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Abstract: Lake Trafford, a 600-ha subtropical lake in southwestern Florida, has suffered from over
50 years of cultural eutrophication, resulting in the invasion of Hydrilla verticillata and organic
sediment accumulation due to herbicide treatments. This study aimed to assess the effects of dredging
on nutrient dynamics. A pre-dredging nutrient budget, developed using land use models and
climatic data, estimated nutrient loads of 190 kg d−1 for total nitrogen (TN) and 18.6 kg d−1 for total
phosphorus (TP), with total maximum daily loads (TMDLs) of 70.4 kg d−1 for TN and 4.15 kg d−1

for TP. Post-dredging analysis, using detailed spatiotemporal data, showed higher nutrient loads of
274.3 kg d−1 for TN and 24.2 kg d−1 for TP. While dredging reduced legacy nutrient accumulation, it
led to increased nutrient influx from groundwater, caused by the exposure of organic sediment, as
evidenced by increased lake water electrical conductivity. These findings demonstrate the importance
of conducting thorough pre-dredging assessments to mitigate unintended consequences, offering
practical insights for managing nutrient loads and improving restoration strategies in eutrophic lakes.

Keywords: Lake Trafford; eutrophication; nutrient budget; sediment dredging; groundwater nutrient
loading; legacy nutrient loading

1. Introduction
1.1. Historical Background

Lake Trafford is a small subtropical lake spanning approximately 600 hectares located
in southwestern Florida within a 180 km2 drainage basin. The lake is hydraulically con-
nected to the underlying unconfined aquifer system [1]. When the lake stage reaches an
altitude of 6.4 m NAVD’88, water from the lake sheet flows down-gradient into Corkscrew
Swamp and to the south into the Fakahatchee Strand, ultimately reaching the coast through
the 10,000 islands [2,3]. Historically, Lake Trafford was known as a premier freshwater
boating and fishing location [3]. It had a sandy bottom and a diverse, expansive coverage
of both submerged and emergent aquatic vegetation. Beginning in the 1960s, urbanization
near the City of Immokalee and expansion of local agricultural land use introduced ex-
cessive quantities of nutrients into the lake. Over several decades, the influx of nutrients
spurred the proliferation of the macrophyte Hydrilla verticillata, an invasive plant native to
Asia that was accidentally introduced into the lake in 1969.

Although Hydrilla can have positive effects on aquatic ecosystems, such as improving
water clarity by stabilizing sediments and reducing particulates and absorbing nutrients
like nitrogen and phosphorus, it is a very problematic aquatic plant in southern Florida.
With optimal conditions of light, temperature, and nutrients, this plant can grow up to
2.5 cm day−1 and a single tuber can produce more than 6000 new tubers per m2 [4]. Hydrilla
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beds can smother native vegetation (e.g., Vallisneria americana and Potamogeton illinoensis)
and reduce the habitat and suitability of fish populations at elevated densities [5]. Hydrilla
can grow in dark, turbid waters, requiring only 0.75% of incoming solar radiation to
grow [6]. It can grow in a wide variety of conditions and has been known to double its
water body coverage in as little as six weeks [5]. Visitors to the lake reported issues such as
boat propeller fouling and diminished fishing areas caused by Hydrilla covering the entire
lake from bottom to surface.

The infestation of Hydrilla was remediated using herbicides between 1970 and 1990.
The decay of the aquatic plant debris caused the accumulation of thick deposits of organic
sediment on the lake bottom. The increased internal and external nutrient loading and
organic sediment deposition caused the perpetual disturbance of the bottom sediment due
to the lack of anchored vegetation, which led to decreasing water clarity [7].

As a result, Lake Trafford experienced an ecological regime shift from a clear water
state to a turbid, phytoplankton-dominated state with no submerged aquatic vegetation
to compete for nutrients or stabilize organic sediment once the Hydrilla was eradicated
(i.e., the turbid state of the alternative stable states as described in Scheffer et al. [8] and
summarized in Scheffer et al. [9]).

1.2. Pre-Dredging Nutrient Loading and Sediment Accumulation

The large amounts of organic sediment that had accumulated from the decaying
Hydrilla created an average 0.74 m thick organic sediment and up to 2 m in some areas [10].
The sediment deposition resulted in reducing lake water volume, increasing the biochemical
oxygen demand and causing recurrent (harmful at times) algae blooms that caused massive
fish kills (e.g., 50,000 fishes in 1996 [3]). Consequently, Lake Trafford was then added to
the State of Florida 303(d) list of impaired waterbodies in 2002 due to chronic hypoxia and
elevated concentrations of unionized ammonia typical of dystrophic lakes [11]. The decline
of recreation in and around Lake Trafford as well as increasing public outcry from residents
spurred the start of a restoration effort beginning in 1996.

In 2000, a collation of governmental groups, including the U.S. Army Corps of Engi-
neers, the Big Cypress Basin of the South Florida Water Management District, the Florida
Fish and Wildlife Conservation Commission, and the Collier County Tourist Development
Council, provided funding (USD 21 million) to begin remedial measures to improve lake
water quality. The funded activities included the dredging of organic sediment from the
lake, creation of a storage location for the dredged sediment more than 1.65 km from the
lake, restoration of native fish populations, and to reduce the nutrient load into the lake
that caused eutrophication.

Removal of organic sediments has been commonly used in lake restoration efforts in
many global locations and lake types [12–19]. Commonly, sediment dredging can produce
short-term improvements that may not last in time [20,21]. Also, this remedial activity can
sometimes cause some unexpected, negative impacts [2,22,23].

Between 2006 and 2010, 4.8 × 106 m3 of organic sediment was removed from Lake
Trafford as part of a remediation plan to restore the lake ecosystem. The mud thickness
in the lake before and after removal is shown in Figure 1. Prior to removal of the organic
sediment from the lake, the nutrient loading into the lake was modeled based on land use
as part of a legally mandated assessment of TMDL for the lake.

The TMDL modeled water and nutrient loading into Lake Trafford using the Hydro-
logic Simulation Program–Fortran (HSPF), and applied local land use data, topography,
and local groundwater well data to model surface flow, baseflow, interflow, and direct
precipitation [11]. The model estimated that the lake received an average of 32% of its
incoming water from baseflow, 24% from interflow, 23% from direct precipitation, and 21%
from runoff during the modeling period between 1998 and 2007 [11]. Estimation of nutrient
concentrations were also applied based on land use data to estimate the annual load of
nitrogen and phosphorus to the lake. Overall, the model estimated loading at 190 kg d−1

of TN and 18.6 kg d−1 of TP during the model simulation period. Runoff was estimated
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to be the largest contributor of TN at 92 kg d−1 while subsurface deliveries (baseflow and
interflow) contributed 83.5 kg d−1. Conversely, TP loading was estimated to be higher
among subsurface deliveries (12.2 kg d−1) and lower from surface runoff (5.6 kg d−1). Per
the TMDL report, final load limits were set at a daily maximum load of 70.4 kg d−1 for TN
and 4.15 kg d−1 for TP.
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Figure 1. Sediment accumulation pre- (2004 map) and post- (2012 map) dredging of Lake Trafford.
Note the 5 time discrepancies between the scales (from Thomas et al. [1]).

1.3. Objectives and Research Hypothesis

Lake nutrient budgets are critical for understanding the impact of nutrient inputs
on lake water quality and particularly for managing eutrophication. Excessive nutrient
overloading, from especially nitrogen (N) and phosphorus (P), leads to algal blooms,
oxygen depletion, and overall threatens aquatic ecosystems. Hence, managing these
nutrient inputs is essential for maintaining lake health, and nutrient budgets provide a
systematic way to assess sources, sinks, and the overall impact on water quality. In lakes
like Lake Trafford, it is essential to accurately account for nutrient inputs from groundwater
and runoff since these can be substantial within the subtropical regions.

A post-dredging water budget for Lake Trafford was measured in great detail and is
reported by Thomas et al. [1]. Because of the very large quantity of data collected during the
one-year study, the post-dredging nutrient balance for the restoration project is reported in
this paper. Both the water and nutrient budgets were measured from 2015 to 2016, covering
a full year.

A key aspect of this investigation was an assessment of the nutrient input from
groundwater which could be carrying higher concentrations of inorganic nutrients than
previously estimated and may also be interacting with the surface water of Lake Trafford
in unexpected ways. Groundwater nutrient pollution is becoming increasingly problematic
and its delivery to lakes and coastal systems can be significant across large temporal and
spatial scales [24]. Many studies have shown that nutrient concentrations in groundwater
(specifically phosphorus) can be high enough to cause lake eutrophication [25,26]. Nitrogen
and phosphorus concentrations in groundwater typically become elevated due to anthro-
pogenic activity, including fertilizer applications for agriculture [27] and the use and poor
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maintenance of subterranean septic tanks. Both septic tanks and agricultural activity are
thought to elevate nutrient concentrations in the surficial aquifer system surrounding Lake
Trafford [11].

Post-dredging groundwater seepage may be higher than pre-dredging seepage, as the
Lake Trafford average bottom-sediment conductivity has increased post-dredging, poten-
tially indicating increased groundwater discharge [28]. Genereux and Bandopadhyay [29]
found that increased sediment thickness and density with lower hydraulic conductivities
were very influential on spatial seepage patterns, and often caused increased groundwater
discharge farther from shore, even with uniform sediment coverage.

The data reported herein will allow for an evaluation to be made on the impacts of
the organic sediment removal on the water quality state within the lake and effects on the
eutrophic condition, including regrowth of problem aquatic vegetation, namely Hydrilla.
It was demonstrated that the groundwater influx into the lake was impacted (probably
increased as it is the case in other studies, e.g., [18]) by the organic sediment removal based
on an increase in the measured specific conduction of the lake in the post dredging condition
(Figure 2). The purpose of the final budget was to determine the most significant sources
of nutrients to the lake, the most problematic areas or times for nutrient loading, and to
help identify potential areas for remediation. Additionally, the water and nutrient budgets
are ideal for comparison to the Lake Trafford-adopted TMDL, which estimated water and
nutrient loading into Lake Trafford via land use-based runoff modeling. Increasing the
knowledge of the Lake Trafford hydrology and nutrient dynamics is important to guiding
its restoration and its hopeful return to a clear water state and is important for comparison
to other, less studied subtropical lakes occurring in other regions.
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Figure 2. Median specific conductance of Lake Trafford for the various dredging periods: pre-
dredging from 1 January 2004, phase I dredging operations from 4 November 2005 to 25 April 2006,

phase II dredging operations from 1 December 2006 to 25 April 2006, phase III dredging operations
from 1 June 2009 to 28 December 2010 and post-dredging from 1 January 2010 to 31 December 2012.
Post-dredging median specific conductance is significantly higher than pre-dredging (p-value < 0.001).
Error bars represent the interquartile range (25th–75th percentiles).

This study hypothesizes that while dredging can improve water quality by removing
organic sediments, it may also expose groundwater nutrient influxes that were previously
capped, potentially offsetting the benefits of dredging. Therefore, the post-dredging nutri-
ent budget will likely show increased contributions from groundwater, requiring further
management strategies to mitigate nutrient loading.
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2. Material and Methods
2.1. Site Description

Lake Trafford (26.42729◦ N, 81.48956◦ W) is a shallow, subtropical, dissolution lake
located west of the City of Immokalee in northern Collier County, Florida ([11]; Figure 3).
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Figure 3. Trafford watershed boundary delineated for the 2008 TMDL report [11] and was revised by
Wallace in 2017 [30]. The map includes the location of the Lake Trafford watershed (right) within
the state of Florida ((left) map). State Road 82 (SR 82), State Road 29 (SR 29), and County Road 846
(CR 846) are depicted on the map.

The lake is mostly round with a surface area of approximately 600 ha and an average
depth of 1.6 m when the lake stage is at 5.53 m NAVD’88, yielding a maximum depth of
about 2.6 m [1]. Due to its circular shape and long multi-directional fetch (2.5–3.15 km
depending on wind direction), Lake Trafford is polymictic and prone to high wave activity
in times of high winds [2,3].

While Lake Trafford is a seepage lake with no defined tributaries in or out, it is
bordered by low-lying wetlands to the south and west that have been known to receive lake
water overflow when water levels approach 6.0 m NAVD’88 [11]. The City of Immokalee is
situated directly east of Lake Trafford, with extensive agricultural land to the north and
south. Its first official drainage basin delineation is found in the 2008 TMDL report [11] and
it was reevaluated in 2017 [30] using water level sensors, current, and LIDAR (Figure 3).

2.2. Water Budget

A very detailed one-year investigation of the water budget was made to allow for
quantitative analysis of the nutrient budget for Lake Trafford. A diagram of the water
budget components is given in Figure 4. The detailed results of this investigation are given
in Thomas et al. [1]. Additional information on each component that impacts the nutrient
budget is given in the results.
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Figure 4. Diagram depicting typical inputs and outputs for aquatic systems. SWout is surface water
outflow; SWin is surface water inflow; GWin is groundwater discharge; GWout is groundwater
recharge; ET is evapotranspiration; Pgross is precipitation; I is interception of precipitation; Pnet is the
net precipitation; ∆S is change in storage [1,31].

2.3. Nutrient Budget
2.3.1. Nutrient Budget Computation

To create the nutrient budget, nutrient mass loading was determined for each com-
ponent of the water budget (Figure 4). Average mass loads over two-week periods were
determined using Equation (1):

L =
∑14

j=1 AjCjQj

∑14
j=1 Aj

(1)

where L is the mean load, A is either 1 or 0 depending on whether data are available on
day j, Cj is the concentration on day j, and Qj is the flow rate on day j [32]. Loads were
expressed as kg per unit time for each budget component. The structure of the nutrient
budget model mirrors that of the water budget model [1] with two exceptions: (i) direct
surface water runoff was determined through deduction and no water samples were taken
to determine nutrient concentration and (ii) dry deposition of particulate nutrients has
no corresponding water flux. Data collection occurred from October 2015 to October
2016 and was performed every other week where data could be easily qualified based
on sampling event numbers ranging from 1 through 28. Additionally, several composite
sampling systems were used that collected samples for extended periods of time (canal
and atmospheric nutrient loading). Nutrient data from these systems were applied as
the average for each biweekly event. Water samples were taken from each component
of the water budget to determine mass nutrient loads and to create a corresponding
nutrient budget.

2.3.2. Lake Trafford Groundwater

Groundwater influxes and outfluxes were measured using 20 seepage meters including
5 duplicate meters as described in Thomas et al. ([1], Figure 5).

Sampling water for nutrient analysis directly from a seepage meter collection bag
is not recommended, as Belanger and Mikutel [33] found that the residence time of the
water in the meters is too long and allows for the anoxic conditions to change the chemistry
of incoming groundwater. A shallow groundwater well was thus positioned adjacent to
each seepage meter either protruding about 30 cm above the lakebed at locations 1–14 or
30 cm below the lakebed (Figure 6). Between sampling events, the shallow wells were
fitted with a press-fitted vented PVC cap at their apex while the deeper wells had their
valve closed between sampling events. Each well was dug with a manual post digger so
that the resulting borehole was 60 cm deep and was half filled with ASTM silica quartz
20/30 (diam. 841–595 µm) on the bottom and bentonite clay above it (Figure 6).
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Figure 5. Location of the seepage meters (closed dots) within Lake Trafford. Meters 3, 5, 10, and
13 were used to estimate seepage variation for a given location. Meters 1–14 are situated in the littoral
zone, while meters 15–20 are situated in open, deeper water. The black star in the central portion of
the lake refers to the station used to sample the lake water column.
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Figure 6. Seepage meter and groundwater wells: well design “1” was used for the shallow seepage
meter locations 1 through 14 and well design “2” with a ball valve at the apex was used for the deeper
seepage meter locations. The deeper wells were sampled via SCUBA (cf. text for more details).

Deeper groundwater wells were installed using SCUBA gear. Groundwater sampling
consisted of coupling a high-pressure braided clear flexible PVC tubing to either the apex
of the wells next to the shoreline or to the ribbed spigot with the ball valve in the open
position for the deeper wells. The access to the deeper wells was performed via SCUBA. If
a seepage meter site measured positive groundwater flux (i.e., >1.25% increase in seepage
bag volume of 4 L), groundwater was sampled from the adjacent well and collected at a
low flow rate using a Solinst 410 peristaltic pump (www.solinst.com) operated from the
boat. The well was first purged two times its standing volume (determined by the current
water depth, known depth of the well in the sediment, diameter, and length of the tubing
used) before samples were taken. Once collected, samples were preserved with sulfuric
acid (pH < 2) and chilled <6 ◦C, except for one 120 mL sample intended for orthophosphate

www.solinst.com
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(SRP) analysis, which received no acid. Samples were sent to the Florida Department of
Environmental Protection (FDEP) laboratory in Tallahassee via overnight shipping for next
day analysis. Turbidity, pH, temperature, and conductivity were all recorded in the field
using a Hach HQ40d connected to an IntelliCAL™ CDC401 and a PHC101 probe as well as
a Hach 2100Q portable turbidity meter (www.hach.com). When conductivity or turbidity
levels were found to be abnormally high (turbidity) or low (conductivity), a well evaluation
was performed and replaced if needed. Wells 3, 5, 8, 10, and 16 were all replaced during
the study. It is believed that loss in performance in these wells was caused by incidental
contact with them (boat contact). Well 16 was accidentally broken by the researcher boat
anchor during a windy day.

For positive groundwater discharge, groundwater mass loading was calculated using
the flow rate and the nutrients concentration of the sampled well groundwater. Conversely,
in the event of groundwater recharge, the ambient water column concentration was used
to calculate the negative mass load of nutrients.

2.3.3. Lake Trafford Water

Every other week, an integrated water sample was collected from the center of the
lake (Latitude North 26.4240◦, Longitude West 81.4935◦, Figure 5) using a homemade water
column bailer. This bailer consisted of a 3.7 m long schedule 40 PVC pipe (6.0 cm OD,
5.2 cm ID) equipped with a one-way check valve at the bottom.

2.3.4. Water from the Five Canals Leading to Lake Trafford

Surface water discharge from each of the five canals connected to the lake was mea-
sured with a Sontek IQ or IQ+ flow velocimeter (www.ysi.com/sontek). The locations of
the installed velocimeter and water sampler for each canal are described in Thomas et al. [1].
Each flow meter was connected to a WaterLOG storm3 data logger (www.ysi.com), itself
connected to an ISCO 3700 automatic sampler (www.teledyneisco.com) so that discharge-
weighed water samples, each of 100 mL, could be composited into the same water vessel
(a 20 L polyethylene bladder) nested inside the ISCO sampler. The water vessel included
750 mL of 0.5 N sulfuric acid used as a preservative at the beginning of each composite two-
week-long sampling event. Positive flow thresholds were changed monthly for each canal
depending on anticipated rainfall and discharge. Since the acid preservative prevented the
determination of orthophosphate due to acid hydrolysis, a grab sample from each canal
was taken during each sampling trip to estimate the loading of soluble reactive phosphorus
by determining the typical TP:SRP ratio for each canal.

2.3.5. Dry and Wet Deposition

Dry and wet deposition were measured experimentally at the study site using a
homemade dry and wet deposition sampler. The unit was composed of a wooden platform
supporting two 19 L HDPE buckets (www.leaktite.com), with the top of the buckets
reaching the standard 1.5 m height for dry deposition collection [34]. A railing system was
devised, featuring a sliding lid connected to an IP67 rated 30.5 cm linear actuator powered
by a deep cycle 12 V battery. The actuator was engineered to either push or retract, sliding
the lid along tracks to alternately cover one bucket or the other. During deployment at
Lake Trafford, the two buckets would each collect a form of deposition: one bucket for wet
and one bucket for dry. The lid was used to cover the dry deposition bucket during rain
events (thus exposing the wet deposition bucket) and to cover the wet deposition bucket
during dry periods (thus exposing the dry deposition bucket). This was accomplished by
wiring the linear actuator to an Arduino Uno open-source coding board, a bread board, a
4 channel 5 V relay board, and a rain drop sensor mounted on top of the unit. A simple
code was written using Arduino language that would move the linear actuator one way
while precipitation was detected and move the other way when the rain stopped. The
program allowed the sensitivity of the rain drop sensor to be adjusted and was always kept
at a high sensitivity to prevent light precipitation from entering the dry deposition bucket.

www.hach.com
www.ysi.com/sontek
www.ysi.com
www.teledyneisco.com
www.leaktite.com
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Each bucket was prefilled with an acid solution. The dry deposition collection bucket
received 3.78 L of DI water with 150 mL of 0.5 N sulfuric acid and the wet deposition
collection bucket received 150 mL of 0.5 N sulfuric acid only. A volume of 19 L is the
standard volume for dry deposition measurements and is preferred when compared with
the method using empty buckets because it is known to underestimate nitrogen loading [35].
Both buckets received acid as a sample preservative and enough acid was used to maintain
pH < 2, even in the event of large amounts of rainfall. Additionally, beginning in February
2016, the buckets’ openings were fitted with a stainless-steel screen (3.35 mm × 3.35 mm
pore size) to prevent the accumulation of insects and occasionally small reptiles (e.g., anoles,
tree frogs) from tainting the samples.

The sampler operated continuously for a fourteen-day period after which the buckets
were removed and measured volumetrically. The screens were rinsed with sample water to
clean off any dust that had adhered to the screen itself. The samples were then homogenized
and subsampled. The buckets were cleaned with a mild sulfuric acid solution and replaced
with new water and acid solutions. When samples were collected, a 12 V battery was also
swapped with a fully charged battery. Like the ISCO composite samples, orthophosphate
could not be analyzed because the samples remained in the field for two weeks and were
acidified during this time [36].

Dry and wet deposition rates in the composite sampling containers were applied to
the entire lake surface area. The size of the container opening was extrapolated over the
planar surface area of Lake Trafford to calculate nutrient deposition loads.

2.3.6. Nutrients Analyses

Samples were analyzed by the Florida Department of Health (DOH), meeting the
requirements of the National Environmental Laboratory Accreditation Program (NELAP)
accredited by the Florida Department of Environmental Protection (FDEP) Laboratory in
Tallahassee for total phosphorus (TP, EPA method 365.1), soluble reactive phosphorus (SRP,
EPA method 365.1), total Kjeldahl nitrogen (TKN, EPA method 351.2 Rev. 2.0), ammonia
nitrogen (NH4

+, EPA method 350.1), and nitrate-nitrite nitrogen (NOx, EPA method 353.2).
All samples were handled and preserved according to applicable FDEP standard operating
procedures (SOPs) before being shipped overnight to the FDEP laboratory for analysis.
Temperature and pH were measured for all samples in the field and laboratory to determine
the ratio of ionized (NH4

+) and unionized (NH3) forms of ammonia [37], the latter of which
is partly responsible for the Lake Trafford official impairment designation [11]. Samples
were taken every other fourteen days or composited over these two-week periods (Table 1).
Quality control blanks were taken for all sampling equipment and field duplicates were
taken for approximately 20% of all groundwater and surface water samples.

Table 1. Sampling type and nutrient species analyzed for each budget component. While six nutrient
species were analyzed, only TP and TN (TKN + NOx) were used for this budget. Check marks “x” in
the table indicate the analyte that was sampled.

Budget Component Sample Type TP SRP TKN NOx NH4 TOC

Groundwater Grab (well) x x x x x x

Canal (flow weighed) Composite x x x x

Canal (grab) Grab x x x x x x

Rainfall Composite x x x

Dry deposition Composite x x x

Lake water Integrated water column x x x x x

2.3.7. Nutrient Budget Modeling

The nutrient budget model utilized sheet flow values determined from the water
budget model to complete the nutrient budget [1]. The nutrient concentrations for sheet flow
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entering Lake Trafford were estimated using the average composite sample concentration
for the five canal locations during each event, with the assumption that the water in the
canals has similar chemistry to the direct incoming sheet flow [1]. The final nutrient budget
model is represented in Equation (2) as follows:

TruTNt+1 = TruTNt + GWLint − GWLoutt + CLt + ADLt + SFLnett + ILnett (2)

where TruTNt+1 is the total kilograms of nutrient (nitrogen or phosphorus) in the lake
water; GWLint is nutrient loading via groundwater discharge; GWLoutt is nutrient loss via
groundwater recharge; CLt is nutrient loading via canal discharge; ADLt is nutrient loading
via atmospheric deposition; SFLnett is net nutrient loading via sheet flow; ILnett is the net
internal nutrient loading or nutrient retention (via biological uptake or sedimentation),
which will be henceforth be referred to as “in-lake processes”.

ILnett was determined much like sheet flow. Using the nutrient concentrations in the
lake and the calculated lake volume, the total kilograms of nitrogen and phosphorus could
be calculated. This was then used to determine the difference between the model nutrient
mass and the true nutrient mass. This can be represented using Equation (3) as follows:

ILnett = truTNt − ModTNt (3)

ModTN in Equation (3) is equal to the value as defined in Equation (4).

ModTN = GWLint − GWLoutt + CLt + ADLt + SFLnett (4)

Many water samples collected for nutrient analysis were composited over two-week
time periods. Thus, the nutrient mass budget could only be run with a biweekly time step
(Table 2).

Table 2. Daily rates of groundwater nutrient loading in and out, categorized by sampling event.
Mean daily values and standard deviations are reported.

Event Date Bracket TN Load in
(kg d−1)

TN Load out
(kg d−1)

TP Load in
(kg d−1)

TP Load out
(kg d−1)

1 1 October 2015–14 October 2015 274.44 −0.10 14.91 −0.01

2 15 October 2015–26 October 2015 261.59 −0.07 12.58 −0.04

3 26 October 2015–11 November 2015 169.49 −0.07 8.53 0.00

4 12 November 2015–23 November 2015 88.97 −2.93 4.33 −0.18

5 23 November 2015–7 December 2015 74.33 −0.35 5.50 −0.02

6 8 December 2015–21 December 2015 82.33 −0.14 5.86 0.00

7 22 December 2015–4 January 2016 13.95 −7.00 2.28 −0.56

8 5 January 2016–18 January 2016 13.74 −2.42 0.53 −0.08

9 19 January 2016–1 February 2016 36.91 −0.43 3.47 −0.02

10 2 February 2016–16 February 2016 108.51 −0.06 6.17 −0.25

11 17 February 2016–1 March 2016 28.13 −1.74 1.40 −0.14

12 2 March 2016–14 March 2016 89.31 −0.10 5.77 0.00

13 15 March 2016–28 March 2016 139.27 −0.07 10.75 −0.01

14 29 March 2016–11 April 2016 103.05 −1.41 6.94 −0.11

15 12 April 2016–26 April 2016 132.50 −0.08 8.14 0.00

16 27 April 2016–9 May 2016 60.10 −0.16 4.06 −0.01

17 10 May 2016–23 May 2016 187.85 −0.17 9.58 −0.01

18 24 May 2016–11 June 2016 127.51 0.00 6.59 0.00
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Table 2. Cont.

Event Date Bracket TN Load in
(kg d−1)

TN Load out
(kg d−1)

TP Load in
(kg d−1)

TP Load out
(kg d−1)

19 12 June 2016–22 June 2016 158.28 −0.06 11.22 0.00

20 23 June 2016–6 July 2016 42.68 −1.69 1.63 −0.06

21 7 July 2016–19 July 2016 53.62 −0.58 4.54 −0.03

22 20 July 2016–2 August 2016 35.48 −0.64 2.84 −0.55

23 2 August 2016–16 August 2016 104.11 −0.33 8.17 −0.06

24 17 August 2016–29 August 2016 127.46 −3.49 10.71 −0.13

25 30 August 2016–12 September 2016 461.50 −4.23 22.76 −0.12

26 13 September 2016–26 September 2016 179.56 −1.26 11.28 −0.06

27 27 September 2016–10 October 2016 115.78 −0.07 6.43 −0.01

28 11 October 2016–25 October 2016 23.06 −0.77 2.38 −0.03

Mean 117.63 −1.09 7.12 −0.30

SD 95.75 1.63 4.80 1.16

2.3.8. Data Handling and Statistics

Data were logged and stored in Microsoft Excel 2016 (www.microsoft.com) and statis-
tical analysis performed using IBM SPSS version 28 statistical software (www.ibm.com).
The spatial and temporal variability of the flow rates and nutrient loading were ana-
lyzed and extrapolated for the entire lake using Surfer 28 contour mapping software
(www.goldensoftware.com). Surfer 28 was also used to determine the total volume of water
discharged as well as the total mass of groundwater nutrient loading.

3. Results
3.1. Water Budget Results

The key factors enabling the quantification of the surface water and groundwater
components of the water budget are illustrated in Figure 7. The most substantial con-
tribution to the inflow comes from the canals or 61% of the total. The other two input
factors include direct rainfall and groundwater, contributing 27% and 12%, respectively.
Outflows are predominantly through sheet flow (69%) and evapotranspiration (30.5%),
with groundwater outflow representing a minimal 0.5%. For a comprehensive analysis of
the water budget specific to Lake Trafford in South Florida, refer to the detailed study by
Thomas et al. [1].
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3.2. Nutrient Concentrations Measured in Groundwater

Figure 8 shows the nutrient concentrations for each sampling event using box and
whisker plots, which graphically depict the statistical distribution of total nitrogen (TN)
and total phosphorus (TP) across groundwater sampling stations in Lake Trafford. Each
plot illustrates the median, quartiles, and potential outliers for TN and TP concentrations,
thereby providing a clear visual representation of the variability and spread of data over
the study period. The box plots reveal a marked elevation in TN levels at central lake
sampling stations, where concentrations frequently exceed 30 mg L−1. This is significantly
higher than those observed at stations along the littoral zones, indicating distinct spatial
differences in nutrient concentrations within the lake. In terms of TP, the plots show a less
pronounced but still noticeable variation between different sampling locations, with the
highest recorded concentrations also centered around the middle of the lake.
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Figure 8. Box and whisker plots of well sample concentrations for TN (top) and TP (bottom)
from October 2015 to October 2016. It is important to note that not all wells were sampled during
each event.

The average TN concentration in the groundwater, calculated from these data points,
was recorded at 12.68 ± 9.79 mg L−1, dominated by ammonia-N species, which comprised
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84.6% of the nitrogen content. Similarly, the average TP concentration was 0.89 ± 0.63 mg L−1,
with the majority being orthophosphate-P, making up 83.2% of the measured phosphorus.
These groundwater concentrations are considerably higher than the average surface water
TP concentration in Lake Trafford during the same period, which was 0.13 ± 0.04 mg L−1.
These figures illustrate the broader trends observed in the detailed box and whisker plots,
highlighting the areas of the lake most affected by elevated nutrient levels.

The average TN and TP mass loading rates over the twenty-eight sampling events is
shown in Figure 9. Nutrient loading results from both flow (Q) and nutrient concentration
in the ground water, leading to loading maps that closely align with flow patterns and
nutrient concentrations. This relationship is particularly evident with total nitrogen (TN)
loading in the lake center, where concentrations are significantly elevated compared to
surrounding areas.
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(mg L−1) of groundwater samples taken at the twenty groundwater seepage locations. Higher
concentrations are found in the center samplings stations of the lake. Meters are shown on the map
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Using the interpolated maps, the total daily mass loading rate of TN and TP through
groundwater influx and efflux were quantified based on the water budget [1]. Table 2 and
Figure 10 present the results of this analysis for each of the twenty-eight sampling events,
as well as the overall average. The mean groundwater discharge into Lake Trafford of
8075 ± 4775 m3 d−1 represents roughly 0.07% of the mean lake volume, while the mean
recharge of −347 ± 509 m3 d−1 represents 0.003%. Overall, there was greater ground-
water discharge (inflow) than groundwater recharge (outflow) in all sampling events,
except for sampling event 7 (4th and 5th of January 2016; 1487 L m−2 d−1 discharge,
−2649 L m−2 d−1 recharge).
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Figure 10. Interpolated Surfer maps of the average loading of TN (left) and TP (right) in mg m−2 d−1

for the 28 sampling events. Elevated flow and nutrient concentrations in the center locations are
particularly evident, especially for Meter 19. Meter numbers are shown on the map next to their
location (closed black dots).

Mean daily nitrogen and phosphorus additions via groundwater discharge averaged
117.63 ± 95.75 kg TN d−1 and 7.12 ± 4.80 kg TP d−1, representing 0.007% and 0.0002%
of the average total nutrient mass in the lake, respectively (Table 2). The mean N:P mass
ratio of the groundwater discharge was 14.1 ± 2.97:1. The lowest ratio observed was 9.4:1,
which occurred during sampling event 28 (24th and 25th of October 2016).

3.3. Nutrients Measured in Surface Water Inflow

Nutrient concentrations from canal discharge varied both in magnitude and relative
abundance between nutrient species (Table 3; Figure 11). Canal 1 had both the highest
average TP concentration (0.28 mg L−1) and the lowest nitrogen to phosphorus mass ratio
(7.28:1). This is significant because phosphorus is the limiting nutrient in Lake Trafford.

Table 3. Mean values for TP and TN concentrations in canal samples, as well as mean daily discharge
values for each canal; 10.32 and 81.31 kg d−1 for TP and TN, respectively. Mass N:P ratios are also presented.

Canal TP (mg L−1) TP Daily Load (kg) TN (mg L−1) TN Daily Load (kg) N:P Ratio

1 0.28 8.92 2.07 57.06 7.3:1

2 0.19 0.40 2.82 5.13 15.1:1

3 0.13 −0.01 2.23 −0.23 15.1:1

4 0.14 0.56 2.47 10.35 17.7:1

5 0.09 0.45 2.05 8.99 21.9:1

Total 10.32 81.31 7.9:1

The TN and TP loading from each canal for the 28 biweekly events is shown in
Figure 11. Because mass loading is a product of Q, the loading is much higher during
periods of rainfall and higher groundwater level when Q was also higher. Mean daily loads
from all canals were averaged at 81.3 ± 75.1 kg d−1 and 10.3 ± 13.9 kg d−1 for TN and TP,
respectively. The cumulative total nitrogen (TN) load from the combined canal discharge
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amounted to 31,709 kg TN over the study period, representing 108% of the average TN
mass within the entire lake volume during that time. The total TP load from the collective
canal discharge was 4026 kg TP over the course of the study, equating to 259% of the
average mass of TP in the entire lake volume during that time. This discrepancy between
TN and TP is caused by the much lower N:P mass ratio of the discharge from Canal 1,
which accounted for most of the canal discharge (Table 3).
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Figure 11. Composite sample concentrations for TN (top) and TP (bottom) for each canal during the
study period. The highlighted portion of the graph in gray (bottom) may be evidence of a first flush
for Canal 1 after the first heavy rains of the wet season occurred.

SRP/TP ratios varied and ranged from less than 0.1 to higher than 0.8 and increased
for all canals during event 8 and then began to taper off for the rest of the dry season. Canal
1 consistently had the highest ratio (Figure 12).
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Figure 12. SRP/TP ratios for Lake Trafford’s five drainage canals and center-lake grab samples. Grab
samples in the canals were used to estimate SRP concentrations in composite samples.

3.4. Nutrients Measured in Dry and Wet Deposition

Figure 13 displays the biweekly loading rates of TN and TP into Lake Trafford, catego-
rizing the contributions by dry and wet deposition. The top chart for TN shows a notable
fluctuation in loading rates, with dry deposition providing a steady input of nitrogen and
the presence of wet deposition, marked by white bars, dependent on rainfall events. The
absence of wet deposition on certain dates indicates a lack of rainfall and, consequently,
no wet deposition. The TP chart details the TP loading rates and exhibits a pattern of
fluctuations that are less variable than TN, indicating a somewhat consistent phosphorus
input from the surrounding environment. As with TN, the wet deposition of TP is also
variable, with its contributions generally being lower compared to dry deposition.

The data reflect the complex interplay of environmental factors affecting nutrient
loading, with dry deposition acting as a continuous source and wet deposition providing
episodic contributions tied to precipitation events. Dry deposition was typically higher
than wet deposition, except for events with large rain events during a portion of the wet
season (23 June 2016 to 12 September 2016). The mean daily load over the course of the
study was 24.40 ± 18.06 kg d−1 and 2.47 ± 1.86 kg d−1 for TN and TP, respectively. The
mean daily wet deposition load over the course of the study was 17.45 ± 21.16 kg d−1 and
1.40 ± 1.65 kg d−1 for TN and TP, respectively. High standard deviations are the result of
some events having no rainfall, and thus zero mass loading via wet deposition.

In Figure 14, the relative contribution of mean daily atmospheric deposition to the
nutrient content of Lake Trafford is displayed for TN (top graph) and TP (bottom graph),
distinguishing between wet and dry deposition. For both TN and TP, dry deposition
consistently contributes to the lake nutrient content. Wet deposition, although varying sig-
nificantly from month to month, added a notable amount to the overall nutrient deposition
at times, in varying degrees, depicted by the extent of the gray sections above the black
bars. Dry deposition accounted for an average of 69.4% of the total atmospheric deposition
over the course of data collection, with wet deposition accounting for an average of 30.6%.
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Figure 13. Biweekly loading rates of TN (top) and TP (bottom) for dry (black bars) and wet (white
bars) deposition. Bars are absent for wet deposition loading when rainfall did not occur during a
given sampling event.

Total atmospheric deposition for Lake Trafford averaged 41.85 ± 34.10 kg TN d−1

and 4.07 ± 2.82 kg TP d−1. These figures correspond to 0.14% and 0.26% (on a daily basis)
or 51% and 95% (on an annual basis) of the mean TN and TP mass, respectively, within
Lake Trafford.

For total nitrogen (TN), the annual dry deposition rate is 1854.2 mg m−2 year−1,
and the wet deposition rate is 1326.9 mg m−2 year−1. This indicates that dry deposition
contributes slightly more to the total nitrogen load in Lake Trafford compared to wet
deposition. For total phosphorus (TP), the annual dry deposition rate in Lake Trafford
is 187.8 mg m−2 year−1, while the wet deposition rate is 106.5 mg m−2 year−1. Like
TN, dry deposition is the predominant source of phosphorus deposition in Lake Trafford,
contributing a larger portion when compared to wet deposition.
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Figure 14. Relative percentage of mean daily atmospheric deposition accounted for by wet
(stacked gray bar) and dry (stacked black bar) deposition for nitrogen (top graph) and phosphorus
(bottom graph).

3.5. Water Quality in Lake Trafford—TN, TP, Total Organic Carbon (TOC), pH, Conductivity
and Temperature

Figure 15 depicts time series plots of nutrients (TN and TP), TOC, and other water
quality data (pH, conductivity, and temperature) for samples taken from the center of
Lake Trafford during the study period (October 2015–October 2016). TN levels show
notable fluctuations throughout the year with peaks occasionally exceeding 3 mg L−1,
which may be indicative of higher nitrogen inputs. The fluctuations correlate with seasonal
changes; notably, TN concentrations tend to be higher during the dry season, which is an
eight-month period from October through May in southwest Florida.

TP concentrations display less variability but do experience some spikes. These spo-
radic increases could be linked to specific events or the seasonal dynamics of the lake.
Similarly to TN, TP concentrations are typically higher in the dry season and lower during
the wet season due to greater rainfall diluting nutrient concentrations from June to Septem-
ber in Florida. This seasonal pattern suggests that water quality management strategies
should account for the dry and wet cycles of the region, particularly when considering
nutrient load mitigation efforts to prevent potential eutrophication and algal blooms.
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Figure 15. Time series plots of lake water quality—TN and TP (top), pH and TOC (center), and
conductivity and temperature (bottom) for samples taken from the center of Lake Trafford during the
study period (October 2015–October 2016).

Water pH values fluctuate between approximately 7 and 9, indicating that the water
is generally alkaline. This is typical for many freshwater bodies in Florida. TOC varies
significantly, ranging from 12 to nearly 28 mg L−1. These variations suggest changes in
organic matter input and decomposition, which could be influenced by biological activity,
runoff, and temperature. The conductivity in Lake Trafford displays a general increasing
trend over time with fluctuations, which peaks towards the end of the dry season. This
pattern is likely due to higher evaporation rates during the dry months, leading to increased
concentrations of ions as the water volume decreases. Starting with the wet season, there is
a rapid decrease in conductivity, which can be attributed to dilution effects from increased
rainfall that introduces more water volume, thus reducing ion concentrations. Water
temperature is relatively stable with seasonal fluctuations, peaking in the warmer months.
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3.6. Nutrient Budget for Lake Trafford

A comprehensive overview of the final daily nutrient budget for all measured loadings
into Lake Trafford over the course of the study period is shown in Figure 16. The figure
includes contributions from various sources, including groundwater, canals, atmospheric
deposition, and sheet flow. This detailed nutrient budget is crucial for understanding the
dynamics of nutrient influxes and their impact on the lake ecosystem.
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Figure 16. The final daily nutrient budget of all measured loadings for Lake Trafford over the course
of the study period. The circled thick gray arrows within the lake represent various physical, chemical,
and biological in-lake processes.

The nutrient budget is based on water fluxes measured in situ or derived from the
water budget, such as sheet flow. Loads were calculated by multiplying the measured or
estimated nutrient concentrations by each flow rate, summarized in Figure 16 and Table 4.
The final daily load for Lake Trafford was determined to be 274.3 ± 87.2 kg for total nitrogen
(TN) and 24.2 ± 21.7 kg for total phosphorus (TP).

As sheet flow could only be determined as a net value, estimations were required for
both inflow and outflow volumes. This entailed averaging all net positive and net negative
flows, subsequently utilizing these averages to compute loads. Consequently, the reliability
of loading results for sheet flow is comparatively diminished in contrast to those derived
from other fluxes.

In-lake processes, represented as net values, include internal loading (positive values)
and biological uptake or sedimentation (negative values). These were excluded from the
final total nutrient load calculation for Lake Trafford to focus on external nutrient sources.
On average, net in-lake processes exhibited negative values (−61.3 kg TN day−1 and
−7.6 kg TP day−1), indicating that biological uptake or sedimentation had a more signifi-
cant influence than internal loading. This finding highlights that internal update through
in-lake processes (biological, photochemical, and physical) had a significant influence on
the overall nutrient budget.

Figure 17 illustrates the relative contributions of different sources to the nutrient
loading of TN and TP into Lake Trafford. It reveals that groundwater was found to be the
largest source of TN to the lake, contributing 43% of the total TN load. For TP, groundwater
accounted for 29% of the total load. This significant contribution from groundwater
underscores the importance of subsurface water flows in influencing the nutrient levels in
Lake Trafford.
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Table 4. Summary statistics for all facets of nitrogen (N) and phosphorus (P) budgets including
in-lake processes. GW in is groundwater discharge, and GW out is groundwater recharge.

N
Lake TN

Conc.
(mg L−1)

GW
in

(kg d−1)

GW out
(kg d−1)

Canals TN
(kg d−1)

Atmospheric
Deposition

(kg d−1)

Sheet Flow
(kg d−1)

In-Lake
Processes
(kg d−1)

Mean 2.43 117.5 −1.1 81.3 41.4 −105.4 −61.26

Std 0.64 93.7 1.6 75.1 33.4 199.9 73.5

Min 0.46 13.7 −7.0 −45.4 8.4 −661.6 −279.1

Max 3.56 461.5 0.0 426.3 167.4 1010.6 84.2

P
Lake TP

Conc.
(mg L−1)

GW
in

(kg d−1)

GW
out

(kg d−1)

Canals TN
(kg d−1)

Atmospheric
Deposition

(kg d−1)

Sheet Flow
(kg d−1)

In-Lake
Processes
(kg d−1)

Mean 0.13 7.1 −0.3 10.3 4.1 −4.9 −7.6

Std 0.03 4.7 1.2 14.0 2.8 16.3 9.8

Min 0.07 0.5 −6.2 −14.3 1.1 −35.0 −48.2

Max 0.24 22.8 0.0 122.4 14.0 136.7 0.4
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Figure 17. Relative percentages of each source of nutrient loading into Lake Trafford for total nitrogen
and total phosphorus. Sheet flow was estimated by averaging all positive net sheet flow, and all
negative net sheet flow.

The discharge from the five canals was identified as the largest contributor to the TP
load, delivering 42% of the total TP load to the lake. Canals also contributed 30% of the TN
load. The high nutrient load from canals suggests that managed waterways are primary
pathways for nutrients entering the lake, likely reflecting the influence of agricultural and
urban runoff. Atmospheric deposition accounted for 15% of the TN load and 17% of the TP
load. This includes both wet and dry deposition from the atmosphere, introducing nutrients
into the lake system. Although atmospheric deposition is a smaller contributor compared
to groundwater and canals, it still plays a significant role in the overall nutrient budget.
Sheet flow, representing overland water movement, contributed 12% to the loading of both
TN and TP. This indicates the impact of surface runoff from the surrounding landscape on
the lake’s nutrient budget.

Overall, the presented nutrient budgets underscore the significance of both groundwa-
ter and canals as dominant pathways for nutrient inflow into Lake Trafford. The differences
in their relative contributions to TN and TP suggest variations in the sources and behaviors
of these nutrients in the environment, which are critical for developing effective water
quality management and nutrient mitigation strategies for the lake.
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4. Discussion
4.1. Nutrients in Groundwater Inflow

The nutrient concentrations in groundwater exhibited a notable dichotomy, with deeper
sites consistently displaying higher concentrations compared to shallower sites. Particularly
for total nitrogen, some samples recorded concentrations exceeding 30 mg L−1. The mean
TN concentration for all groundwater samples from Lake Trafford of 12.68 ± 9.80 mg L−1 is
nearly three times higher than results from Lake Tohopekaliga (4.6 mg L−1; [38]), three
times higher than results from Lake Jesup (4.2 mg L−1; [39]), and almost five times higher
than samples from a wet detention pond on the Fort Myers campus of Florida Gulf Coast
University (FGCU) (2.7 mg L−1; [40]).

It is unknown what is driving the elevated nutrient levels at the central seepage sites,
and further studies are imperative to ascertain the causes and develop targeted mitigation
strategies. Furthermore, coupled with the regular groundwater discharge in these areas,
nitrogen loading from groundwater discharge is much higher than anticipated because of
the high nitrogen concentrations in the pore water from the center lake sites. Recent studies
have indicated that anthropogenic activities, including agricultural runoff and septic system
leakage, are significant contributors to elevated nitrogen levels in groundwater [41]. These
findings underscore the need for integrated watershed management approaches to address
both surface and subsurface nutrient sources.

Average phosphorus concentrations (0.90 ± 0.62 mg L−1) were also elevated above
surface water concentrations and concentrations from groundwater seepage from other
Florida lakes. TP concentrations in Lake Trafford were approximately 3.5 times the concen-
trations of seepage into Lake Tohopekaliga (0.25 mg L−1; [38]), 2.5 times the concentrations
for Lake Jesup (0.33 mg L−1; [39]), and over 3.5 times the concentrations for the FGCU pond
(0.27 mg L−1; [40]). This makes phosphorus loading via groundwater discharge higher
into Lake Trafford than other studied systems, even with its normal rates of seepage. The
elevated phosphorus levels in Lake Trafford groundwater inflow may also be influenced by
local geology and soil phosphorus content, which can contribute to higher baseline concen-
trations [25]. Moreover, recent environmental changes, such as increased rainfall and rising
water tables, have been linked to higher rates of nutrient leaching into groundwater [42].

The findings highlight significant implications for nutrient management strategies
for similar types of water bodies and emphasize the potential for substantial nutrient
input loading through groundwater seepage. This is especially pertinent in regions like
Florida, where the unique hydrology, characterized by flat topography and proximity to the
groundwater table and ocean, can amplify nutrient transport mechanisms. These insights
call for enhanced monitoring and adaptive management strategies that can dynamically
respond to changes in groundwater nutrient dynamics, ensuring sustainable water quality
management for Lake Trafford and similar ecosystems.

4.2. Nutrients in Canal Discharge into the Lake

Canal discharge was, as expected, dependent on rainfall, with flows mostly stagnant
during extended dry periods. Most of the discharge occurred from Canal 1, which also had
the highest concentrations of nitrogen and phosphorus, making it a substantial source of
water and nutrients into Lake Trafford.

It is hypothesized that Canal 1 experiences much more flow because of its connection
with the Immokalee Slough, a wetland area that extends east from Lake Trafford, meander-
ing its way between farmland to the south and the City of Immokalee to the north. This
area is clearly within the Lake Trafford drainage basin and is likely the reason for the higher
Q and nutrient concentrations in Canal 1. Increased impervious surface area in the City of
Immokalee and agricultural runoff from the lands to the south are potentially the source
of the excessive nutrients, especially stormwater runoff, which is likely channeled into
the slough.

Phosphorus (P) is more often the limiting nutrient in freshwater environments, while
nitrogen (N) is typically considered the limiting nutrient in marine (ocean) ecosystems. The
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data show that Canal 1 not only has the highest flow among all monitored canals in this
study, but also has the highest SRP/P ratio. It is a significant finding in that when assessing
the potential for algal bloom development in a waterbody, soluble reactive phosphorus
(SRP) is generally considered a more effective indicator than total phosphorus (TP). That
is because SRP represents the portion of P that is readily available for algae and other
aquatic plants to utilize for growth and reproduction. In contrast, TP encompasses both
dissolved and particulate forms of phosphorus. While TP measures the overall phosphorus
content in the water, not all of it is immediately accessible to algae. Particulate phosphorus
may require decomposition or sedimentation processes to release phosphorus in a form
that algae can use. Monitoring SRP levels provides direct insights into P availability for
algal growth and can serve as an early warning signal for potential algal blooms. High
concentrations of SRP often correlate more closely with algal bloom occurrences compared
to TP concentrations alone. Considering that Canal 1 serves as the primary pathway for
soluble reactive phosphorus (SRP) transported by surface water flow into the lake, effective
management and monitoring of the sub-watershed contributing to Canal 1 could aid in
identifying opportunities for watershed management. By focusing on this sub-watershed,
efforts can be directed towards minimizing SRP input into the lake via surface water flow.

Recent studies have emphasized the importance of managing agricultural runoff
and urban stormwater to control nutrient inputs into water bodies [43,44]. Implementing
best management practices (BMPs) such as buffer strips, retention ponds, and controlled
drainage systems can significantly reduce nutrient loads entering canals [45]. Additionally,
enhanced monitoring programs that track SRP levels in real-time can help identify critical
periods of nutrient influx and allow for timely interventions to prevent algal blooms [42].

4.3. Nutrients in Dry and Wet Deposition

The average dry deposition rates observed in this study appeared somewhat elevated,
aligning with rates documented in both the Ohio Valley and the Northeastern US for total
nitrogen deposition [46]. Notably, values calculated for Tampa Bay were approximately
50% lower than those recorded in this study [47]. While uncertainties persist, the rela-
tively remote location of the lake, distanced from major industrial areas, suggests that the
recorded values may be attributable to the prolonged period of composite sample collection.
Measured TP concentrations exhibited similarity to those documented in a study conducted
at the Emergent Technologies Institute, located approximately 8 km north of FGCU in Lee
County [48]. This suggests that other factors beyond geographical proximity to industrial
zones might contribute to the observed deposition rates. One such factor could be higher
deposition rates resulting from pre-harvest sugar cane burning in the nearby Everglades
Agricultural Area (EAA), situated approximately 35 miles west-northwest of Lake Trafford.
The complexities surrounding the observed deposition rates underscore the necessity for
rigorous scientific inquiry to resolve this issue conclusively.

Dry and wet deposition collection and analysis were effectively carried out using the
custom-designed deposition collection sampler. However, two notable challenges were en-
countered during the process: (i) contamination by insects, small reptiles, and amphibians
in several samples, and (ii) suboptimal placement of the land-based location, potentially
influenced by nearby trees, which may have affected deposition patterns. To address the
issue of contamination, a small stainless-steel screen was integrated into the collection
buckets, proving successful in mitigating insect and reptile fouling. Nevertheless, it is
important to note that this measure could have impacted deposition rates, as the selected
screen size represented a compromise between preventing fouling and the potential block-
age of dry deposition. Moving forward, optimizing site selection and refining sampling
methodologies should be considered to enhance the accuracy and reliability of deposition
data in future studies.

A recent study has indicated that local agricultural practices, particularly pre-harvest
sugar cane burning, can significantly contribute to elevated nutrient deposition rates in
nearby water bodies. These practices release particulate matter and associated nutrients
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into the atmosphere, which can then be deposited in both dry and wet forms [49]. The
proximity of the Everglades Agricultural Area (EAA) to Lake Trafford likely exacerbates this
effect, highlighting the need for targeted mitigation strategies in agricultural management.

The role of atmospheric deposition as a nutrient source is increasingly recognized,
especially in regions with extensive agricultural activity. For instance, Chen et al. [50] found
similar patterns of nutrient deposition in areas adjacent to agricultural fields, underscoring
the widespread impact of such practices. These findings align with observations from
Lake Trafford, suggesting that both dry and wet deposition are influenced by regional
agricultural emissions.

Advancements in deposition collection technologies, such as the custom-designed
deposition collection sampler used in this study, have improved the accuracy of nutrient
deposition measurements. However, challenges such as contamination and suboptimal
site placement remain significant hurdles. Future studies should focus on optimizing these
methodologies to ensure more reliable data collection.

4.4. Nutrient Loading Compared to the TMDL Study

The nutrient concentrations observed in the current study notably exceed those mod-
eled in the TMDL report for Lake Trafford [11]. Specifically, the TMDL report estimated
surface runoff TP concentrations at approximately 0.040 mg L−1, depending on annual
variations. However, surface discharge measurements from canals in this study averaged
0.166 mg TP L−1, revealing a fourfold increase over TMDL projections. Furthermore,
groundwater concentrations of TN showed an even greater disparity. The TMDL report
that TN concentration estimates ranged from 0.04 to 0.78 mg L−1, yet in situ measurements
from this study averaged over 12 mg L−1, underscoring a substantial underestimation.
These findings are consistent with other recent studies that have identified groundwa-
ter as a major nutrient source often underestimated in traditional surface water nutrient
models [51].

The average total daily loads (TDL) for TN and TP calculated in the TMDL report
were 190.5 kg day−1 and 18.6 kg day−1, respectively. In contrast, the findings of the current
study present higher daily loads, at 274.3 kg day−1 for TN and 24.2 kg day−1 for TP. These
figures suggest discrepancies of 31% for TN and 23% for TP when compared to the TMDL
report. It is important to note that the TMDL’s modeled total loads for wetter years, such
as in 2005, were estimated at 335 kg day−1 for TN and 37.6 kg day−1 for TP, which aligns
more closely with the higher nutrient loads observed in this study.

The significant differences between the TMDL estimations and the current study mea-
surements are likely caused by a variety of factors, including changes in land use, increased
nutrient inputs, or climatic variations that were not accounted for in the TMDL model.
These findings underscore the need for more updated and comprehensive nutrient model-
ing that accurately reflects the current conditions of Lake Trafford. A revised approach to
nutrient management and mitigation strategies may also be necessary to ensure the health
and sustainability of the lake’s ecosystem.

4.5. In-Lake Processes and the Impact of Dredging of Organic Sediment

Utilizing the nutrient budget established in this investigation, net values for “in-lake
processes” encompassing both positive loads like internal loading and negative loads such
as biological uptake and sedimentation could be estimated. Historically, Lake Trafford
grappled with legacy loading stemming from a thick organic sediment layer prone to
re-suspension during windy conditions. Sediment dredging served as the remedy for
this legacy load, and data from this study suggest that it achieved its intended objective.
On average, net in-lake processes exhibited negative values (−133.7 kg TN day−1 and
−16.3 kg TP day−1), indicating that biological uptake or sedimentation exerted a more
significant influence than internal loading. These values tended to become less negative
during the fall and winter months, only to increase negatively as warmer conditions
returned in the spring. This pattern likely reflects a decreased primary production of
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macrophytes and phytoplankton during colder conditions and lower light levels in winter,
underscoring the role of biological uptake as a pivotal driver of the lake’s internal nutrient
dynamics. While internal loading may persist, particularly in areas untouched by dredging,
it no longer appears to be as problematic as in the past.

Despite the positive impact of organic sediment dredging on in-lake processes, it
may have also affected the lake interaction with regional groundwater flow. The average
conductivity of lake water has been on the rise, suggesting increased groundwater influx,
especially in the central part of the lake. Since groundwater carries nutrients, any rise
in influx rate adversely impacts the lake’s nutrient balance. As observed by numerous
researchers, sediment dredging yields positive short-term benefits, but these benefits may
diminish over time [14,20,21,52,53]. The growing groundwater influence presents a new
challenge and merits further exploration.

4.6. Future Remedial Work Required to Improve Water Quality in Lake Trafford

The TMDL report from 2008 indicated that the total maximum daily loads for Lake
Trafford should be limited to 70.4 kg d−1 and 4.2 kg d−1 for TN and TP, respectively.
This equates to reductions of 60% for TN and 77% for TP. The results of this study are
indicative of how far from these targets we are in terms of reducing nutrient loading into
Lake Trafford. Load reductions will be necessary to prevent Lake Trafford from becoming
more eutrophied. The FDEP has not adopted a Basin Management Action Plan (BMAP)
for Lake Trafford. Data from multiple studies, including this one, should likely influence
future policy decisions.

The data from this study indicate several areas where load reductions could be targeted,
but there is one area that would be the most effective from a policy or project standpoint.
Elevated concentrations of nitrogen and phosphorus in the groundwater are problematic,
but the source of these nutrients is likely derived from the entire watershed, and perhaps
even outside of it. Spot targeting reductions for groundwater nutrient leaching would be
difficult, but fertilizer and perhaps septic tank policy changes may have a positive impact.
The most effective place for nutrient reduction is likely Canal 1, which delivers most of the
phosphorus from the five canals and a significant portion of the overall phosphorus load to
Lake Trafford. This makes it a prime candidate for a remediation project. The fact that it is
also a surface water delivery with sources that are probably evident upon inspection also
makes it ideal.

4.7. Future Research

This project has identified several areas of potential study that could yield valuable
insights. Given the ambiguous and densely vegetated boundaries of Lake Trafford, conduct-
ing a piezometer study with sites extending beyond the lake boundary into the surrounding
wetlands may offer a more comprehensive approach to monitoring groundwater discharge
and recharge compared to relying solely on seepage meters. Ion and radio isotope research
on the groundwater entering Lake Trafford could also be valuable for determining the
sources of inflowing groundwater and potentially point to sources of groundwater pol-
lution. Additionally, studying the hydrogeology beneath Lake Trafford may explain the
unusual flow patterns. Further study is also needed involving the Immokalee Slough,
particularly where and when nutrient loads are moving into it. It is unknown whether MS4
outfall drainage is present or if it is being used as drainage for crop land. However, its
large deliveries of water and nutrients to Lake Trafford make it worth further investigation.
Finally, this was the first attempt at the direct measurement of dry deposition falling on
to Lake Trafford. Continual measurements would be useful for determining the average
value and whether it is truly elevated over background values for one reason or another.

Considering potential remedial actions, depositing bentonite into some or all the
deepest parts of the lake could be explored. This intervention has been implemented
with positive results in other locations [54]. Bentonite has been shown to bind soluble
phosphorus effectively, thereby reducing internal nutrient input from sediments into the
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water. Also, it can reduce groundwater influx carrying heavy nutrient loads, thereby
mitigating nutrient enrichment in Lake Trafford. These proposed areas of study and
remedial actions have the potential to enhance understanding of Lake Trafford ecosystem
dynamics and inform effective management strategies for its conservation and restoration.

5. Conclusions

Based on the extensive nutrient budgeting efforts, it has become clear that despite
remedial actions such as removal of organic sediments, nutrient loads in Lake Trafford
remain high, and do not meet the target loads set by the total maximum daily load (TMDL)
for the lake. Groundwater loading was notably high due to elevated nutrient concentrations
observed in pore water beneath the lake, with the driving causes of this issue yet to be
discerned. Additionally, surface water inflow was richer in nutrients than anticipated, while
dry deposition loading exceeded expectations, resembling levels seen in more industrialized
areas. There is a necessity for further study to confirm these observations and to understand
if any overestimation has occurred.

Overall, daily nutrient loading was comparable to upper TMDL estimates from previ-
ous rainy years, surpassing average daily load values calculated in the TMDL, suggesting
increased loading due to more rainfall during the study period. The positive aspect of
this study is that internal loading appears reduced post-dredging, with sedimentation and
biological uptake likely mitigating ongoing internal loading. This is a promising result of
the dredging efforts, as pointed out in other studies [21,53,55], although denitrification in
the sediments could be limited after dredging, therefore possibly outweighing the benefits
of the ammonification reduction [53,56].

Future efforts should focus on reducing the overall nutrient load entering Lake Traf-
ford to restore its original water quality and clarity. Continuation of this project could
enhance understanding of Lake Trafford’s hydrology and nutrient loading under varying
hydrological conditions (e.g., wet versus dry years). However, reducing sampling fre-
quency to once a month may be more cost-effective while still providing adequate temporal
resolution, especially given the continuous or automated nature of most sampling methods.
Furthermore, increasing the time for bag deployments on the seepage meters to 48, 72, or
even 96 h may serve as a balance between increased temporal resolution, and preservation
of the delicate seepage bags.

As Jing et al. outlined in their paper [21], many restoration projects involving dredging
failed to be successful as they are not associated with ecological lake restoration projects. In
the management of Lake Trafford, the main objective should be reducing nutrient loads,
but other complementary actions like promoting native submerged aquatic vegetation
(SAV) plantings are also vital. Both decreased loading and increased SAV coverage will be
needed to return Lake Trafford to a clear water state. Although it is controversial, because
of its prolific growth, Hydrilla could be used as a management tool to control sediment
re-suspension and uptake nutrients out of the water column until the lake switches to a
clearer water state, which would allow for the rapid return of rooted submerged aquatic
vegetation (SAV). The use of the adequate amount of grass carps could then selectively
graze upon Hydrilla, thus allowing the native SAV to proliferate. However, to date, this
biocontrol approach does not seem to have been successful, even though grass carps were
parsimoniously added over time to prevent overgrazing of the more desirable SAV like
tape grass (Vallisneria americana). Despite SAV planting of this aquatic plant especially, Lake
Trafford is currently mostly devoid of SAV for reasons that should be investigated further.

A noted potential drawback of the sediment dredging has been the enhancement of
the groundwater connection to the lake, especially the central area. The high nutrient load
entering the lake is from groundwater, which will continue until the connectivity of the
lake bottom with groundwater flow lessens with time, as caused by natural sedimentation.
Experimental deployment of bentonite on the lakebed, especially within its deepest region,
could be explored to mitigate groundwater influx and reduce nutrient loading over time.
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In conclusion, while the sediment dredging has brought forth some positive changes,
the heightened nutrient levels call for ongoing management and research. Future studies
should assess the specifics of groundwater interactions, the causes of high nutrient levels,
and explore the practicality and effectiveness of various remedial actions, such as the use
of bentonite, to ensure the long-term health and ecological balance of Lake Trafford.
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