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Abstract: The role of trees in watershed hydrology is governed by many environmental factors
along with their inherent characteristics and not surprisingly has generated diverse debates in the
literature. Herein, this conceptual meta-analysis provides an opportunity to propose a conceptual
model for understanding the role of trees in watershed hydrology and examine the conditions
under which they can be an element that increases or decreases water supply in a watershed. To
achieve this goal, this conceptual meta-analysis addressed the interaction of forest cover with climatic
conditions, soil types, infiltration, siltation and erosion, water availability, and the diversity of
ecological features. The novelty of the proposed conceptual model highlights that tree species and
densities, climate, precipitation, type of aquifer, and topography are important factors affecting
the relationships between trees and water availability. This suggests that forests can be used as a
nature-based solution for conserving and managing natural resources, including water, soil, and air.
To sum up, forests can reduce people’s footprint, thanks to their role in improving water and air
quality, conserving soil, and other ecosystem services. The outcomes of this study should be valuable
for decision-makers in understanding the types of forests that can be used in an area, following an
approach of environmental sustainability and conservation aiming at restoring hydrological services,
mitigating the costs of environmental services, promoting sustainable land use, managing water
resources, and preserving and restoring soil water availability (SWA) when investing in reforestation
for watershed hydrology, which is important for the human population and other activities.

Keywords: erosion; forest age; forest hydrology; runoff; soil water infiltration; water cycle

1. Introduction

Forests cover about one-third of the Earth’s terrestrial area [1] and play a crucial
role in environmental sustainability and human life. They significantly contribute to
climate change mitigation by absorbing and storing 30% of carbon emissions [2], reducing
greenhouse gas emissions [3], providing food to people [4], and offering several ecosystem
services, including water provision, soil conservation, and climate regulation. Forests can
positively or negatively affect water storage (i.e., soil water availability) by regulating basic
fluxes such as infiltration, surface runoff, and evapotranspiration (ET). Natural forests have
been exploited [5] and destroyed for agricultural activities, one of the main contributors
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to soil erosion. From 2000 to 2012, approximately 3.2% of forest cover worldwide was
converted into agricultural lands [6]. This conversion could affect soil water availability
(SWA). However, the relationships between trees and basic features of the hydrologic cycle
(storage and fluxes of water) are complex and contradictory. For example, a scientific paper
has argued that deforestation could increase downstream water availability, whereas others
have concluded that afforestation increases downstream water availability and intensifies
the water cycle [7]. Other researchers have documented that afforestation decreases water
yields, especially trees such as eucalyptus and pinus [8–12].

Trees are fundamentally important in regulating streamflow [13]. However, some
species can reduce groundwater levels because of climate changes and physiological char-
acteristics that may affect ET [14]. The transpiration of some trees (e.g., Phyllostachys edulis)
can be affected by multiple factors such as tree age, size, phenological stages, and soil
water content [15–17]. Thus, tree transpiration can couple with environmental variables to
alter the water cycle and water balance on local and regional scales. To meet transpiration
needs [18], trees with deep root systems can extract large volumes of water from depths
of 10 m or more [19]. On this topic, researchers have argued that there is an interdepen-
dence between vegetation and deep groundwater [20–22]. There is a great need to clarify
controversies about the relationship between watershed hydrology, and ultimately the
global water cycle. As such, we expect that trees reduce soil erosion, compaction, and
surface runoff during precipitation. In addition, the change in the hydrological cycle,
particularly in extreme precipitation, can intensify negatively with global warming [23,24].
Likewise, global warming can directly influence precipitation, leading to a greater evapora-
tion rate, and thus surface drying [25]. Similarly, changes in climatological precipitation
and evapotranspiration lead to changes in runoff [26].

A conceptual model should consider how tree communities in forested areas can affect
the amount of water in the soil and at a watershed outlet, and their role in controlling
erosion and reducing runoff. This model also should consider the impacts of fast-growing
forest plantations on the water balance and streamflow compared to those of native forests.
Various studies have documented large-scale relationships between hydrological effects
and deforestation and forestation [27–30]. Others have demonstrated relationships between
water cycle components (e.g., precipitation and evapotranspiration) and water vapor
residence time [31] and forest maturity [32]. For example, to meet their evapotranspiration
needs, trees use various strategies for searching for water in a forested watershed, preferring
soil water rather than groundwater [33], depending on the period; for example, they
can take up groundwater during dry periods. Regardless of the source, trees affect the
partitioning of water between catchment water yield and ET [34,35]. In the end, water
extraction and availability are governed by interactions between macropore flow, matrix
storage, and the shape of root systems [36], and ultimately these interactions define the
ecohydrological functioning of forests [37].

Notably, there is a direct relationship between transpiration and diel fluctuations in
streamflow [37], which vary seasonally and spatially [38]. Nonetheless, there is a need
for improving the understanding of the interactions between forest cover and watershed
hydrology. Hence, the objective behind this conceptual meta-analysis is to document the
influence of trees on water availability and propose a conceptual model of their role in
watershed hydrology and the conditions under which they can increase or decrease water
supply. Importantly, this study primarily focuses on understanding the role of trees in
watershed hydrology by examining how forest cover interacts with climate factors, soil
properties, water infiltration, soil water availability (SWA), and the ecological diversity of
tree species. Additionally, the study explores both the positive and negative influences of
afforestation and reforestation on the water cycle, considering a range of factors, including
forest density, soil types, climate, and topography.
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2. Materials and Methods

This conceptual meta-analysis proposes a conceptual model for understanding the
role of trees in watershed hydrology and examines the conditions under which they can
influence water supply in a watershed. To develop this conceptual model, we integrated
environmental factors (e.g., soil characteristics, climate conditions, topography) and forest-
related factors (e.g., forest cover type and tree species) to understand their interactions and
influence on watershed hydrology. This model aims to assess how different tree species,
forest densities, and management practices affect components of the water cycle, such as
evapotranspiration (ET), water infiltration, and soil water availability (SWA). Additionally,
the model examines the interactions between forests and groundwater recharge, streamflow,
and erosion control, considering tree physiology and environmental variables. Based on this
model and the literature, we suppose that: (i) SWA and groundwater recharge are higher
in watersheds covered with native forest species compared to areas with commercial forest
species, and (ii) reforestation with native species in tropical regions improves watershed
hydrology more effectively than fast-growing plantations. Thus, scientific documents
were searched from literature databases (e.g., Scopus, google scholar and Web of Science)
using keywords including “forest cover”, “planting trees”, “trees”, “water protection”,
“water availability”, “infiltration”, “reduce runoff”, “watershed”, “rainforest”, “climate”,
“soil compositions”, “evapotranspiration”, “vegetation”, hydrologic cycle”, “topography”,
“forest age”, “base flow”, “watershed”. It is noted that the Boolean operators “AND”
and “OR” were used to associate the keywords and thus refine the search results. This
conceptual meta-analysis focused on documents in English (e.g., papers, reports, and books)
published from 1933 to 2024. The list of references was also used to search for additional
published documents. After screening the titles, abstracts, and conclusions, 216 documents
were selected for inclusion in this conceptual meta-analysis. Information was extracted
from these documents and analyzed by searching for relationships between the keywords
used and at least one of the watershed hydrological components (e.g., runoff, infiltration)
targeted in this conceptual meta-analysis relating to water availability. Finally, data were
managed using EndNote to ensure accurate referencing.

3. Origin of Precipitation

Numerical studies have illustrated that precipitation is recycled over a long distance
through trees’ evapotranspiration that drives winds and moist air transport [31,39,40]. Of
note, 90% of water evaporated every year precipitates back onto oceans, and the remaining
10% feeds the land branch of the water cycle [39]. The major sources of moisture have their
origins in large regions characterized by vertically integrated moisture flux divergence [41].
The North and South Atlantic sources are globally the first and second largest sources of
moisture for precipitation over the continents, respectively [39]. A numerical study detailed
and highlighted how moisture is formed under the effect of latent heat fluxes over the
ocean and subsequently transported in the atmosphere before reaching the soil surface
in the form of precipitation [39]. The effect of orography is a factor that is susceptible to
limiting the moisture from the ocean, and thus reducing the oceanic contribution in terms
of precipitation. Notably, there are other sources (e.g., land evaporation) of precipitation.
For example, a previous study pointed out that land evaporation provides 40% of terrestrial
precipitation, of which 57% is back on land in the form of precipitation [42]. It is worth
noting that terrestrial precipitation, evaporation recycling, and moisture exportation mainly
occur over the continents [43]. A decline in precipitation may be linked to deforestation [44].
Of note, moisture recycling is strongly associated with forest expansion. Thus, the larger
the expansion, the larger the moisture recycling. Water is precipitated on large regions
either by advection from the surrounding areas external to the region and evaporation, or
transpiration from the land surface of the region [45]. Notably, precipitation recycling in
forests significantly influences the isotopic composition of precipitation in northwestern
Amazonia [46].
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4. Conceptual Model of the Role of Trees in Watershed Hydrology
4.1. Soil Characteristics and Water Infiltration

Some trees reduce water on rocky substrates (saprolite, fractured bedrock), particularly
when the source is deep below ground, using around 49% for transpiration during dry
seasons and 28% during wet seasons [47]. Trees that grow in less favorable soil/subsoil
conditions consume deepwater reserves due to root adaptation to enhance drought tol-
erance [48]. The hydrologic response to drought can be either mitigated or exacerbated
by forest vegetation, depending mainly on the amount of water used by vegetation and
the response of the forest population [38]. In a restoration project, clayey soils recovered
infiltration faster than sandy soils [49,50]. This could occur because the aggregating forces
in sandy soils are weaker than those in clayey soils. Thus, high soil aggregation is one of
the characteristics that can explain and justify high infiltration, which can greatly depend
on the history of a targeted area.

Reforestation in the tropics and subtropics may improve water infiltration, depending
on land use, soil texture, and local climate [49]. This infiltration occurs as a result of the in-
fluence forests have on the hydraulic properties of the soil [51]. It is noted that reforestation
regulates water fluxes [52] through infiltration and ET [53] depending on soil properties,
which are influenced by a set of factors such as slope/topography [54–56], climate, parent
material, time, and living organisms [57]. Reducing soil organic matter content can ad-
versely affect root penetration, thus reducing water infiltration and compromising the role
of trees in mitigating erosion. Also, infiltration time would diminish independently of the
rainfall’s intensity and duration in a mechanically terraced area: the compaction reduces
soil infiltration and root penetration. Substrates controlled by regolith and rocks impose
drought conditions on oak forest stands [58]. Such soil reduces water infiltration, which
drives surface runoff, soil erosion, chemical transfer routes, water quality, and irrigation
uniformity [59]. Depending on the size of rock fragments and their aggregation to the soils,
they could favor infiltration or enhance soil loss [60].

4.2. Streamflow Versus Base Flow Partitioning

Base flow is correlated with forest extension and is crucial to maintain the water yield
of a watershed. There is a correlation between changes in forest ET and riparian water
table height and riparian area, which can increase ET loss and modulate streamflow [61].
Meanwhile, forest cover type and annual temperature affect watershed base flow [62]. A
decrease in total basal area of pinus trees can lead to an increase in groundwater recharge,
cumulative streamflow, and direct runoff [63,64]. These findings indicate that forest is
one of the key factors governing base flow in a watershed. Another study corroborates
these findings and outlines that high ET reduces stream flows [65]. In addition, changes
in forest cover during regeneration modify water flux partitioning [66]. Other variables,
including soil composition and climate conditions, may be among possible factors affecting
groundwater recharge and base flow. For example, a study explained that precipitation,
soil texture, and forest cover modulate groundwater recharge, while vegetation cover and
groundwater depth affect base flow [67]. Notably, there is a correlation between rainfall,
base flow, and forest area. Therefore, the greater the forest area the more stable are flow
conditions [68].

4.3. Evapotranspiration

ET is a key hydrological process, and the only mechanism that supplies water vapor
to the atmosphere [69]. It is noted that reforestation leads to higher ET and reduces
groundwater recharge and streamflow [51,70]. It is responsible for the coupling of the
land surface energy balance with the terrestrial and atmospheric water balances. The
relationships between trees, water availability, and water fluxes are linked to hydrologic
processes such as groundwater recharge (balance between ET and infiltration) and surface
runoff, as shown in Figures 1 and 2. Research conducted in Ghana and southern Burkina
Faso reported that ET consumed 72% of the annual precipitation [71]. In the Amazon Basin
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in Brazil and Peru, the forest canopy can induce significant moisture fluxes between land
and atmosphere, leading to a precipitation–ET loop [72].
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Figure 1. Conceptual models of water mass balance of a tree canopy delineated by the upper control
volume and the soil water of the underlying control volume of the porous media. In this figure, the
tree canopy refers to the upper layer of a standalone tree, formed by its leaves and branches.
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Figure 2. Relationship between trees and a part of vertical water fluxes and soil water availability,
illustrating differences between fast- and slow-growing forests. Fast-growing forests have a larger
impact on soil water availability due to their higher transpiration rates, especially when young.

4.4. Soil Water Availability

Soil characteristics such as fractured rock, fracture depth, soil texture, and parental rock
interact with vegetation to reduce soil water availability (SWA), which is used here to refer
to soil water storage, soil water recharge, rivers, basins, and watershed recharge (Figure 1).
Since SWA varies among different substrates and different types of soil (e.g., sand, silt, clay,
etc.) and land use land cover, it also influences water quality [73]. Loamy sand sites could
have SWA greater than sandy clay loam or sandy clay [74]. Interactions between trees and
soil water can be influenced by natural conditions (e.g., topography and slope) and parent
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material (i.e., geologic material). In such cases, trees can remove more water from the soil if
the parent material mostly comprises organic matter.

SWA is the sum of water in the unsaturated zone (vadose zone) and the saturated
zone (water table). Figure 1 represents conceptual models of water mass balances of a tree
canopy and underlying soil matrix. Forest cover is one of the crucial parameters in forest
management that alters the accumulation of water in the vadose and saturated zones of
the soil [75]. Therefore, modifying natural forests through deforestation may temporarily
modify watershed hydrology, directly impacting the annual hydrograph, and thus low and
peak flows, streamflow regulation, and flood occurrences. These responses may occur quite
rapidly. The tree canopy water mass balance is the difference between water inputs and
outputs (Equation (1)).

∆H2Otree canopy
∆t

= P + Rin + Abs − ETP − Rout − In f (1)

∆H2O .soil
∆t

= In f + Grin − Grout − Dp − Abs (2)

In Equations (1) and (2), P is precipitation, Rin runoff in, Abs absorption, ET evapotran-
spiration, Rout runoff out, Inf infiltration, Grin groundwater in, Grout groundwater out, Dp
deep groundwater percolation, ∆H2Otree canopy the water mass balance of a tree canopy
over time interval ∆t, and ∆H2Osoil SWA mass balance in the soil over time interval ∆t.

When water reaches a tree, a part is lost through ET, and another part infiltrates the
soil, and thus increases SWA. Soil water depletion is the difference between the sum of
water inputs (infiltration (Inf ) and groundwater in (Grin)) and water outputs (groundwater
out (Grout), deep groundwater percolation (Dp), and absorption (Abs)) (Equation (2)). Water
absorption by roots from the soil depends on tree type, climate, and soil physical properties.
Of note, SWA depends on vegetation cover, type, and understory composition. For example,
exotic or native trees with a higher ET rate deplete SWA and can compete for water with
other trees [76]. Thus, soil moisture is somehow associated with vegetation type. A
reduction in SWA and groundwater are also associated with albedo and latent heat flux as
they are among the mechanisms responsible for these changes [77].

Relationship Between Soil Characteristics and SWA

There is a link between soil properties and trees [78] that can cause a change in
SWA [79]. For example, trees can take up more water from loamy soil, soil with higher
organic matter content, and sandy soil than rocky soil [74]. This is possibly because tree
roots have more difficulty reaching groundwater beyond the vadose zone [80]. In such a
case, soil porosity should be considered because this property can give a false impression
that forests retain water. SWA varies from one site to another, depending on soil textures.
For example, capillary and hydraulic barriers enable layered soils to hold more water
(presence of perched water tables) than nonlayered ones [81]. Similarly, a previous study
documented that SWA varied in the following order: loamy sand > sandy loamy and sandy
clay sites [74].

The reduction of soil particle size and tree development lead to organic matter accu-
mulation in the topsoil, and thus increase the soil water storage [82]. Notably, biological
soil crusts play a paramount role in increasing soil porosity and micro-topography, thus
enhancing infiltration while increasing runoff by the secretion of hydrophobic compounds
as well as clogging of soil pores upon wetting [83]. Tree–soil–water availability (TSWA)
constitutes a complex system in which trees can increase water yield depending on soil
composition. In a landscape with a high elevation, moisture could be more favorable to
trees because they do not need to take up water from the deeper soil. This interaction
occurs due to the slope angle’s control on SWA. In the TSWA system, water yield can
be increased or decreased depending on the characteristics of trees, soil saturation, and
infiltration capacity.
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4.5. Combined Effects of Forests and Local Climate on SWA

There is a synergic effect between forests and local climate on SWA. In this regard,
researchers have reported that climate has considerable impacts on water balance com-
ponents (such as runoff, precipitation, and ET) [84–86] and forest cover [87,88]. Several
scientists have highlighted that climate and trees govern water availability in vegetated
areas [89,90], playing an essential role in regulating water security and supply [91,92], and
thus affect drainage and runoff characteristics [93]. Climate change variability is one of the
main factors affecting precipitation, hydrological processes, and the final runoff response.
There is an interrelationship between the water cycle and climate change. Notably, evap-
oration, precipitation, and precipitable water are key components of the water cycle that
influence global climate change [69]. Climate change negatively affects the water cycle,
freshwater availability, and water security [94–96].

In the future, interannual climate variability could be stronger in the Pacific and Indian
Oceans and weaker in the Atlantic, while interdecadal climate variability is expected to
increase and reduce warmth in polar and equatorial regions, respectively [97]. These
findings highlight that polar and equatorial regions are susceptible to receiving longer
precipitation periods than the Pacific and Indian Oceans. These findings may also indicate
that different climate change scenarios can lead to different patterns of change in the
terrestrial water cycle [98]. In watershed areas covered by exotic tree plantations in south-
central Chile, increasing and decreasing trends in evaporation and percolation rates were
registered because of climate change, respectively [99]. However, a variability in responses
may exist, depending on environmental and tree characteristics. For example, large ET is
more predominant at high altitudes in the north [100]. It is noted that any change in forest
structure can affect climate and vice versa [44].

4.6. Relationship Between Topographic Factors and SWA

Altitude and the landscape slope can determine plants’ behavior, modifying SWA and
increasing relative humidity through the ET of unused water in (turgescence) and on (inter-
cepted) leaves. A previous study reported that topographic position and slopes interact
together to form a thermal gradient and water stress for trees across landscapes [101]. At
high altitudes, vegetation takes up water from deeper unsaturated soils, developing signifi-
cant variability in water consumption strategies [102]. Other researchers have underscored
that landscape topography influences tree growth [103,104] and affects mountain forests
through its effects on radiation and moisture [105]. Similarly, another study indicates that
soil variation and water loss are important factors of the topographic gradient [106]. Thus,
in certain cases, the slope gradient can reduce runoff, reduce soil moisture, and enhance
ET, which may be associated with biophysical changes (for instance, deeper roots). This
probably reduces the soil water stored [107,108], which in turn influences infiltration and
ET [109], subsurface runoff paths, and erosional processes [110]. The largest average soil
moisture values occur on topography with a flat surface configuration [111]. However,
the drainage system could reduce the soil moisture in a determined area. An increase in
water table depth may lead to a decrease in the role of the topography of the land surface
and the spatial distribution of water when the water table is deep and close to the bedrock
surface [112].

5. Relationships Between Forests and Runoff and Soil Erosion Control

Runoff is another important hydrological process and has various responses to forests
at different scales (e.g., large, medium, and small scales). Certain vegetation types are
more appropriate for reducing erosion than other trees. Forest, pepper, bush, and inter-
cropping are types of vegetation that can minimize erosion [113]. Afforestation reduces
runoff and flood peak discharge and controls soil erosion due to increased forest cover,
canopy structure, and density to protect the soil from direct rainstorms. Afforestation of
grasslands and shrublands reduced the annual runoff by an average of 44% (±3%) and 31%
(±2%), respectively [9]. For example, a study conducted in the US revealed an increase
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in average annual runoff by 10–40 mm in areas where the forest cover of a watershed
was decreased by 10% [114]. Notably, reforestation can have both positive (decreased
wet season runoff) and negative (increased surface runoff) impacts on runoff [115]. The
role of forests in reducing soil loss can vary depending on topography. A study outlined
that soil loss varied according to the types of slope, as soil loss from convex slopes was
1.5 times greater than that from concave and uniform slopes [116]. In addition, forest
cover can reduce soil degradation [117], depending on climatic factors and rainfall regimes.
Along this line of reasoning, another study pointed out that runoff and soil loss were
negatively correlated with slope value, organic matter content, tree cover percentage, and
soil structural stability [60]. Recent research has indicated that fine roots of apple trees
reduce SWA [118]. This reduction may depend on the length and shape of the root system.
From a holistic viewpoint, our conceptual meta-analysis corroborates the literature on the
relationship between trees, runoff, and soil erosion [119] by demonstrating that trees use
their canopy and root systems to reduce erosion. However, when performing a careful
analysis, we comprehend that this reduction depends on specific conditions (e.g., tree
density and local climate) and environmental factors such as slope, length of slope, and
soil structural characteristics.

5.1. Runoff Responses to Forests at Multiple Scales

Runoff response can be influenced by various factors, including forest type, soil prop-
erties, and watershed scales. The annual runoff response to land cover change may depend
on forest type and the size of a watershed. There is a linear correlation between the runoff
coefficient and the watershed scale, where runoff coefficients may reduce as watershed
areas increase. Runoff coefficients depend on both the shape and size of a watershed [120].
Moreover, the type of land cover is a crucial factor affecting the hydrological response
of a watershed, and the runoff coefficient-to-peak flow relationship varies from year to
year [121].

5.2. Factors Affecting Surface Runoff

Surface runoff, or overland flow, is generated within a watershed and can be explained
by one of two scenarios: (i) the precipitation rate exceeds the infiltration capacity of the
soil column, or (ii) the water table reaches the soil surface [18,122]. The first process, called
“Hortonian”, occurs under high rainfall intensities [123], while the second mechanism,
called “Dunne”, happens under low precipitation intensity with shallow water tables [124].
Surface runoff can be influenced by a set of factors, such as vertical vegetation structure, veg-
etation distribution pattern, and plant diversity [125]. Vegetation can reduce runoff [126],
intercept rainfall [127], and drain stormwater [128].

Plantation type and age can impact runoff and hydrologic processes. For example,
mature plantations rather than young plantations can have a direct impact on soil erosion
and runoff [129]. Another study showed that afforestation with pinus led to a higher runoff
reduction than afforestation with eucalyptus in high-rainfall areas [130]. Converting natural
forests to plantation forests reduces the total amount of runoff [131]. Along the same line
of reasoning, they did not recommend afforestation in countries with little precipitation
because mature forests reduce the amount of runoff [131]. However, old trees may not
contribute much to erosion control. Contrary to young trees, unused water in mature
forests evaporates and then contributes to air moisture, which can lead to precipitation,
and thus replenish groundwater. Other factors, such as changes in forest cover, also affect
total runoff and its components (e.g., surface runoff, interflow, groundwater flow) within a
watershed [62].

6. Effect of Forests on Watershed Hydrology at Various Spatial Scales

The effect of forests on watershed hydrology varies in time and space. For example, at a
large spatial scale, forest restoration can enhance precipitation recycling due to atmospheric
drawdown [7,132]. Large-scale deforestation can have a detrimental effect on watershed
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hydrology. A study documented that the average terrestrial water storage and runoff
dynamics in the Amazon Forest are approximately ten times more significant in deforested
areas than in forested areas [133]. On the one hand, studies have pointed out that in some
regions of the world, large-scale forest restoration can result in higher water yields [134,135],
and thus intensify watershed hydrology [136]. On the other hand, Filoso et al. underscored
that it does not necessarily increase water yields [137]. These findings suggest that the
interaction between forests and hydrological processes varies in time and space [138].
At smaller scale, few insights were found in the literature about the interaction between
reforestation/afforestation and precipitation, and thus it is difficult to postulate that small-
scale forest expansions can generate enough moisture recycling to increase rainfall. In the
same way, a study carried out in Espírito Santo, southeastern Brazil, revealed a negative
relationship between forest cover and watersheds with low annual rainfall, showing that
the average minimum streamflow was more sensitive in these situations, while areas with
higher precipitation exhibited the opposite effect [139].

7. Relationships Between Tree Species and SWA
7.1. Fast-Growing/Commercial Trees

Certain fast-growing trees, such as Eucalyptus globulus and E. grandis urophylla, Larix
principis-rupprechtii, and Pinus radiata, reduce water availability in the soil [12,131,140–149]
and soil erosion while increasing infiltration and ET [150], as shown in Figure 2b. This
occurs during both their growth stage and their adult stage. Industrial eucalyptus overuses
stored water when planted in sandy soils [151], and their roots can reach a water table
depth of 12 m after only two years [152]. In such cases, commercial trees function as natural
drains, lowering the water table and enhancing local evapotranspiration, a practice known
as biodrainage.

A recent study showed that multiple decades of forest operation reduced deep soil
moisture reservoirs, illustrating that when Radiata pinus trees were replaced by eucalyptus,
subsurface supply to streamflow substantially decreased under dry-period conditions [153].
Similarly, Pinus halepensis increases water use [154], and thus reduces the amount of mois-
ture stored in the soil [155]. Admittedly, these fast-growing tree (monocultures trees)
plantations generally transpire more than slow-growing forests due to their high intercep-
tion loss [156].

Fast-growing forests have growth and ET rates higher than native forests (Figure 2a).
During their growth, they reduce SWA through their root systems, which can reach the
groundwater level in a short period. This finding indicates that forest types have a crucial
role in water yield because of their different ET magnitudes [157]. This finding may also
show that native species are more adapted to water stress than non-native trees [137].
The negative impact of fast-growing forests on water yield only lasts for a short time
because they are generally cut at their youngest age for commercial purposes. Fast-growing
forests are unsuitable for afforestation in areas with medium precipitation and brackish
groundwater [158], and their photosynthetic rates and stomatal conductance are higher
than those of slow-growing forests [159]. This indicates a relationship between the type
and age of trees and SWA. Research findings in South Africa indicated that over a 5-year
period of afforestation, pinus reduced the annual streamflow yield by 44 mm/a for each
10% of watershed planted when trees aged between 10 and 20 years [16]. Similarly, over a
3-year period, eucalyptus planting reduced the annual peak flow by 48 mm when 10% of a
watershed was afforested [16]. Another study reported that eucalyptus and pinus reduced
runoff by 75% and 40% on average, respectively [9].

7.2. Slow-Growing Forests

In contrast to fast-growing forests, slow-growing forests consume less water, and
therefore have fewer impacts on SWA (Figure 2a,b). This finding indicates that some species
are more tolerant to droughts than others. Trees can suppress runoff movement [160], and
thus positively and significantly affect the water yield [161]. For example, studies have
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concluded that commercial forests, trees and tree densities can enhance infiltration, increase
groundwater, and are considered prime regulators within the water cycle [160–162]. As a
result, slow-growing forests are suitable for afforestation projects since they have fewer
effects on SWA regarding water consumption. Similarly, a study by Younger et al. [163]
in rural basins of the southeastern US found that evergreen forest cover was positively
associated with ET, whereas deciduous forest cover exhibited a negative relationship. These
findings show the complexity existing between forest cover and watershed hydrology.

7.3. Effect of Stand Density on SWA

Research results in West Africa reported that forest density maximized groundwater
recharge [162], which could also be affected by vegetation community types and phenol-
ogy [164]. Changes in forest density can alter the hydrologic processes at the watershed
scale [38]. Similarly, another study reported that SWA increased with an increase in stand
density [165]. However, this may depend on the tree species, stand age, and climate. For
example, research findings showed that the plantation of high-density Pinus sylvestris signif-
icantly reduced the SWA [166]. This finding corroborates the results of another study that
suggests reducing the density of Quercus ilex in semi-arid woodlands to prevent excessive
water deficit [167]. The reduction in SWA occurred due to tree transpiration [168]. As such,
a reduction in stand density may lead to an increase in SWA in native forest areas [169].
Admittedly, competition for resources among trees can also reduce SWA. For example, the
results of one study underscored that an increase in understory density led to a reduction
in SWA [170]. These findings align with a study conducted in Slovakia that highlighted
that this capacity depends on forest cover, stand density and vertical structure, tree species
composition, and spatial distribution of forests within watersheds [171]. These findings are
consistent with a study conducted in Renqiu City, Hebei Province, China [172]. Likewise,
forest type can influence the amount water in a watershed.

7.4. Effect of Forest Age on SWA

Forests/trees play several roles in increasing (through infiltration) and decreasing
(via evaporation) SWA depending on several factors, including forest age. A relationship
between SWA and forest age involves time and space. It was found in the literature that
water infiltration increases with forest age [166,173]. Notably, two temporal scenarios can
be presented regarding the influence of tree age on SWA, as follows.

7.4.1. Young/Juvenile Forest Versus SWA

The first scenario is that during their growth, young trees accumulate a large quantity
of biomass, grow faster, consume much water, have high ET rates, and reduce the amount
of SWA or existing water in a watershed (Figure 2c). Young pinus have ET rates greater than
old pinus, and thus may reduce the streamflow of a given watershed [174]. As trees pass
through multiple phenological phases before reaching maturity, from the juvenile phase to
the adult phase, the amount of water they use, and associated ET rates, may vary across
stages of growth (Figure 2). ET rates decrease with forest age [132]. Trees can take up large
amounts of soil water and evaporate more water under various hydrogeologic conditions.
At younger ages, they reduce the amount of SWA. Long-term fluctuations in pioneer forest
areas and age structure decrease freshwater in riparian forests [175]. Regrowth stands have
a higher transpiration rate than old stands [176,177] and consume an amount of water
approximately twice as much as old-growth stands [178]. This suggests that stand age in
plantations is a crucial factor which could be managed to increase water yield since juvenile
trees affect water yield more negatively than old trees.

7.4.2. Mature and Old Forests Versus SWA

The second scenario encompasses mature trees, which consume less water and can
evaporate less than younger trees (Figure 2d). This statement is supported by research
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findings in South Africa, which pointed out that pinus and eucalyptus plantations of 30 and
15 years of age, respectively, appeared to return streamflow to pre-afforestation levels [16].

A previous study highlighted that annual water use had decreased from 679 to 296 mm
for 50-year-old and 230-year-old stands, respectively [179]. These findings align with a
study that highlighted that regrowing hardwood forests might take as long as 8–25 years
before recovering the annual water use of a mature forest [180]. Mature and old-growth
forests have moderate ET and consistent water yield, while managed forest plantations
provide low water yield, particularly during the dry season [181], and thus affect water flow
regulation [182]. This finding corroborates other studies conducted in the Tropical Atlantic
Forest region of Brazil and in South Africa in another study [183]. Mature eucalyptus and
pinus plantation ages positively correlate with water availability [16,184]. Undoubtedly, for-
est age in forested watersheds is correlated with the regional mean annual streamflow [185],
which is one of the factors that increases ET partitioning [186,187].

The transpiration rate of trees varies in the following order: young forests > mature
forests > old forests (Figure 2). Likewise, there is a relationship between the height of
a tree and water stress on a watershed scale. For example, tall trees have very high
evapotranspiration rates and therefore experience great water stress [188]. The relationship
between forest age and SWA follows the previous order, indicating that young forests
consume more water than mature and old forests (Figure 2e). In such a case, plants
can passively use their roots to enable water redistribution in the soil profile [18]. The
effect of forest age on SWA depends on other factors, including the types of trees and
climatic conditions. Of note, forest type, species, age, environmental conditions, and forest
management practices are among the factors enabling water-use efficiency [189].

7.5. Water-Related Ecosystem Services and the Role of Forests

The relationship between water-related ecosystem services and forest cover is crucial
for ensuring water supply and maintaining watershed health. It is noted that runoff gener-
ation mechanisms can alter water quality, particularly in agricultural lands where runoff
may contain pesticides and affect the soil properties of the downstream buffer zones [190].
In such cases, soil properties may be influenced by both tree species and dominant pedo-
genetic processes [191]. Dense vegetation represents a prominent alternative for reducing
colloidal contaminants in surface runoff [192] and promotes water conservation [193]. The
concentration and total amount of nutrients (e.g., phosphorous and nitrogen) transported
in runoff can be affected by soil type [194,195] and thus alter water quality. The move-
ment of nutrients, SWA, and soil production are dependent on and regulated by bedrock
weathering [196]. In such cases, forests can greatly contribute to ecosystem services and
natural resource management, including water. Of note, some trees have continuous and
deep roots to absorb and recover nutrients and thus mitigate the deterioration of water
quality. Therefore, trees can be used for phytoremediation techniques to remove trace
metals from the soil [197]. Researchers have argued that cacao trees remove trace metals of
cadmium from the soil [197–199] and reduce soil degradation problems [200,201]. Of note,
the conversion of forest soils into pastures and row crops may cause deterioration in the
quality of water resources [202].

The role of forests in improving water quality is well documented through studies
carried out around the world. For example, the results of a study conducted in the south-
eastern U.S. reported that protecting forest cover can strengthen the resilience of drinking
water resources and significantly decrease total nitrogen, total phosphorus, and suspended
sediment in watersheds [203]. Similarly, a study conducted in Greece assessed the ecosys-
tem services provided by woodlands and forests in a watershed, revealing higher values
for soil conservation and water retention services [204]. Brogna et al. [205] carried out
a numerical study in Wallonia, in the southeast of Belgium, and reported that one-third
of water quality variability is explained by forest cover in the watershed. These findings
indicate forest cover can prevent eutrophication in a watershed. In other words, the health
of a watershed is somehow associated with forest cover. However, a minimum of forest
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cover in a watershed is required to ensure the sustainability of ecosystem services. For
example, a study conducted in Jambi Province, Indonesia, suggested that a minimum of
30% forest cover and a maximum of 40% plantation cover in a watershed are necessary to
guarantee water-related ecosystem services [64].

8. The Links Between Forest Cover and Sustainable Development Goals

Forests are habitats and shelters for more than 80% of terrestrial species and therefore
are essential in allowing the possibility of life on land [206], and they can substantially
contribute to mitigating some of the problems that humanity is currently facing, including
climate change, hunger, and loss of biodiversity. For example, forest preservation and
plantation align with the sustainable development goals (SDGs) [207], and can help promote
environmental sustainability and serve as a promising policy to achieve several of their
targets. For example, they can help achieve SDG 1 (no poverty), SDG 2 (zero hunger), SDG
6 (clean water), SDG 10 (reduced inequalities), SDG 13 (climate action), and SDG 15 (life on
land) [208]. Forests reduce the costs associated with ecosystem services, provide homes for
many people and habitats for several animal species, reduce global warming by producing
oxygen and renewing the atmosphere, store CO2 in the soil, allow nutrient recycling,
and provide food to animals and people, among other benefits [209]. This indicates that
forest concessions support the implementation of sustainable use and management of
ecosystems’ goods, enhancement of socioeconomic development, and increase national
economy through employment creation [210,211]. Preserving forest areas is a way to
promote environmental sustainability by reducing CO2 emissions into the atmosphere [212],
which are expected to increase global temperature by 1.5 ◦C by 2050 [213]. Likewise,
Mondal et al. [214] have suggested preserving forest areas to achieve SDG target 15.1,
which suggests quantifying “forest area as a proportion of total land area”. A numerical study
highlighted that global forests absorbed around 3.56 billion tons of CO2 between 1990 and
2019, which corresponds to nearly half of the carbon emissions caused by the use of fossil
fuels during the same period [215]. Therefore, forest preservation and plantation are among
the most promising approaches that can substantially contribute to achieving the goal of
net-zero carbon emissions, thus reversing the current trends of global warming. In the
same way, another study stressed that the forest sector enables climate change mitigation
and strengthens sustainability initiatives [216].

9. Conclusions and Future Research

Forests can influence the amount of water available at some stages of the hydrological
cycle. In this conceptual meta-analysis, the roles of forests were addressed while consid-
ering several factors, such as stand density, forest type, tree species, stand age, and soil
composition. This conceptual meta-analysis also analyzed the influence of forest cover
on hydrological processes. Overall, it was found that afforestation could positively affect
soil erosion control on degraded soils. Nevertheless, this impact can change due to tree
litter, forming a layer more permeable to infiltration. The findings showed that trees and
watershed hydrology have complex interactions, where the effects could either be positive
or negative on SWA, watershed yield, and groundwater recharge. The effects of forests
on watershed hydrology mainly depend on the type of aquifer and other characteristics
such as local or regional climate, canopy type, soil composition, tree density, and land-
scape topography. The types of trees to be planted should be taken into consideration,
as fast-growing trees (e.g., eucalyptus, and pinus) reduce SWA. Based on the reviewed
studies, it is evident that native forest species contribute more to SWA and groundwater
recharge due to their lower evapotranspiration (ET) rates compared to fast-growing species.
Similarly, the reviewed studies indicate that reforestation with native species can more
effectively reduce soil erosion than commercial tree species plantations. The strength of this
conceptual meta-analysis lies in the fact that it encompasses a range of evidence about the
interaction between trees and watershed hydrology, as well as how different environmental
and geological factors can affect this complex relationship. The novelty of this study lies in
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highlighting that trees’ effectiveness in increasing water availability occurs with the use of
some specific species used for afforestation in large-scale watersheds, where trees increase
groundwater recharge. Afforestation with proper trees can help increase SWA. Admittedly,
less dense forests are more likely to increase the different components of the water cycle
than denser forests. Also, trees can be used as a phytoremediation technique to reduce
transport of chemical elements in surface runoff and thus limit soil degradation and water
contamination. Regarding the impacts of trees on runoff, they could reduce it, depending
on the type of forest cover (e.g., plantation versus native forests), stand age, density, and
species. One of the limitations of this conceptual meta-analysis is that it did not explore
the relationship between tree roots and SWA in depth. Further research is necessary to
identify other factors (such as shapes and directions of root systems) that may impact the
relationship between trees and other components of watershed hydrology. In conclusion,
our conceptual model demonstrates that native forests play a crucial role in natural re-
sources management. This study may prove to be helpful to decision-makers in choosing
the best alternative for afforestation strategies in some specific areas. Moreover, the results
of this study can provide stakeholders and decision-makers with a sustainable alternative
to help mitigate the climate crisis in the ongoing race toward zero carbon emissions.
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