather stations are not
updated, and only Peeff, Tmax, Tmin, and SA can be measured, it would be satisfactory to
achieve accurate predictions for GWFP, especially in low-income countries.

The performance of machine learning models was assessed across five different climate
and remote sensing scenarios. However, a distinct evaluation of climate change (CC) and
scenario criteria was obtained for the remaining scenarios. Various metrics were employed
to gauge the accuracy of the scenarios, aiming to extract more relevant insights from the
time series data. Scenario model accuracy refers to the percentage of accurate predictions
for the test data, indicating how closely the actual values align with the predicted values
obtained through the specific scenario and prediction model. Achieving accuracy levels
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above 90% is considered satisfactory. In some scenarios and models, values exceeding
1 were noted, suggesting that the prediction outcomes might be influenced by random
errors, which could be attributed to measurement errors rather than systematic factors.
Particularly, RF and XGB models showed overestimated scenario values, which could be
attributed to random errors.
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Figure 10. Bar charts to compare the models in each scenario separately, based on the CC, NSE, MAE,
and Tstat.

Radar charts were utilized to illustrate the RMSE of the GWFP for three different
models, both single and hybrid, across five scenarios (Figure 11). The highest RMSE value
in Sc1 was recorded with the RF model at 4.28, followed by XGB at 4.21, while the lowest
RMSE values were seen with the XGB-SVR hybrid models at 3.42. Moving on to scenario 2,
the highest and lowest RMSE values were observed with XGB at 5.19 and XGB-SVR at 3.28,
respectively. In scenario 3, higher RMSE values were evident compared to other scenarios,
with the highest values under RF and RF-XGB-SVR at 19.55 and 19.24, respectively, and
the lowest RMSE value under RF at 17.5. For scenario 4, the highest and lowest RMSE
values were found with XGB at 4.44 and SVR at 3.37, respectively. Finally, in scenario 5, the
highest and lowest RMSE values were registered with XGB at 5.01 and XGB-SVR at 3.99,
respectively (Figure 11).

3.4. Accuracy and Uncertainty of the Models

Figure 12 illustrates a comparison of combo graphs between scenarios and machine
learning models based on uncertainty criteria (U95) and accuracy. The analysis reveals sig-
nificant differentiation in the values of accuracy and U95. The uncertainty of scenarios used
in modelling was assessed based on the limits of the 95% confidence interval, signifying the
likelihood of obtaining results close to the expected value within the defined uncertainty
range. It was observed that the highest U95 was associated with Sc3 scenarios, considering
temperature, wind speed, and crop factor, leading to the lowest accuracy. RF-SVR for
Sc3 showed the highest U95 at 53.56, while XGB-SVR for Sc2 had the lowest at 9.10, with
uncertainty values ranging from 9.10 to 14.30 for all scenarios except Sc3. Notably, the
lowest uncertainty values were recorded for Sc1 across all models except XGB-SVR, where
Sc2 surpassed it. The accuracy analysis indicated the highest accuracy levels for Sc1 and
Sc4 scenarios in SVR and XGB models, respectively, while the lowest accuracy values were
found under Sc3, particularly under RF. The accuracy values for Sc1, Sc2, Sc4, and Sc5 were
above or equal to 0.95, displaying excellent performance in predicting GWFP.

On the contrary, the analysis of accuracy indicated that the Sc1 and Sc4 scenarios
achieved the highest accuracy levels of 1.08 in the SVR and XGB models, respectively.
Conversely, the lowest accuracy values were observed in Sc3, with RF performing the worst
by −0.21. It was challenging to differentiate between scenarios Sc1, Sc2, Sc4, and Sc5, as
their accuracy values were all above or equal to 0.95, with differences not exceeding 1–2%.
Despite this, their predictive performance for GWFP was exceptional (Figure 12).
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Figure 11. Radar charts to compare the models in each scenario separately, based on the RMSE
criterion.
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Figure 12. Combo graphs for comparison between the scenarios and ML models based on the criteria
U95 and accuracy.

3.5. Comparison of the Machine Learning Models

The Violin plots depict defect distribution based on four key values: first quartile
(Q1), third quartile (Q3), interquartile range (IQR), and the median. The XGB-SVR hybrid
models with Sc2 exhibited the lowest error IQR at 0.359, whereas the XGB model with Sc1
had the highest IQR at 2.72. A lower IQR indicates an error distribution close to zero, with
the median line representing a normal error distribution. For GWFP prediction, the most
effective models were XGB-SVR with Sc2, followed by RF-XGB-SVR with Sc1, and then
RF-SVR with Sc1 (Figure 13).
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Figure 14 offers a visual representation of the importance of 13 input variables and
their respective contributions to GWFP. These contributions are scaled between 0 and 1,
with a value of 1 denoting the highest impact on the target variable.
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Figure 14. Relative contributions of 13 input variables to green water footprint.

Effective precipitation emerges as the most influential variable, accounting for 81.67%
of the impact on GWFP. Following effective precipitation, relative humidity (RH) had a 7.5%
impact, maximum temperature was 5.24%, crop coefficient kc was 2.5%, and minimum
temperature was 0.6956%. EVI and NDVI also displayed significant impacts on the green
water footprint.

3.6. Response of GWFP to Climate, Crop, and Remote Sensing Parameters

The correlation coefficients between GWFP and the following parameters (effective
precipitation (Peeff), minimum temperature (Tmin), relative humidity (RH), solar radiation
(Rn), EVI, NDVI, and NDWI) are positive (Figure 15). The highest correlation coefficient
was 0.99 between GWFP and Peeff and 0.34 between GWFP and RH, whereas the fraction
of the NDVI had a very low positive correlation with GWFP at 0.0086. Since the growing
season occurs in the summer in Sudan, which is situated in a dry region and relies mainly
on rainfall for irrigation, the effective precipitation showed a strong correlation with
GWFP at 0.99. Factors such as maximum temperature (Tmax), wind speed (WS), ETc,
yield, sawn area, and SAVI exhibited a negative correlation with GWFP. Specifically, the
maximum temperature displayed the highest negative correlation coefficient of −0.24 with
GWFP. Through the examination of correlation coefficients, it was observed that climatic
parameters, followed by remote sensing data, and ultimately crop parameters, had the
most significant influence on GWFP.
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4. Discussion

The inadequate efficacy of remote sensing indices in forecasting the green water foot-
print can be attributed to the reliance on climatic data for the computation of green water
footprints, which principally involves the estimation of evapotranspiration during the
vegetative period, alongside another climatic factor, namely effective rainfall in conjunction
with agricultural productivity. Consequently, models incorporating climatic data demon-
strate a robust and efficacious capacity in predicting the green water footprints associated
with sugarcane. Conversely, remote sensing indices exhibited a lack of correlation with
methodologies employed for the estimation of water footprints.

The diminished performance of Sc3, representing remote sensing indices, may be
improved by augmenting predictive accuracy through advanced remote sensing techniques.
This enhancement can be realized firstly by utilizing higher-resolution remote sensing
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datasets, such as Sentinel 1 and 2, which are anticipated to better capture the nuanced
variability of fields in contrast to lower-resolution datasets. Secondly, an increase in
temporal resolution may elevate the frequency of data acquisition, thus facilitating more
accurate monitoring of phenological changes, particularly during critical developmental
stages of wheat. Finally, the incorporation of additional remote sensing indices, such as the
Normalized Difference Temperature Index (NDTI), could be advantageous in clarifying
plant stress, whereas Gross Primary Productivity (GPP) provides a direct link to crop
water consumption, and Soil Moisture along with Land Surface Temperature (LST) aids in
comprehending the hydrological processes relevant to sugarcane agriculture.

Tao, Zhang [62] predicted the green and blue water footprints (GWFPs and BWFPs) of
cassava in Nanning, Guangxi, China, using an Artificial Intelligence–Seasonal ARIMA (AI-
SARIMA) integrated model. In addition to the SARIMA model for time series forecasting,
they used three supervised learning algorithms: random forests (RFs), support vector
machines (SVMs), and artificial neural networks (ANNs). To simulate WFs under various
climate scenarios, meteorological data from 1994 to 2019—including Tmin, Tmax, P, SH, WS,
and H—were employed. According to the results, the optimum ANN for estimating BWFP
was an ANN with hidden layers (8, 6) and input variables Tmax, Tmin, P, Kc, SH, and H;
for estimating GWFP, an ANN with hidden layers (7, 5) and input variables Tmax, Tmin, P,
WS, and SH was ideal. These models had coefficients of determination that were almost
one and exceptional accuracy. Our results are in line with those of Tao, Zhang [62], where
the research results revealed that the single model followed by hybrid models obtained the
highest R2 where the SVR and Sc2 had a coefficient of determination of 0.9846 followed by
the XGB-SVR hybrid model and Sc2 with R2 value of 0.9809, while the lowest R2 value was
detected under XGB and Sc3 (remote sensing indices) at 0.2322.

In the same context, Mokhtar, El-Ssawy [63] investigated lettuce yield (fresh weight)
prediction using four machine learning models, namely, support vector regressor (SVR),
extreme gradient boosting (XGB), random forest (RF), and deep neural network (DNN).
Three scenarios consisting of the combinations of input variables (i.e., leaf number, water
consumption, dry weight, stem length, and stem diameter) were assessed. The XGB model
with scenario 3 (all input variables) yielded the lowest root mean square error (RMSE) of
8.88 g followed by SVR with the same scenario that achieved 9.55 g, and the highest result
was by RF with scenario 1 (i.e., leaf number and water consumption) that achieved 12.89 g.
All model scenarios with scatter index (SI) values less than 0.1 were classified as excellent in
predicting fresh lettuce yield. Based on all of the performance statistics, the two best models
were SVR with scenario 3 and DNN with scenario 2 (i.e., leaf number, water consumption,
and dry weight). Our research outcomes disagree with Mokhtar, El-Ssawy [63], where
the highest RMSE values were obtained under single and hybrid ML models with RF and
RF-XGB-SVR at 19.55 and 19.24 and Sc3 (remote sensing indices), while the lowest RMSE
value was detected under XGB-SVR hybrid model and Sc2 (Peeff, Tmax, Tmin, and SA)
at 3.28.

In the same context, which also supports the outputs of individual machine learn-
ing programmes, Abdel-Hameed, Abuarab [64] developed and compared four machine
learning models—SVR, RF, XGB, and ANN—over three potato governorates (Al-Gharbia,
Al-Dakahlia, and Al-Beheira) in the Nile Delta of Egypt to select the best model in the best
combination of climate input variables to predict potato BWFP during 1990–2016. The
available variables used were Tmax, Tmin, Tave, WS, RH, P, VPD, SR, SA, and Kc. Six
scenarios (Sc1–Sc6) of input variables were used. The findings indicated that Sc5, utilizing
the XGB and ANN models, exhibited the most promising outcomes in predicting BWFP
in a dry region by considering vapour pressure deficit, precipitation, solar radiation, and
crop coefficient data, followed by Sc1 (incorporating all parameters). These developed
models yielded notably superior results, offering valuable insights for water management
and development planning decisions. The research results agree with a part of the results
of Abdel-Hameed, Abuarab [64], which deals with the superiority of the single model
over hybrid ML models where the single model achieved the lowest RMSE and highest R2
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values followed by hybrid models, but they disagree with the part of best scenario where
Sc4 (Pe, Tmax, Tmin, and SA) achieved the highest R2 value with 0.98 like the Sc2 (all
climatic variables). This supports the use of climate indicator monitoring stations with the
least possible number of indicators and thus at the lowest price, which benefits developing
countries with limited financial capabilities.

Ge, Zhao [65] employed the XGBoost regression (XGBR) model to estimate ET over
three years (2019–2021), focusing on the impact of various meteorological factors on ET.
Their study utilized a greenhouse drip-irrigated tomato crop ET prediction model (XGBR-
ET) based on XGBoost regression, comparing it with seven other regression models. The
importance of meteorological factors on XGBR-ET was ranked as follows: Rn > RH >
RHmin > Tmax > RHmax > Tmin > Ta > VPD. Performance evaluation metrics R2, RMSE,
and MAE were reported as 0.981, 0.163, and 0.132, respectively. Our results are not in line
with those of Ge, Zhao [65], where the feature importance raked as follows: Peeff > RH >
Tmax > Kc > Tave > Tmin > Rn > WS > SA. This is related to the fact that GWFP mainly
depends on Peeff, which recorded the highest value in feature importance with 81.67%,
followed by relative humidity (RH) with a 7.5% impact.

To optimize the SVR model, Elbeltagi et al. [66] used particle swarm optimization
(PSO), RF, and SVR. Using various input meteorological variables, the hybrid RF–SVR–PSO
model was assessed against a standalone SVR model, a back-propagation neural network
(BPNN) model, and an RF model. All models were used to estimate ETc; the best model
was SVR, with an R2 of 0.97, followed by the hybrid RF–SVR–PSO model, with an R2 of
0.975. The investigation of the GWFB’s R2 showed that the SVR and Sc2 had the highest R2

at 0.9846 followed by the XGB-SVR hybrid model and Sc2 with an R2 value of 0.9809, while
the lowest R2 value was detected under XGB and Sc3 (remote sensing indices) at 0.2322.
This is strongly consistent with the research findings, as the analysis showed that the single
model followed by hybrid models obtained the highest R2 values.

In a research endeavour conducted by Wu et al. [67], the amalgamation of the Extreme
Learning Machine (ELM) framework with two innovative meta-heuristic methodologies,
specifically the Whale Optimization Algorithm (WOA) and the Flower Pollination Algo-
rithm (FPA), was investigated for the forecasting of monthly pan evaporation (Ep). Hybrid
models incorporating WOA-ELM and FPA-ELM were formulated to estimate monthly Ep
within the Poyang Lake Basin located in Southern China. These hybrid models were evalu-
ated against the differential evolution algorithm–optimized ELM (DEELM), the enhanced
M5 model tree (M5P), and artificial neural network (ANN) frameworks. The findings
revealed that the FPA-ELM model exhibited the highest predictive accuracy across all four
monitoring stations, with the WOA-ELM model following closely behind, both outperform-
ing conventional models. The application of heuristic algorithms, particularly the FPA, was
strongly advocated for the enhancement of the efficacy of independent machine learning
frameworks. The outcomes corroborated the results concerning RMSE, a pivotal metric for
evaluating model accuracy in forecasting the GWFP, as our investigation illustrated that the
hybrid models produced minimal values, thereby endorsing the efficacy of hybridization
in diminishing errors and augmenting result precision (Figure 11).

Azzam, Zhang [68] utilized artificial neural networks (ANNs), support vector ma-
chines (SVMs), random forests (RFs), and k-nearest neighbours (KNNs) in their investiga-
tion to forecast green water evapotranspiration (GWET) and blue water evapotranspiration
(BWET). Among the employed models, the random forest (RF) model demonstrated supe-
rior efficacy in estimating BWET, achieving a coefficient of determination (R2) of 0.96, a
mean inter-annual (MIA) of 0.91, a root mean square error (RMSE) of 10.77 mm month−1,
a Nash–Sutcliffe efficiency (NSE) of 0.92, and a mean absolute error (MAE) of 6.84 mm
month−1. Furthermore, the RF model, except for the Pre variable, exhibited satisfactory
simulation outcomes (0.3 ≤ NSE < 0.6), whereas all alternative machine learning algorithms
displayed inadequate simulation results (NSE < 0.3). When evaluating the outcomes for
predicted wheat BWFP, it was noted that the RF model in conjunction with Sc2 (climatic
parameters) yielded the lowest NSE value of 0.05, which was regarded as inadequate. In
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contrast, the highest NSE of 0.98 was recorded under Sc2 (climatic parameters), and the
XGB-SVR hybrid model was categorized as perfect, while the lowest NSE of 0.09 was noted
with SVR and Sc3, which was classified as inadequate. The NSE values for Sc1, Sc2, Sc4,
and Sc5 were assessed as very good across all models, while the data for Sc3 from both
single and hybrid models were categorized as satisfactory to unsatisfactory.

Conversely, the results of the research are inconsistent with the investigation carried
out by Elhussiny, Hassan [69], who employed three distinct machine learning algorithms,
specifically random forest (RF), extreme gradient boosting (XGB), and the hybrid random
forest–extreme gradient boosting (XGB-RF), to predict the uniformity of water distribution
from fixed set sprinklers. This analysis was predicated on several variables including
operating pressure, sprinkler elevations, discharge rates, nozzle diameters, wind velocity,
and humidity levels, along with maximum and minimum temperature readings. The
findings revealed that the peak R2 coefficients were 0.796, 0.825, and 0.929 for RF, XGB, and
XGB-RF, respectively, in the initial context for CU. Likewise, for distribution uniformity
(DU), the highest R2 coefficients were recorded at 0.701, 0.479, and 0.826 for RF, XGB, and
XGB-RF within the same context. It was noted that the hybrid XGB-RF model improved
the R2 coefficient by 10–13% relative to the standalone XGB and RF models. In contrast, our
study indicated that the SVR model consistently achieved a superior R2 coefficient across
all contexts, surpassing both dual and triple hybrid models (Figure 9).

Hou, Yin [54] assessed the daily crop evapotranspiration (ETc) of spring maize utilizing
support vector regression (SVR). To determine the optimal input variables for the SVR
framework, random forest (RF) was employed as a data preprocessing method. The SVR
model underwent optimization through the application of particle swarm optimization
(PSO). The efficacy of the innovative hybrid RF-SVR-PSO model was evaluated against
a standalone SVR model, a back-propagation neural network (BPNN) model, and an RF
model by incorporating various meteorological input variables. The Penman–Monteith
equation was applied to derive the ETc values, which served as a reference standard against
the values estimated by the models. The findings indicated that the hybrid RF-SVR-PSO
model exhibited superior performance in estimating ETc for spring maize compared to
the three independent models. The Nash–Sutcliffe efficiency coefficient (NSE), root mean
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2)
were recorded as 0.956–0.958, 0.275–0.282 mm d−1, 0.221–0.231 mm d−1, and 0.957–0.961,
respectively. The effectiveness of the hybrid RF-SVR-PSO model for daily ETc estimation
of spring maize in semi-arid regions has been substantiated. This aligns with research
outcomes indicating that the mean bias error (MBE) under RF and Sc3 was 5.14 m3 ton−1,
the peak MBE under RF-SVR was 5.05 m3 ton−1, and the minimal MBE under RF-SVR and
Sc1 was 0.03. The highest Mean Absolute Relative Error (MARE) values for RF and XGB
with Sc3 were 59.23 and 57.82, respectively, while the lowest values were recorded as −4.05
and −3.99 for SVR with Sc2 and Sc1 (Table 5).

5. Conclusions

There is a growing interest in improving agricultural water productivity due to the
decline in water resources while meeting the increasing global demand for food using
limited fresh water. The aim is to increase crop yields using less water, thus reducing the
water footprint per unit of agricultural output. Accordingly, the research demonstrated
the effectiveness of predicting the green water footprint of sugarcane crops in White
Nile State, Sudan, to reach the best sustainable water management approach for the crop
during the period 2001–2020 through the use of machine learning algorithms and remote
sensing indices.

No significant advantage was observed when using hybrid models compared to
single models, especially when dealing with the estimation of coefficient of determination
(R2). However, there was a significant difference in terms of RMSE, NBE, and MAE as
performance indicators for GWFP prediction effectiveness, where the hybrid models had
less errors compared to individual models.
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The evaluation indices showed that Sc3 is the worst-case scenario, associated with
remote sensing indices, while Sc1 (all parameters) and Sc4 (Peeff, Tmax, Tmin, and SA) were
identified as the best-case scenarios, with convergence of the evaluation results. The choice
between them depends on the availability of different criteria such as climatic parameters,
crop parameters, and remote sensing indices. In cases of a lack of capabilities and limited
data, the study recommends choosing Sc4.

The suboptimal functionality of Sc3 can be remedied by employing higher-resolution
remote sensing datasets, increasing the temporal resolution, and integrating supplementary
remote sensing indices, such as NDTI, GPP, and Soil Moisture along with LST to facilitate
the understanding of the hydrological dynamics pertinent to sugarcane cultivation.
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