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Abstract: Many hydrological models incorporate vegetation-related parameters to describe hy-
drological processes more precisely. These parameters should adjust dynamically in response to
seasonal changes in vegetation. However, due to limited information or methodological constraints,
vegetation-related parameters in hydrological models are often treated as fixed values, which restricts
model performance and hinders the accurate representation of hydrological responses to vegetation
changes. To address this issue, a vegetation-related dynamic-parameter framework is applied on the
Xinanjiang (XAJ) model, which is noted as Eco-XAJ. The dynamic-parameter framework establishes
the regression between the Normalized Difference Vegetation Index (NDVI) and the evapotranspira-
tion parameter K. Two routing methods are used in the models, i.e., the unit hydrograph (XAJ-UH and
Eco-XAJ-UH) and the Linear Reservoir (XAJ-LR and Eco-XAJ-LR). The original XAJ model and the
modified Eco-XAJ model are applied to the Ou River Basin, with detailed comparisons and analyses
conducted under various scenarios. The results indicate that the Eco-XAJ model outperforms the
original model in long-term discharge simulations, with the NSE increasing from 0.635 of XAJ-UH
to 0.647 of Eco-XAJ-UH. The Eco-XAJ model also reduces overestimation and incorrect peak flow
simulations during dry seasons, especially in the year 1991. In drought events, the modified model
significantly enhances water balance performance. The Eco-XAJ-UH outperforms the XAJ-UH in 9 out
of 16 drought events, while the Eco-XAJ-LR outperforms the XAJ-LR in 14 out of 16 drought events.
The results demonstrate that the dynamic-parameter model, in regard to vegetation changes, offers
more accurate simulations of hydrological processes across different scenarios, and its parameters
have reasonable physical interpretations.

Keywords: Xinanjiang model; dynamic parameter; normalized difference vegetation index;
evapotranspiration

1. Introduction

Recent research indicates that since the end of the last century, vegetation ecology has
exhibited varying trends across different regions [1]. The types and growth conditions of
vegetation can alter the hydrological mechanisms, such as evapotranspiration and inter-
ception, and influence the water balance and runoff processes [2,3]. Although vegetation
growth exhibits seasonal variation trends, the parameters closely related to vegetation
remain at fixed values in most lumped hydrological models. This means that these models
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cannot account for the response of hydrological processes to vegetation changes. Previous
studies have highlighted that using fixed parameters in hydrological models can limit
their simulation performance [4–6]. This calls for an eco-hydrological model with dynamic
vegetation-related parameters that is capable of simulating the impact of vegetation changes
on hydrological processes.

To improve the simulation accuracy of hydrological models, many researchers have
employed hybrid methods to model watershed hydrological processes dynamically. Es-
pinoza et al. [7] developed a hybrid model by coupling Long Short-Term Memory (LSTM)
networks with the Simple Hydrological Model (SHM), showing that the hybrid model
outperforms both the SHM and the LSTM individually. These models demonstrate that
the improvement in accuracy stems from the dynamic parameters output by the LSTM.
Similarly, Feng et al. [8] established a hybrid HBV model, which showed that the dynamic
parameters β and γ allowed it to achieve a simulation performance comparable to that of
the LSTM. Other researchers have also employed LSTM to incorporate dynamic parameters
into hydrological models [9,10]. By leveraging deep learning black-box models such as
LSTM, the hybrid models can achieve the dynamic parameterization of hydrological mod-
els without consideration of physical processes through loss-function minimization. At the
same time, with hydrological models, hybrid models can still simulate reliable hydrological
variables, even if these variables have not been trained in the models, which is not achiev-
able with standalone black-box models [11]. While hybrid models significantly enhance
the simulation capability of hydrological variables, they also increase model complexity,
which is associated with the increasing uncertainty. This uncertainty manifests not only in
the model’s internal behavior but also in the parameters, particularly those with unclear
physical mechanisms [12].

Another method for achieving model dynamization is to incorporate additional hy-
drometeorological and ecological data. For instance, the extra vegetation data, such as the
Normalized Difference Vegetation Index (NDVI) or Leaf Area Index (LAI), provide a finer
description of dynamic vegetation state variables, which indirectly dynamizes the model
instead of modifying the fixed parameters directly. Jin et al. [13] modified the SWAT model
using the high-resolution remote-sensing data of LAI, which solved the problem of LAI
spatial discontinuity in the SWAT model. The Penman–Monteith (PM) formula has long
been regarded as the most reliable method for estimating potential evapotranspiration in
watersheds [14–17]. However, the PM formula cannot accurately partition evapotranspi-
ration contributions between bare soil and vegetation. The impact of vegetation changes
on watershed evapotranspiration is significant. For instance, during summer, increased
root activity may enhance actual evapotranspiration due to enhanced water uptake, while
drought can delay the recovery of water use efficiency [8]. To address this, Leuning et al. [18]
improved the PM formula by incorporating LAI (PML formula) to separately calculate
evapotranspiration contributions from bare soil and vegetation. Bai et al. [19] replaced the
empirical evapotranspiration calculation formula with the PML formula in the Hydroin-
formatic modeling system (HIMS) model and found that the modified model showed a
significant improvement in the streamflow and soil moisture simulations as compared to
the original model. This is a reliable and interpretable approach, where hydrometeorolog-
ical and ecological data are input into the model to correct the state variables based on
equations derived from physical processes. However, this approach can only correct the
state variables of the model and cannot utilize the dynamical parameters in the model. In
reality, the vegetation changes in the hydrological processes are also reflected in model
parameters, which controls the simulation of canopy interception, evapotranspiration, and
rainfall infiltration [20–23].

Among various vegetation index, the Normalized Difference Vegetation Index (NDVI)
effectively reflects the spectral, morphological, and environmental characteristics of veg-
etation across different types, seasons, and growth conditions [24]. Due to its versatility,
the NDVI has been widely adopted by researchers [25–27]. In eco-hydrological models,
vegetation-related parameters can be inferred by establishing a regression model with the
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NDVI [28]. In this study, a regression relationship between the NDVI and the model pa-
rameters is established to achieve dynamic parameterization, ensuring the interpretability
of dynamic parameters. This method not only fully reflects the vegetation changes within
the watershed but also fully considers the dynamic changes of model parameters under
vegetation changes. By establishing the regression relationships between the NDVI and
vegetation-related hydrological model parameters, the method proposed in this study can
effectively introduce dynamic parameters to hydrological models. It also provides a tool to
explore the impacts of vegetation changes on a broader range of hydrological processes,
extending beyond the rainfall–vegetation change-runoff relationship.

2. Study Area and Data

The Ou River is the second largest river in the Zhejiang Province, bounded by
118◦45′ E–121◦00′ E and 27◦28′ N–28◦48′ N (Figure 1). It traverses the mountainous region
of southern Zhejiang and flows eastward into the East China Sea. The study area is the basin
upstream of the Qingtian Hydrological Station, covering a drainage area of 13,735 km2. It
is characterized as a mountainous river basin in a subtropical monsoon climate zone, fea-
turing significant elevation variations and dense forest cover [29]. The primary vegetation
types include evergreen coniferous forests, broad-leaved forests, mixed coniferous and
broad-leaved forests, and a substantial proportion of artificial vegetation [30].
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Figure 1. Location and basic information for the Ou River basin.

The gauged meteorological data for the operation of the hydrological model, including
daily rainfall and evapotranspiration, are collected from five meteorological stations located
in and around the Ou River basin as shown in Figure 1 (black points). Areal rainfall and
evapotranspiration are calculated through the Thiessen polygon method. The observed
discharge data for modeling covers the period from 1 January 1990 to 31 December 1995, as
provided by the Qingtian Hydrological Station. This study also uses monthly NDVI data
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from December 1989 to December 1995, which is sourced from the Global Inventory Model-
ing and Mapping Studies (GIMMS). The GIMMS NDVI dataset has a spatial resolution of
8 km × 8 km and a temporal resolution of 15 days [31]. The NDVI data is aggregated on
a monthly scale. In this study, the calibration and validation periods for the hydrological
models are 1990–1993 and 1993–1995, respectively.

3. Methods

Figure 2 shows the flowchart of this study. In this study, an eco-hydrological model
based on the Xinanjiang (XAJ) model, called Eco-XAJ, is proposed, which incorporates
vegetation change into the model using an NDVI regression module. Then, the discharge
simulation performance of the Eco-XAJ model and the XAJ model is compared during the
full period, the dry seasons, and the drought events in the Ou River basin.
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Figure 2. Flowchart of the study.

3.1. Hydrological Model

The Xinanjiang (XAJ) model is a lumped hydrological model developed in the 1970s [32].
The XAJ model operates on a daily time step and is based on the principles of the water bal-
ance with four modules, including evapotranspiration, runoff generation, runoff separation,
and routing. It divides the watershed into several sub-basins or hydrological response units,
each of which is represented by a set of parameters that govern its hydrological behavior.
The model is especially suitable for catchments in humid and semi-humid areas, where
rainfall is often intense and variable. Key features of the XAJ model include its simplicity,
its adaptability to different environmental conditions, and its ability to incorporate spatial
variations in rainfall and other meteorological variables. It has been widely applied in flood
forecasting, water resource management, and environmental studies, making it a critical
tool for hydrologists and researchers seeking to understand and manage water systems in
regions with diverse hydrological characteristics [33,34].

The unit hydrograph method is used as the routing modules in the XAJ model [32].
This method applies the unit hydrograph for surface runoff, while interflow and ground-
water flow are routed through linear reservoirs. After routing to the outlet section, the
results of the linear reservoir routing are combined with the unit hydrograph runoff, and
the final simulated discharge at the catchment outlet is obtained. Another method is the
Linear Reservoir method, where the surface runoff, interflow, and groundwater flow are
all routed through linear reservoirs [33]. In order to determine the suitable runoff routing
method for the study area, this study applies both the unit hydrograph method and the
Linear Reservoir method to route the runoff generated by the XAJ model, referred to as
XAJ-UH and XAJ-LR, respectively.
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3.2. Dynamic Parameterization Considering Vegetation Changes

In the XAJ model, the conceptual parameter K directly affects the model’s evapotranspi-
ration, thereby influencing subsequent calculations of soil moisture and runoff generation.
As shown in Equation (1), K is a correction factor from potential evapotranspiration to
actual evapotranspiration:

E = K × Ep (1)

where E and Ep represent the actual evapotranspiration and potential evapotranspiration,
respectively. Considering the impact of vegetation on evapotranspiration [35], the modified
XAJ model assumes that the value of K is dynamic and related to the NDVI, in contrast to
the original model where K is assumed to be a constant. Here, a regression relationship
between K and the NDVI is established and then integrated into the XAJ model, which is
referred to as the Eco-XAJ model.

3.3. Calibration and Evaluation of the Model

The parameters of the XAJ model are calibrated with the Non-Dominated Sorted Ge-
netic Algorithm II (NSGA-II) [36,37]. A more detailed description of the model’s calibration
and sensitivity analysis has been provided by Liu et al. [33], and the basic information of
parameters calibrated in our study is listed in Table A1.

Three objective functions are used in the model calibration, i.e., the Nash–Sutcliffe
Efficiency coefficient (NSE), the Correlation Coefficient (r), and the Percent Bias (pBIAS).

NSE = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1[yi − y]2

(2)

r =
∑N

i=1

[
ŷi −

=
y
]
[yi − y]√

∑N
i=1

[
ŷi −

=
y
]2

∑N
i=1[yi − y]2

(3)

pBIAS =
∑N

i=1 ŷi − yi

∑N
i=1 yi

× 100% (4)

where yi is the observed value, ŷi is the simulated value, y is the mean value of observation,
and

=
y is the mean value of simulation. According to the definition, when NSE and

r approach 1 and pBIAS approaches 0, it indicates that the model simulation is more
accurate. In this study, NSE and r are used to evaluate simulation performance. NSE also
serves as the basis for filtering parameter K. r is employed to explain the linear correlation
between the monthly optimal parameter K and the NDVI, as well as between the dynamic
parameter K and the monthly optimal parameter K. pBIAS is used to assess the model’s
performance in simulating the water balance.

For the Eco-XAJ model, a two-step calibration method is used. The first step involves
calibrating the static model parameters, which is consistent with the XAJ model. The second
step is to calibrate the dynamic parameter K. Figure 3 shows the procedure for building the
Eco-XAJ model. The specific steps are as follows:

First, calculate the optimal value for each month. The optimal value of K for each
month is determined through a traversal with the range set from 0.01 to 7. The remaining
model parameters are set as the parameters calibrated in the original model. The parameter
K corresponding to the best simulation performance (i.e., the maximum NSE) is selected
for each month.

Second, select the effective optimal K. When the XAJ model performs poorly in the
simulation due to the limitation of the model structure or because of forcing the data
quality, there may be months in which no reasonable simulation results can be obtained,
regardless of the changes in parameter K. The optimal K values for these months are treated
as anomalies. To avoid the influence of these anomalies, they are excluded based on the
following three criteria: (1) the optimal K value for a month falls at the boundary of the
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specified range; (2) the observed discharge during a month does not align with rainfall
patterns; and (3) there is a poor simulation performance during a month, characterized by
a substantial deviation between the simulated and observed discharges.
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Third, build the dynamic K module. The dynamic K module is built based on the
regression relationship between the monthly optimal K parameters and the monthly NDVI
sequence. This study also considers the potential lagged effects of the vegetation changes
on watershed hydrological processes. Therefore, there are two fitting approaches: (1) fitting
the optimal K parameter for the current month with the NDVI of the current month
(Lag-0 model) and (2) fitting the optimal K parameter for the current month with the
NDVI of the previous month (Lag-1 model). The regression equations derived from the
fitting process can calculate the dynamic parameter K, taking the vegetation changes into
consideration. Subsequently, replacing the fixed parameter K in the XAJ model with this
dynamic parameter K completes the modeling process of Eco-XAJ.

Finally, construct the Eco-XAJ model. The fixed K in the XAJ model is replaced with
the NDVI to solve K regression equation in the XAJ model.

4. Results and Discussion
4.1. The Relationship Between K and the NDVI

Figure 4 shows the relationship between the NDVI and the optimal values of K for the
same month, as well as the relationship between the current month’s K and the previous
month’s NDVI. The calibration and validation results for the XAJ models can be found in
Table A2. According to Figure 4, for both XAJ-UH and XAJ-LR, K and the NDVI exhibit
an exponential relationship. However, the XAJ-LR model shows a more pronounced
exponential relationship between K and the NDVI. Additionally, compared to XAJ-UH,
XAJ-LR generally shows a stronger correlation between K and the NDVI within the same
month. Furthermore, the distribution range of K in the XAJ-LR is broader as compared
to the XAJ-UH, with fewer values concentrated between 0.01 and 1. Compared with the
XAJ-UH model, the K values in the XAJ-LR model are more concentrated around the upper
boundary of 7 rather than the lower boundary of 0.01.
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Figure 4. Scatter plot of K and the NDVI: (a,b) represent the XAJ-UH model and (c,d) represent the
XAJ-LR model. NDVIt and Kt indicate the relationship for the same month; NDVIt−1 and Kt indicate
the relationship with a one-month lag.

For the XAJ-UH, the regression equation for estimating K in the same month using
the same month’s NDVI is shown in Equation (5). The regression equation for estimating
the current month’s K using the previous month’s NDVI is shown in Equation (6). For
the XAJ-LR, the regression equation for estimating K in the same month using the same
month’s NDVI is shown in Equation (7). The regression equation for estimating the current
month’s K using the previous month’s NDVI is shown in Equation (8).

Kt = 0.1133e2.093NDVIt + 1.134 × 10−15e46.34NDVIt (5)

Kt = 2.162 × 10−3e8.544×NDVIt−1 (6)

Kt = 0.455e0.526NDVIt + 8.996 × 10−15e45.17NDVIt (7)

Kt = 9.17 × 10−3e7.305NDVIt−1 (8)

As indicated by the r values in Figure 4a,c, it is evident that, either using XAJ-UH or
XAJ-LR, the fitted curve based on the K and the NDVI of the same month demonstrates
a stronger correlation. It makes sense that K increases with the rise in the NDVI. When
the NDVI is low, the vegetation in the watershed is not abundant, so the amount of water
absorbed by the roots and transpired by the vegetation is also low. Conversely, high
values of the NDVI indicate dense vegetation in the watershed, and a large amount of
water transpired by the vegetation. The result is consistent with several previous research
findings, which indicate that evapotranspiration increases with vegetation greening [38].
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Additionally, Figure 4a,c exhibits a shared trend: the fitted curves show an inflection
point around an NDVI of approximately 0.68, where the K values start to rise sharply. In
contrast, the fitted curves in Figure 4b,d do not display such a pronounced inflection point.

4.2. Simulation Performance of Full Period

The four regression equations are used to build the Eco-XAJ model, where Equations (5)
and (6) are used in XAJ-UH, noted as Eco-XAJ-UH with the Lag-0 module and Eco-XAJ-UH
with the Lag-1 module, and Equations (7) and (8) are used in XAJ-LR, noted as Eco-XAJ-LR
with the Lag-0 module and Eco-XAJ-LR with the Lag-1 module. The simulation results
of the Eco-XAJ models and the original XAJ models from January 1990 to December 1995
are compared in Table 1. In Table 1, the best-performing Eco-XAJ model is highlighted
in bold. According to Table 1, the Eco-XAJ-UH models with both the Lag-0 and Lag-1
modules outperform the XAJ-UH model, while the Eco-XAJ-LR model with the Lag-0
module performs better than the XAJ-LR model. The Eco-XAJ-UH with the Lag-0 module
shows the best performance of all six models. Three of the four Eco-XAJ models perform
better than the original models. Because the Eco-XAJ models with the Lag-0 module
outperform those with the Lag-1 module, the subsequent analysis focuses on the Eco-XAJ
models with the Lag-0 module.

Table 1. Comparison between the Eco-XAJ model and the XAJ model.

Model NSE r

XAJ-UH 0.635 0.799
Eco-XAH-UH with Lag-0 module 0.647 0.815
Eco-XAH-UH with Lag-1 module 0.639 0.815

XAJ-LR 0.589 0.768
Eco-XAH-LR with Lag-0 module 0.599 0.777
Eco-XAH-LR with Lag-1 module 0.565 0.767

Note: The best-performing model is highlighted in bold.

Figures 5 and 6 present the hydrographs simulated by Eco-XAJ-UH and Eco-XAJ-LR
with the Lag-0 module. Three representative periods are selected, i.e., early May 1990 to
early September 1990 (Duration I), early July 1991 to late December 1991 (Duration II),
and early July 1995 to late December 1995 (Duration III). The periods of Duration I to
III correspond to the wet season, the dry season and the recession periods, respectively.
In Duration I, both Eco-XAJ-UH and Eco-XAJ-LR underestimate the flood peaks. The
Eco-XAJ-LR model underestimates floods more significantly than the Eco-XAJ-UH model.
As shown in Figure 6b, the three flood peaks exceeding 2000 m3/s, simulated by the Eco-
XAJ-LR model before 1 July 1990, are all lower than those simulated by the XAJ-LR model.
However, when the observed discharge is below 2000 m3/s, the simulations of the Eco-XAJ
models are generally better than those of the original XAJ models. Specifically, the XAJ-LR
model incorrectly simulates the flood peak on 3 July 1990, while the Eco-XAJ-LR simulates
the discharge closer to the observation.

According to Figures 5c and 6c, the XAJ models overestimate the flood peaks in
Duration II. The Eco-XAJ models address this issue, mainly due to their ability to simulate
more accurate evapotranspiration. According to Figures 5d and 6d, there are several short
rainfall events within the recession process in Duration III. It can be observed that the
discharge does not show a significant flood peak despite the rainfall reaching its peak. The
XAJ models present incorrect flow peaks for all these rainfall events, while the Eco-XAJ
models almost perfectly reproduce the variations of discharge during this period, with
only one incorrect flow peak. For the rainfall events less than 100 mm, the XAJ models and
the Eco-XAJ models incorrectly simulate the flood peaks, but the flood peaks simulated by
Eco-XAJ are lower than those of the original model.
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To better visualize the differences between the models, the simulation results of the
Eco-XAJ and XAJ models are presented in Figure 7. In Figure 7a, the Eco-XAJ model’s scatter
points are more concentrated around the 1:1 line, indicating that the simulated discharge of
the Eco-XAJ-UH model is closer to the observed discharge, as compared to the original model,
when the observed discharge is less than 2000 m3/s. In Figure 7a, it can be observed that
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the outliers primarily occur when the discharge exceeds 2000 m3/s, where the XAJ model
underestimates the flood peak. This is consistent with the results shown in Figure 5a. In
Figure 7b, it can be observed that the maximum deviation of discharge between the Eco-
XAJ-UH model and the original model is approximately −1000 m3/s, when the discharge is
less than 2000 m3/s. As the simulated discharge of the original model exceeds 2000 m3/s,
the tendency for the Eco-XAJ-UH model to simulate lower discharges, as compared to the
original model, gradually diminishes. When the simulated discharge of the original model
surpasses 4000 m3/s, the simulated discharge of the Eco-XAJ-UH model becomes nearly
identical to that of the original model. This indicates that the Eco-XAJ-UH model almost does
not reduce the original model’s flood-peak simulation performance. The comparison between
the Eco-XAJ-LR model and the XAJ-LR model is shown in Figure 7c,d. The conclusions
drawn with Eco-XAJ-LR model are similar to those drawn with the Eco-XAJ-UH model.
According to Figure 7b,d, when the discharge is below 3000 m3/s, the difference between the
Eco-XAJ-LR and the XAJ-LR models is more significant than that between the Eco-XAJ-UH
and XAJ-UH models, with the maximum deviation being around −2250 m3/s. This deviation
mainly occurs during the wet seasons, as shown in Figure 6b. In Duration I, the XAJ-LR model
overestimates the discharge, while the simulation of Eco-XAJ-LR model closely matches the
observation. This indicates that the improvement in the evapotranspiration process in the
Eco-XAJ model effectively enhances the model’s simulation performance.
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For a more detailed analysis, the error plots of the Eco-XAJ model corresponding to the
observed discharges are presented in Figure 8. Figure 8a,c illustrates the fact that when the
observed discharge is below approximately 1000 m3/s, the absolute error of the Eco-XAJ
model is generally lower than that of the XAJ model. As shown in Figure 8b,d, the error
analysis of the discharge less than 1000 m3/s is conducted, where a ∆Error greater than 0
indicates that the Eco-XAJ model outperforms the XAJ model. The red solid line shows the
cumulative ∆Error. If the slope of the cumulative ∆Error is greater than 0, it indicates that
the advantage of the Eco-XAJ model is increasing. According to Figure 8b,d, it is evident
that the difference between the Eco-XAJ-LR and XAJ-LR models is more pronounced as
compared to that between Eco-XAJ-UH and XAJ-UH. The cumulative ∆Error in Figure 8d
is approximately twice that shown in Figure 8b. This indicates that the improvement in the
simulation accuracy of Eco-XAJ-LR is greater than that of Eco-XAJ-UH. Furthermore, both
subplots reveal that the advantage of the Eco-XAJ models increases with discharge ranging
from 0 m3/s to 600 m3/s. However, in the range of the discharge from 600 m3/s to 1000 m3/s,
the slope is approximately 0, suggesting that the advantage of the Eco-XAJ models weakens.
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4.3. Simulation Performance During Dry Seasons

The hydrographs during the dry seasons (from October to February) are shown in
Figures 9 and 10, in which the advantages and limitations of the Eco-XAJ models are
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demonstrated. The Eco-XAJ model also exhibits notable improvements, especially in
correcting the XAJ model’s overestimation of peak discharges. For example, the XAJ models
significantly overestimate the peak on 5 October 1991, 10 November 1993, and 12 October
1994, but the Eco-XAJ models successfully mitigates this overestimation, and the Eco-XAJ-
LR model shows the most significant improvement and provides the best match for the
observed discharge. When the XAJ models fail to simulate the discharge, the improvement
of the Eco-XAJ models is also limited. In the dry seasons of 1990 and 1992, both the original
XAJ models and the Eco-XAJ models are not able to simulate the peak discharge accurately.
In the dry season, the Eco-XAJ models’ runoff simulation performances generally improve.
However, in a few cases, due to the poor performance of the original XAJ models, Eco-XAJ
does not show significant improvements in the discharge simulation.

To quantitatively analyze the simulation performance of the models during the dry
seasons, the NSE and pBIAS values for all models are listed in Table 2. It is observed that
all four models have negative NSE values and large pBIAS values during the dry seasons
in 1992, suggesting a poor performance of the XAJ and Eco-XAJ models, while all models
perform well in 1994. The Eco-XAJ-UH model demonstrates the best NSE among the four
models during the dry seasons in 1991, 1993, and 1994. Notably, in 1991, Eco-XAJ-UH also
achieves the best pBIAS. As analyzed earlier, the Eco-XAJ-UH model exhibits superior
peak simulation performance as compared to XAJ-UH, avoiding erroneous peaks that do
not align with the observed discharge (around 1 November 1991), which contributes to its
higher NSE. Furthermore, during the period between 5 October 1991 and 6 January 1992,
the Eco-XAJ-UH model simulates a discharge that is closely aligned to the observation,
leading to its top pBIAS performance. In 1994, the NSE for Eco-XAJ-UH improves slightly
by 0.023 as compared to XAJ-UH, reflecting its success in addressing peak overestimation.
The Eco-XAJ-LR model achieves the best pBIAS among the four models during the dry
seasons in 1990, 1992, and 1994. However, as previously noted, the simulated hydrographs
of all models in 1990 and 1992 are not reasonable. In 1994, similar to the Eco-XAJ-UH
model, the Eco-XAJ-LR model shows a slight NSE improvement (0.028) as compared to
XAJ-LR, which is also due to its success in addressing peak overestimation, resulting in its
optimal pBIAS. In 1991, the Eco-XAJ models significantly surpass the XAJ models in both
NSE and pBIAS due to the successful correction of the overestimation of peak discharge.
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Table 2. NSE and pBIAS during the dry seasons.

Metric Model
Period

1990 1991 1992 1993 1994

NSE

Eco-XAJ-UH −0.387 0.616 −1.027 −0.054 0.726
Eco-XAJ-LR 0.225 0.511 −0.222 −0.072 0.682

XAJ-UH 0.213 −0.020 −1.033 −0.210 0.703
XAJ-LR 0.343 0.058 −0.669 −0.310 0.654

pBIAS %

Eco-XAJ-UH −80.3 −14.2 −63.0 −43.5 −28.3
Eco-XAJ-LR −3.5 35.1 42.4 32.4 6.9

XAJ-UH −61.4 20.2 −63.9 −21.9 −19.8
XAJ-LR 10.8 61.6 55.8 43.2 12.6

Note: The best-performing model is highlighted in bold.

4.4. Simulation Performance of Drought Events

Considering that water balance is more critical during drought events, pBIAS is used
as the evaluation metric for discharge in drought events. In this study, drought events are
defined as events with a peak discharge of 400 ± 80 m3/s during a 20-day period. Table 3
lists the pBIAS for Eco-XAJ and XAJ in 16 drought events, along with the NDVI values. In
Table 3, the better pBIAS values for specific events are highlighted in bold. The Eco-XAJ-
UH outperforms the XAJ-UH in 9 out of 16 events, while the Eco-XAJ-LR outperforms the
XAJ-LR in 14 out of 16 events. This indicates that dynamic parameterization can improve
the model’s performance in simulating discharge in drought events. Moreover, it is also
observed that Eco-XAJ-LR has more advantages than Eco-XAJ-UH in simulating discharge
in drought events. Table 3 also shows that ∆pBIAS ranges from 0 to −33.8% in the
seven drought events, whereas the Eco-XAJ-UH model does not show improvement. This
means that although Eco-XAJ-UH does not always outperform XAJ-UH in water-balance
simulation, the performance gap is relatively small.
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Table 3. pBIAS Comparison of the Eco-XAJ models and the original model during low-flow rain-
fall events.

Durations
pBIAS%

NDVIEco-XAJ-UH Eco-XAJ-LR XAJ-UH XAJ-LR

1990-11-17–1990-12-07 −87.0 −8.7 −53.2 11.5 0.7202, 0.6895
1991-06-25–1991-07-15 94.4 143.3 132.1 173.7 0.6700, 0.7388
1991-07-15–1991-08-04 −72.5 19.4 72.5 90.3 0.7388, 0.6931
1991-08-24–1991-09-13 −44.4 25.2 18.6 56.5 0.6931, 0.7134
1991-10-03–1991-10-23 17.0 38.4 172.5 176.6 0.7483
1992-01-11–1992-01-31 −58.5 75.5 −56.2 90.3 0.6334
1993-02-14–1993-03-06 −25.3 −0.9 −44.7 3.9 0.4822, 0.5836
1993-08-13–1993-09-02 −91.6 −15.9 −67.1 1.5 0.7179, 0.6819
1993-11-21–1993-12-11 −45.6 31.0 −16.3 37.5 0.6328, 0.6613
1994-07-19–1994-08-08 −0.2 47.0 47.3 78.1 0.6877, 0.6755
1994-12-26–1995-01-15 −43.7 −5.1 −45.9 −4.2 0.5556, 0.6637
1995-02-04–1995-02-24 −20.9 −0.8 −7.2 2.4 0.6505
1995-07-14–1995-08-03 −29.0 −10.9 91.3 82.1 0.7303, 0.6899
1995-08-03–1995-08-23 24.6 47.3 126.1 141.3 0.6899
1995-08-23–1995-09-12 23.5 51.3 46.7 94.9 0.6899, 0.7171
1995-09-12–1995-10-02 −70.2 34.9 −57.8 65.7 0.7171, 0.7425

Note: The best-performing model is highlighted in bold.

Figure 11 illustrates the relationship between the NDVI and the model’s performance
during drought events. As shown in Figure 11a, the pBIAS values of the XAJ-UH model
are negative when the NDVI is below 0.68 but become mainly positive when the NDVI
exceeds 0.68. In contrast, the pBIAS values of the Eco-XAJ-UH model are mostly negative,
with positive pBIAS values only occurring when the NDVI is greater than 0.68. Figure 11b
shows that the pBIAS values for both the XAJ-LR and Eco-XAJ-LR models are generally
positive. When the NDVI is below 0.68, the pBIAS values of the two models are similar.
However, when the NDVI surpasses 0.68, a significant difference emerges between the
models, with the pBIAS of the Eco-XAJ-LR model moving closer to zero. Figure 11a,b
reveals that the XAJ-UH and XAJ-LR models produce relatively large pBIAS values when
the NDVI exceeds 0.68. This suggests that the XAJ models face challenges in simulating the
water balance accurately during drought events with high NDVIs.

Figure 11c,d, indicates that the Eco-XAJ model outperforms the XAJ model in a
simulation in which the value on the vertical axis is greater than 0. Conversely, if the value
is less than or equal to 0, it suggests that there is no improvement. As shown in Figure 11c,
in cases where the model’s performance improves, the magnitude of the improvement is
greater than the magnitude of the decline observed in cases where the performance does
not improve. It suggests that the Eco-XAJ-UH model generally performs better than the
XAJ-UH model. Furthermore, Figure 11c illustrates that the improvement in the water-
balance simulation performance of Eco-XAJ-UH, as compared to XAJ-UH, is relative to the
NDVI, with more noticeable improvement when the NDVI exceeds 0.68. In Figure 11d, the
Eco-XAJ-LR model shows an improvement in water balance simulation as compared to the
XAJ-LR model, with only two events having negative values of ∆pBIAS near 0. Moreover,
similar to the Eco-XAJ-UH model, when the NDVI exceeds 0.68, the Eco-XAJ-LR model
demonstrates a noticeable enhancement in water balance simulation as compared to the
XAJ-LR model.

In Figure 11, it is evident that the performance improvement from the XAJ model to the
Eco-XAJ model is related to the NDVI. When the NDVI is below 0.68, the XAJ-UH model
underestimates the discharge, which implies that the XAJ-UH model overestimates evap-
otranspiration. Correspondingly, the XAJ-UH model underestimates evapotranspiration
when the NDVI is above 0.68. Meanwhile, the XAJ-LR model generally overestimates dis-
charge and underestimates evapotranspiration. The deviation becomes more pronounced
when the NDVI is above the threshold of 0.68. For the two Eco-XAJ models, the pronounced
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performance improvement, as compared to the XAJ models, occurs when the NDVI exceeds
0.68. This threshold is consistent with the inflection point observed in Figure 4a,c. This
indicates that the Eco-XAJ models, by dynamically adjusting parameter K, simulate more
reasonable evapotranspiration, leading to more accurate simulated discharge.
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5. Conclusions

This study developed the eco-hydrological model Eco-XAJ to account for the veg-
etation changes in the Ou River basin. In the Eco-XAJ model, a regression relationship
between the parameter K in the XAJ model and the NDVI was established. This method
dynamically adjusts the model parameters to account for vegetation changes. The main
conclusion can be drawn as follows:

(1) The simulation accuracy of the Eco-XAJ model is generally better than that of
the original model. The differences between the two models are mainly observed in low-
discharge simulations, with relatively minor differences in high-discharge simulations. The
Eco-XAJ model improves the accuracy in the simulation of discharge below 1000 m3/s.

(2) In the dry season, the advantage of the Eco-XAJ model lies in its ability to over-
come the peak overestimation and erroneous peak simulations present in the XAJ model.
The advantage in overcoming peak overestimation is most evident in the simulation of
unimodal peaks, while the advantage in correcting erroneous peak simulations is reflected
in the recession phase after flood events. When the XAJ model produces unreasonable
simulations throughout the dry season, the improvements brought by the Eco-XAJ model
are limited and not significant. In contrast, when the results of the XAJ model are relatively
reasonable during the dry season, the overall performance of the Eco-XAJ model shows
slight improvement.
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(3) During drought events, the pBIAS of the Eco-XAJ model is typically lower than
that of the original model. This advantage is more pronounced in the Eco-XAJ-LR model.
Considering vegetation changes, the model’s performance has improved from the per-
spective of water balance, especially for discharge simulation of drought events with a
high NDVI.

It is worth noting that in regions affected by seasonal fires or intensive agriculture,
vegetation may undergo rapid changes in both spatial extent and composition. The monthly
NDVI may not respond quickly enough to these kinds of land cover changes. As a result,
this model may not be able to capture this change. In further studies, to settle the problem,
daily vegetation data such as Enhanced Vegetation Index (EVI) or LAI can be introduced
into the model to capture more detailed vegetation changes. To incorporate the frequency
and intensity of agricultural activities or fires into the eco-hydrological model can also help
get rid of this limitation.
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Appendix A

Table A1. Parameters to be calibrated and sensitive parameters (marked with bold) of the XAJ model.

Module Parameter Physical Meaning Range

Evapotranspiration
K Ratio of potential evapotranspiration to pan evaporation 0.7–1.1

C Evapotranspiration coefficient of the deeper soil layer 0.01–0.05

Runoff generation

WUM Soil water tension capacity of the upper layer 0–100

WLM Soil water tension capacity of the lower layer 0–100

WDM Soil water tension capacity of the deep layer 0–50

B Exponential of the distribution to water tension capacity 0.1–0.8

IMP Percentage of impervious and saturated areas in the catchment 0–0.05

Runoff separation
SM Free water capacity of the surface soil layer 0–100

EX Exponent of the free water capacity curve influencing the
development of the saturated area 0–2.5

Routing

KI Outflow coefficients of soil’s free water storage to interflow 0–0.7

KG Outflow coefficients of soil’s free water storage to groundwater 0–0.7

CI Recession constants of the interflow 0–1

CG Recession constants of the groundwater storage 0–1

Routing (UH)
UH Unit hydrograph 0–50

L Lag time Defined

Routing (LR) CS Recession constants of the surface flow 0–1
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Table A2. Evaluations of the simulation with the parameter sets calibrated in the XAJ model.

Period Metric
Model

XAJ-UH XAJ-LR

Calibration
NSE 0.643 0.569

r 0.809 0.767
pBIAS % −2.2 11.6

Validation
NSE 0.623 0.616

r 0.815 0.798
pBIAS % −21.6 −8.9
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