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Abstract: The significance of groundwater is largely shaped by the quality of wastewater from
industrial, agricultural, and municipal sources. Understanding the controlling factors is essential to
prevent the spread of contamination in groundwater. These factors could be divided into physical
defenses, such as grouting and slurry walls, and hydrodynamic factors, such as injection and pumping
wells. In this study, the groundwater transport model (MT3D) and the flow model (MODFLOW)
were used to simulate four scenarios for groundwater protection. The first and second scenarios
involve grouting and constructing slurry walls to change their depth, permeability, and thickness.
The third and fourth scenarios involve injection and pumping wells changing the rate of flow, screen
length, and the number of wells. The results show that increasing the thickness of the grouted soil and
increasing the grouting depth help to control the level of contamination. Furthermore, multi-slurry
walls upstream or downstream of the contamination source are sufficient for preventing the spread
of contaminants. The results also reveal that rising rates of injection or pumping wells allow for
minimal contamination propagation. The growing number of wells provided greater control over the
injection rather than pumping wells. The variation in the screen length of pumping wells is effective
for preventing the propagation of contamination.

Keywords: groundwater; contamination transport; grouting/slurry walls; injection/pumping wells;
numerical models

1. Introduction

Groundwater represents about 97% of the freshwater around the world [1,2]. Hence,
it is the predominant and most frequently used water resource for humans both in the
present and in the future. Anthropogenic activities are considered to be the main causes of
the deterioration in groundwater quality [3]. As such, sustainably managing and ensuring
the quality of groundwater are extremely challenging [4,5]. Various remediation processes
can be used to treat contaminated groundwater. These include slurry walls, injection,
and pumping. Grouting includes a low viscous injection into the voids of granulated
soils. There are several factors that can affect the design of grouting, such as the material,
grouting size, the relative density and fine contents of soil, the water–cement ratio of
grout mixture, and grouting pressure. The best application of grouting is in deep vadose,
which can limit the water flux in contaminated zones. However, grouting can be beneficial
when used in conjunction with other techniques [6]. In some industrial areas, which face
significant contamination, a technique of jet grouting with exchange reagents which can
strongly mix with the contaminants was proposed [7]. This technique enables investigating
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a zone of highly contaminated subsoil before and after the treatment, with measurements
directly showing the success of the dechlorination process. A simulation was performed
to investigate the role of the thermal and hydraulic conductivities of the grout when the
borehole heat exchangers enhance the effects of significant groundwater flow [8].

Vertical barriers, including slurry trench walls and walls constructed with soil mix
technology, have been employed for decades to control groundwater flow and subsur-
face contaminant transport. Slurry walls are used to divert the flow of uncontaminated
groundwater and/or provide a hindrance for groundwater treatment [9–13]. Amended
calcium bentonite was proposed for use in backfills for slurry trench cut-off walls for the
containment of lead contamination in groundwater [9]. This technique decreases the hy-
draulic conductivity of the backfill to nearly 2 × 10−10 m/s. The authors of [10] presented a
framework for evaluating a containment system involving barriers such as slurry walls and
jet grouting or hydraulic methods such as pumped-treated wells according to capital and
operational costs. The contaminant mass discharge from the containment system is a robust
indicator of its effectiveness and can be derived from modeling results. Several experiments
have been conducted to investigate the engineering characteristics of soil–cement–bentonite
(SCB) backfill [13]. The results indicate that the water content in the slurry is more sensi-
tive to the bentonite content. Further, the unconfined compression strength (UCS) value
increased with the cement content. The permeability coefficient decreased drastically as a
result of increases in the cement and bentonite contents.

The systems of injection wells or pumping wells are considered to be effective methods
to prevent the dispersion of contaminants [14–16]. An investigation [14] considered a
sulfate-contaminated site in China as the research objective. A hydraulic barrier was
created to cut off the pollution sources. Another hydraulic technique used involved boring
nine holes to control the pumping wells, which were arranged in the polluted area, and
injection wells, which were arranged at the outer edge of the pollution region, so that
the zone of the pollution plume was gradually reduced. After two years of continuous
monitoring, the sulfate concentrations decreased in the monitoring wells, indicating that
integrated groundwater remediation techniques are more effective and more reliable than
one single technique.

A comparison between pump-and-treat (P and T) and groundwater circulation wells
(GCW) was drawn in a study [16], which focused on two industrial sites. The comparative
assessment was based on the mobilization patterns observed, the resulting variations in
contaminant concentration, the mass discharge, and the volume of extracted groundwater.
One conventional well mobilized higher masses of contaminants in the early stages of P
and T. This reflected P and T’s impact on accessible contaminant pools in early operational
periods. P and T withdraws a significantly larger volume of groundwater than the GCW.
GCWs have been shown to reduce remediation time, increase mass removal, and minimize
the significant water consumption associated with P and T.

The contamination process of the groundwater from drains and canals was studied
using a coupled model of MODFLOW and MT3DMS [17]. The authors applied their study
findings to two cases, one hypothetical and one real, involving the Nile Delta Aquifer
(NDA). The study presented four different scenarios. The first involved changing polluted
drain and canal boundary conditions such as the head and concentration by identifying
groundwater contamination as total dissolved solids (TDSs). The second studied the source
of polluted drain in a low-permeability layer or a confined aquifer. The third was based
on installing a cut-off wall in the polluted drain sides. The fourth investigated the lining
of polluted drains. The results revealed that aquifer contamination was decreased by
increasing the water head of canals by 50 cm and decreasing the drain head by 50 cm
and the concentration by 25%. For the hypothetical case, contamination was decreased
by providing a clay cap, which reduced the aquifer’s hydraulic conductivity. Further, the
results showed the effectiveness of using a cut-off in shallow aquifers (hypothetical case), in
which the aquifer salt was reduced by nearly 30%. In the case of drain linings, the aquifer
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salt concentration reduced to low levels in hypothetical and real cases, indicating that this
case is more efficient in controlling groundwater contamination.

The rates and numbers of injection/pumping wells can minimize the contamination
by choosing the appropriate well location and the space between wells [18]. In another
study [19], the remedial and economic efficiency of a recirculation well system with si-
nusoidal temporally varying pumping and injection rates was evaluated for enhancing
remediation. They performed sensitivity analyses to determine the optimal values of four
operational parameters associated with the effects of temporally variable pumping or
injection rates on the cumulative swept area of injected chemical amendment for a given
operation time or cumulative injected volume, which are good measures of remediation
and economic efficiency. Another study based on 3D model to simulate unsteady and
spatially varying groundwater flow, along with contaminant migration, was conducted,
which was capable of investigating well water quality based on the change in the wells’
pumping rates. The modeling results revealed that choosing an optimum range for the
pumping rate increases contaminant travel time and reduces aquifer vulnerability [20].

In the current study, some remedial techniques such as grouting, slurry walls, and
injection/pumping wells are implemented and discussed using the integrated numerical
programs of the contaminants transport (MT3D) and hydraulics (MOFDLOW). Changes
in grouting depth, permeability, thickness, and slurry wall’s location are considered. Fur-
ther, variations in injection/pumping rate, screen posture, and well allocation around the
contamination provenance are considered.

2. Materials and Methods
2.1. Coupled Hydrodynamic and Transport Models

In this study, the hydrodynamic model (MODFLOW) is combined with the transport
model (MT3D). The MT3D model can be deemed as 2D or 3D for simulation of the ground-
water contaminants through advection, dispersion, and chemical reactions [21,22]. MT3D
uses MODFLOW to restore the hydraulic heads and the diverse flow and source/sink
terms [23–27]. The transport equation of MT3D in a porous medium includes the disper-
sion coefficient (longitudinally and transversely) and the effective porosity [28–32]. The
equation of the used groundwater flow in MODFLOW [23] is as follows:

∂

∂t

(
Kxx

∂h
∂x

)
+

∂

∂y

(
Kyy

∂h
∂y

)
+

∂

∂z

(
Kzz

∂h
∂z

)
+ W = Ss

∂h
∂t

(1)

The equation of the transport model MT3D [27] is as follows:
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where Kxx, Kyy, and Kzz represent the conductivity of the aquifer along the x, y and z axes
(L.T−1); h is the flow head (L); W represents the sources/sinks of water (T−1); Ss is the
specific storage (L−1); t is the time (T); C is the concentration of groundwater (ML−3); Dij

is the dispersion tensor (L2.T−1); i, j represent the cell indices; Vi is the seepage velocity
(L.T−1); qs is the water flux (positive) as sources and (negative) as sinks (T−1); θ is the
porosity (dimensionless); Cs is the concentration of sources or sinks (M.L−3); RK is the rate
of solute production or decay in reaction k of N different reactions (M.L−3.T−1).

2.2. Hypothetical Study Zone and Boundary Conditions

The numerical models MODFLOW and MT3D were applied in the suggested hypo-
thetical study zone using the square shaped with a net-of-cells grid (100 × 100). Each cell is
8 × 8 m2 representing a whole area 800 × 800 m2. The aquifer has a depth of 30 m. The
aquifer has four layers (5, 5, 10, and 10 m) downwardly. Figure 1 shows a finite difference
grid of the study zone. Each layer has a hydraulic conductivity of 10 m.d−1 and porosity 0.3.
The dispersion coefficient is taken as 500 m [33]. The specified boundaries are taken 29 m
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(west) and 26 m (east) according to the groundwater flow direction. Some substances found
naturally in rocks or soils, such as iron, manganese, arsenic, chlorides, fluorides, sulfates,
or radionuclides, can become dissolved in groundwater. The source of contaminant is
given at the crossing cell of row #49 (Y = 392 m) and column #28 (X = 224 m). The source
concentration is assumed to be 300 ppm. Figure 2 shows a horizontal view and cross-section
A-A of the equipotential heads and velocity vectors of the study zone.
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Calibration of the Used Model

The authors [34] calibrated the used model using seven monitoring piezometers as
shown in Figure 3. The head of the injection well was set 5.0 m above the static water level
of the groundwater. The chloride injection rate was 5.00 m3.d−1. After the injection started,
the samples of water were taken periodically over 4 h from all piezometers. The primary
injection concentration of chloride was 1400 ppm in the groundwater. Table 1 shows the
distribution of monitoring piezometer locations from an injection well. The results were
obtained by trial and error. The root mean squared (RMS) was 1.025 m with normalized
RMS of 30.138%; the maximum and minimum residuals were −1.095 m and +0.914 m with
mean residual −0.413 m. The absolute residual mean was 1.022 m.
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Table 1. Location of monitoring piezometers.

Piezometer 1 2 3 4 5 6 7

Distance (m) 11 11.5 24.8 38.6 51.5 62.3 70.4

2.3. Types of Groundwater Remediations

Four types of groundwater remediation are suggested. These remediation measures
are demonstrated, discussed, and presented. The studied measures are grouting, slurry
walls, injection wells, in addition to contaminant withdrawal by pumping wells acting as
interceptors.

2.3.1. Grouting

The grouting material fills the soil pores and reduces the hydraulic conductivity.
Creating a grouting curtain around the contamination source acts as a low-permeability
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barrier that prevents the contamination spread in the aquifer domain. Investigation of the
effect of depth, permeability, and thickness of the grouting curtain is presented.

2.3.2. Slurry Wall

There is no big difference between the function of the slurry walls and the grouted soil.
Both behave in the same way by reducing the hydraulic gradient and the velocity vectors
through the soil pores, preventing contaminant transfer from one place to another. The
simulation of the slurry wall presented three scenarios: a straight slurry wall upstream
of contamination source, three-sided confining slurry wall upstream and downstream of
contamination source.

2.3.3. Injection Wells

In this study, three scenarios of injection wells are suggested. These types of injection
wells depend on the rate, the depth of the screen, and the number of injection wells. We
present their effect on the spread of contaminants.

2.3.4. Pumping Wells

The fourth technique for groundwater remediation is withdrawal via pumping wells.
The study scenarios in this section concern the pumping rate, screen depth, and well
number.

3. Results and Discussion

This study focuses on groundwater remediation. The remediation proposed four
patterns, such as grouting, slurry walls, injection wells, and pumping wells.

3.1. Grouting

The aim of the grouting process is to ameliorate the shear strength by growing the
consistency of soil particles. This study introduces the effect of grouting depth, permeability,
and grouting thickness on the contamination transport.

3.1.1. Effect of Grouting Depth
Partial Depth Grouting Zone

A grouted impermeable zone of thickness 8 m (one cell) is simulated around the
contamination source, a region of 72 m by 72 m (nine cells by nine cells). If the grouted side
walls of the box penetrate only the upper three layers without going through the fourth one,
for that case, Figure 4 shows the velocity vectors and the equipotential lines. It is shown
that the pattern of velocity vectors inside and then outside the box of grouting can convey
the contamination outside the box, as shown in Figure 5. It gives a plan of the concentration
lines after 300 days, where Figure 6 shows a vertical view of the concentration spread.
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Full-Depth Grouting Zone

The grouting curtain goes all the way to the aquifer bed, penetrating all the layers with the
same conditions of the partial depth. Figures 7 and 8 show that the contamination is trapped
inside the box whose side walls are grouted soil and bottom is the aquifer impermeable
bed [35]. The grouted soil reduces the velocity entering or leaving the created box [36–39].
The contaminant remains in place inside the box and does not spread through the aquifer
domain.
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Figures 9 and 10 present the contamination concentration in the first and fourth layers,
respectively, for the following cases: no grouting, grouting without reaching the aquifer
bed, and grouting reaching the aquifer bed. Both layers become polluted when the grouting
does not reach the aquifer bed. The grouting is not effective if it does not reach the aquifer
bed [8,40–42].
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Figure 10. Grouting depth effect on a contaminant spread in layer #4.

3.1.2. Effect of Grouting Permeability

Figure 11 presents the concentration lines when assuming more permeability for the
grouted soil (0.01 m/day). Permeability, which is much greater than the assumed one in
Figures 7 and 8 (impermeable, 10−8 m/day), allows for contamination transfer outside the
grouting box through the walls, as shown in Figures 11 and 12 [6,17,43,44].
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3.1.3. Effect of Grouting Thickness

The example of low grouting permeability (Section 3.1.2) is used here again but
increasing the grouting thickness by as much as three times (24 m). A comparison of
results in Figures 11 and 12 with Figures 13 and 14, respectively, reveals that increasing the
thickness of the grouted soil reduces the transfer of the contamination outside the grouted
box because it decreases the hydraulic gradient through the grouted soil [8,45].
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3.1.4. Impact of Grouting Scenarios on Contamination Transport

A comparison between all grouting scenarios is summarized in Figure 15. In the
figure, the worst condition is when the grouting depth is partial. Better conditions for
controlling the contamination transport were the full grouting to the end of the aquifer
with the minimum permeability and a thick grouting zone.
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3.2. Slurry Wall

The results of the parametric study for the grouting effect are applicable to the effect of
the slurry wall. In the present section, the shape of the slurry wall around the contamination
source is investigated after 300 days of its construction. The obtained results are also valid
for the grouted soil. Simulation of a straight slurry wall upstream of the contamination
source is not enough for preventing the contamination spread, as shown in Figure 16.
Figures 17 and 18 show that having a three-sided confining slurry wall (or grouted soil)
gives better results in trapping the contaminant in place and preventing its spread [10,46].
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3.3. Injection Wells

This study presents three cases of injection wells of clean water. Theses statuses
show the effect of injection rate, screen depth, and number of wells on the contamination
transport.

3.3.1. Effect of Injection Well Rate

This study provides four-injection wells with clean water located around the contam-
ination source as shown in Figure 19. In the four layers of the aquifer, the screen of the
wells is completely penetrated. For each well, the injection rate is 600 m3.d−1. Figure 19
shows the restricted containment of the concentration spread (about 100 m wide). Figure 20
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shows the spread of concentration for lowering the rate with 300 m3.d−1. In that case, more
spread of contamination occurs (about 300 m wide) [19,47,48].
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3.3.2. Effect of Screen Depth of Injection Wells

For the case of an injection rate of 300 m3.d−1, the screen length is taken as 10 m only
in the lower part of the aquifer. Figure 21 shows the spread of concentration in the first
layer. An insignificant rise in the contamination spread can be seen in Figure 20 [14,49].
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3.3.3. Effect of Injection Well Number

Referring to the case of Figure 19, the injection wells are reduced to two upstream. In
this case, more contamination is noticed (around 400 m wide), as shown in Figure 22 [19].
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3.4. Pumping Wells

The pumping wells for withdrawal of the contamination aquifer represent the fourth
technique of groundwater remediation. In this type of remediation, the effects of pumping
rate, screen depth, and well numbers on the contamination transport are presented.

3.4.1. Effect of Pumping Well Rate

This study introduced four pumping wells, located as shown in Figure 23, to prevent
contamination spreading through the aquifer. The wells have full screens to the last layer
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with a rate of 600 m3.d−1. Figure 23 displays contour lines of the head and concentration.
In this case, the contamination area is confined among the four wells. In contrast, Figure 24
shows the contamination spreading out of the well zone with a rate of 300 m3.d−1. The
reducing pumping rate was set earlier, as in [20].
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3.4.2. Effect of Screen Depth of Pumping Wells

For the case of a pumping rate of 300 m3.d−1, the screen length was taken as 10 m only
in the lower part of the aquifer. Figure 25 shows the spread of contamination in the first
layer. This result shows more contamination other than that in Figure 24. This happens in
the first layer when the discharging screen is far away from the fourth layer [50].
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3.4.3. Effect of Pumping Wells Number

Figures 26 and 27 show the effect of the reduction in the number of pumping wells.
The contamination spread is increased compared with Figure 24 [20].
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3.5. Effect of Injection/Pumping Wells on Spread of Contamination

According to the change in flow rate, screen depth, and number of wells, Figure 28
shows the relationship of the contamination propagation over the contaminated zone.
Based on the blue color for the injection wells and green color for the pumping wells,
Figure 28 shows the spread of contamination that could be limited due to injection wells
rather than pumping wells. In the figure, the total screen length seems a good option
for reducing the contamination propagation, especially for pumping wells. Finally, the
increasing number of wells for both injection and pumping wells played a significant role
in reducing the contamination spread.
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Figure 28. Effect of injection/pumping well factors on contamination spread.

4. Conclusions

The present study highlights the main factors that could control the three-dimensional
spread of a contaminant in a porous medium. It helps explain the behavior of different
remediation measures and the design of successful control systems. The major outcomes of
this study are as follows:

• Grouting of soil creates a low-permeability medium that reduces the hydraulic gradient
and the corresponding pore velocity preventing the spread of contaminants.
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• Slurry walls act as low-permeability barriers that can confine contaminants and pre-
vent their migration.

• Increasing the thickness of the grouted soil reduces the transfer of contamination
through the grouted medium.

• The depth of grouting is an important factor to consider in the design of a confining
system. Greater grouting depth improves control over the contaminant spread.

• One straight slurry wall upstream of the contamination source is insufficient in pre-
venting contaminant spread.

• Higher clean water injection rates and pumping rates for hydrodynamic control allow
for reduced contaminant spread.

• Increasing the injection well number and pumping wells reduces the spread of con-
taminants.

• Changing the screen length of the pumping wells is effective in controlling the con-
tamination propagation.

• The effect of changing the screen length of the pumping wells on the contamination
spread is more than that of injection wells.

• Changing the number of pumping wells has a greater effect on contaminant spread
compared to a change in injection wells.

5. Recommendations

Out of this study, the following recommendations should be considered:

• Grouting should penetrate the whole aquifer thickness, reaching its impermeable bed
to trap the contaminant in position.

• The permeability of grouted soil should be low enough to prevent the migration of a
contaminant.

• The grouted soil should be thick enough to prevent contaminant penetration through
the soil.

• More complete grouting around the contamination source helps in confining the
contaminant position.

• All the above-mentioned factors are also applicable to slurry walls.
• The flow rate and well number for the injection/pumping method should be studied

in detail when designing an effective system.
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