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Abstract: The increasing potential of infrastructure disruptions calls for high-quality infrastructure
models to be used in resilience analysis and decision making. Unfortunately, many utilities and
communities do not have access to accurate and detailed models due to a lack of data and resources.
Furthermore, security restrictions on sharing infrastructure models present roadblocks to research,
analysis, and decision making. Recent advances in the development of synthetic water distribution
models provide a potential solution to this problem. There is an opportunity to improve these
methods by leveraging incomplete pipe datasets to aid synthetic network generation. To address
this gap, we developed a methodology for synthetic network generation that incorporates partial
pipe data using a modification of the minimum cost flow algorithm for network generation and
pipe sizing. This methodology demonstrates how partial pipe data can be leveraged to improve
site-specific synthetic network generation. For the study area of Mayagüez, Puerto Rico, a synthetic
model generated using 50% of real pipe data matches the pressure of the validation system with an
average error of 23.5 m of head, which improves upon the average error of 31.6 m of head produced
by a synthetic model generated using no data of the real pipes. Additionally, synthetic networks
are shown to replicate the pressure response under a disruption scenario of the validation network,
suggesting potential use in resilience analysis.

Keywords: water distribution systems; synthetic infrastructure; resilience analysis

1. Introduction

Water distribution systems are a crucial aspect of urban infrastructure, delivering water
to consumers through a complex network of water treatment plants, pipes, pumps, tanks,
and valves. Numerical models of these systems are used in a wide range of applications,
including network design [1,2], real-time control [3,4], resilience analysis [5–7], and risk
assessment [8,9]. The development of accurate water distribution system models remains a
challenge due to sparse and inaccurate utility asset data [10,11] and the lack of standard
methods to build models from diverse data. Furthermore, while many large water utilities
have invested in up-to-date and highly detailed water distribution system models, many
small- to medium-sized water utilities do not build and maintain accurate models. Access
to infrastructure models is further restricted due to data sharing limitations.

Advances in synthetic infrastructure model development provides a path toward
developing accurate, site-specific infrastructure models from limited data. Applications
include transmission and distribution power grids [12,13], drinking water distribution
systems [10,14,15], wastewater distribution systems [16], and interdependent infrastruc-
ture [11]. Roadways are commonly used as a proxy network structure for synthetic infras-
tructure models [10,17,18]. When using road networks as a proxy for water systems, several
key considerations need to be taken into account. For example, water utility right-of-ways
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do not always follow roads, road intersections define connectivity that may not be present
in water system, and water systems can contain multiple pipes that run along a single road.
These important differences between road and water systems could have significant impact
on the hydraulics of a synthetic model.

Given the challenges of building water distribution system models from imperfect data,
the use of synthetic network generation to create pipe networks for water distribution models
is an active area of research. DynaViBe used structural urban data and graph theory to
generate synthetic case studies [14]. The software was extended to use additional geographic
information system (GIS) data such as population and housing density [19]. Möderl et al. [20]
built an ensemble of conceptual synthetic networks intended to represent a wide range of
characteristics that could be found in real-life water distribution systems. Using water and
sewer pipes from an alpine city, Mair et al. [21] used network correlation/similarity analysis
to determine that 50% percent of the road network length correlated with 80–85% of the water
and sewer pipes; however, a correlation between street type and pipe diameter was not found.
Using the same alpine city, Mair et al. [22] illustrated that synthetic water distribution system
models achieve high accuracy in pressure using only 30% of large-diameter pipes. Paez and
Filion [23] created water distribution system models of five real cities (one in Europe, two
in North America, and one in Asia). The real and synthetic networks were compared using
a wide range of global topographic and reliability related metrics, including link density,
average node degree, meshedness coefficient, the density of articulation points and bridges,
pressure, and a modified resilience index. Ahmad et al. [10] created synthetic models of
Tempe and the greater Phoenix area. Methods were validated using a benchmark model
of North Marin, California (EPANET Net3), to compare the distribution of pipe diameters.
Momeni et al. [24] used a benchmark model (Anytown) to generate synthetic networks and
apply a multiobjective genetic algorithm to optimize network attributes and correct unusual
network structures that can arise with synthetic methods. Approaches to synthetic network
generation using linear programming were taken by Rehm et al. [25] in Cologne, Germany,
and Zaucher et al. [18] in Piedmont, California.

The literature for synthetic network generation has focused on the design and planning
of water distribution; however, the use of synthetic networks to build proxy models for deci-
sion making during disruption scenarios (i.e., resilience analysis) is an underdeveloped area
of research. While Nikolopoulos et al. [26] quantified uncertainty in resilience by applying
a stress testing framework to a synthetic network, the focus was on the demonstration of
the framework rather than an evaluation of the suitability of synthetic networks as proxies
for real systems. There are two research gaps that this paper seeks to address. The first
gap is the underutilization of sparse datasets in synthetic network generation. In situations
where only incomplete, low-quality pipe datasets are available, this would provide a way
to build plausible water distribution system models despite data limitations. Leveraging an
incomplete pipe dataset in conjunction with a synthetic network generation method could
produce more realistic models. One notable exception is the work of Mair et al. [22], who
explored the combination of a road network with subsets of real pipe data for synthetic
network generation. However, the methodology was agnostic to whether or not network
edges were associated with real pipe data. The second gap is the need for the additional
verification of synthetic models for decision making during disruptive scenarios (e.g., pipe
breaks, water treatment plant outage). Previous work typically presented high-level statis-
tics on pressure and pipe diameters [19,20] and global network statistics [23]. However, in
a water distribution system, even if the pipe diameter distribution, average pressure, and
general network structure are similar, certain heterogeneous aspects of the real system (e.g.,
pressure distribution and response to disruption) may not necessarily be replicated. An
example of synthetic model evaluation focused on spatial distributions of pressure can be
found in Mair et al.’s study [22]; they used performance indices to compare nodal pres-
sures of synthetic models to those of a real model. Evaluating the reproduction of model
pressure is particularly important when using a synthetic model for resilience analysis,
where it is necessary to accurately capture the spatial relationship between damage and
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impact. Furthermore, it is valuable to understand how property-based (e.g., diameters,
topology) measures of model similarity correlate with measures of model similarity based
on hydraulic simulation and response to disruptive scenarios [27].

This work focuses on the use of synthetic network generation methods to build water
distribution system models in Puerto Rico, where up-to-date models are in short supply
and water systems are subject to a wide range of disruptive events. The city of Mayagüez
was chosen as the case study, where a model was built from publicly available infrastructure
data for Puerto Rico as part of this work [28]. This infrastructure dataset has also been
used in other work for both water and power system analyses [29–31]. The Puerto Rico
database includes infrastructure data for drinking water, wastewater, and power across
the island. While these data are incomplete and include inaccuracies, the data quality in
Mayagüez is high enough to build a water distribution system model for the purpose of
validation (referred to as the “validation” model in this paper). In many of the other cities
and rural areas of Puerto Rico, available water infrastructure data are sparse. Pipe data can
be fragmented, and entire areas can be missing data entirely. Even when a pipe location is
known, the diameter is not always recorded in the dataset. Given the incomplete nature
of the data in these regions, it is difficult to create models of water distribution systems
exclusively using data. While fully synthetic models could be used in place of models built
from data, they may fail to capture important features of the system. Taking a combined
approach to model development using both synthetic methods and incomplete pipe data
to generate the pipe network could result in more accurate models.

The goal of this work was to use incomplete data to generate models that more closely
represent the real system during normal operations and disruptive events. We accomplish
this by pursing the following objectives: (1) develop a synthetic network generation tech-
nique that can incorporate incomplete pipe datasets for the development of more realistic
models and (2) provide a detailed comparison between synthetic models generated with
varied amounts of pipe data and the validation model focused on topological metrics, pipe
diameters, spatial differences in pressure, and pressure response to a disruptive scenario.
This work is organized as follows: Section 2 includes descriptions of the data and methods
for the development of the validation model, the generation of synthetic models, and
the suite of metrics and analyses used to compare the synthetic and validation models.
Section 3 presents the results of applying the metrics and analyses to the generated syn-
thetic models and the validation model. Section 4 includes a discussion of the results, the
limitations of the experiment, and ideas for future work. Section 5 is a brief summary of
this paper and key takeaways.

2. Methods

The following section includes details on the development of a validation model
for the Mayagüez water service area, the methodology used to generate data-informed
synthetic models, and the suite of metrics that were used to compare the validation model
to the synthetic models. The analysis was carried out using several open source Python
packages, including the Water Network Tool for Resilience (WNTR) [5] to build and run
hydraulic simulations, GeoPandas [32] to analyze geospatial data, and OSMNX [33] to
obtain the road network from OpenStreetMaps [34].

Hydraulic analyses were ran using the EPANET simulator through the Python inter-
face provided by WNTR. Steady-state simulations were used to compare pressure across
the validation and synthetic models as described in Section 2.3.3. Extended-period steady-
state simulations were used to simulate pressure for the disruption scenario described
in Section 3.4. In both situations, pressure-dependent demand was used to ensure that
demand at each junction is a function of pressure. Minimum pressure was set to 0 m,
and required pressure was set to 20 m. Pressure in meters assumes a fluid density of
1000 kg/m3 to convert pressure in Pa to meters of water pressure.
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2.1. Study Area

The water distribution system in Mayagüez, Puerto Rico, was the central object of the
analysis. The focus on Puerto Rico was motivated by the lack of water infrastructure models
across the island, the complexity of the water systems, and the need for resilience analyses
that can consider vulnerabilities like hurricanes, power outages, and component failure
from aging infrastructure. In addition to advancing the available techniques for synthetic
water infrastructure, focusing on a case study in Puerto Rico supports the modeling needs
of the island.

Validation Model Development

The government of Puerto Rico hosts a publicly available database that includes infras-
tructure data that can be used to build models. For much of the island, the completeness
and quality of these datasets are insufficient for the development of detailed water distri-
bution system models. However, the data for Mayagüez are of high enough quality for
detailed model development. It is important to keep in mind that the goal for this work
was not to create a fully calibrated water utility model from the data. Rather, it was to
create a model that includes site-specific heterogeneous details of the real system based
on available data and that can be used to quantify how well synthetic network generation
methods capture model behavior. The data and assumptions that were used to build the
model are described in Appendix A and summarized in the following paragraphs.

The Puerto Rico infrastructure database is available at https://gis.pr.gov/ (accessed
on 1 October 2022) [28]. The data include water, road, and power infrastructure assets across
the island and have been used in several publications [29–31]. Data on water assets include
the location, geometry, and attributes of water treatment plants, pipes, pumps, tanks, and
valves stored in GIS-compatible files. While the data do not include operational data (e.g.,
valve and pump controls), the raw data can be used to build fairly complete models of
select water service areas. Simple data quality control analysis was performed to identify
regions that have adequate data for model development. This included the identification of
missing assets (e.g., populated areas that have no pipes) and missing attributes (e.g., pipe
data that had no diameter or roughness values). The quality control analysis identified the
Mayagüez Water Service Area as a high-quality candidate for validation water distribution
system model development. This water service area contained both highly populated areas
with a dense grid pipe layout and less populated areas with branching pipelines.

The water distribution network model was built in WNTR using a combination of raw
data and assumptions regarding connectivity and other model attributes. Pipe diameter,
roughness, and length were obtained from the database. Pipe connectivity was determined
based on the proximity between pipe end points. A junction was added at each pipe end
point, and elevation was assigned using United States Geological Survey Digital Elevation
Model (DEM) data [35]. Junction demands were estimated using the total water treatment
capacity and data on nearby building footprints. The elevation of each reservoir (water
treatment plants) was assigned using the DEM data. Water pressure leaving the reservoir
was set to 70 m. Tank height and diameter were obtained from the database. Some tank
diameters were corrected using estimates from aerial photography. Tank elevations were
assigned using the DEM data. Pumps were oriented such that they increase pressure
as water travels away from the nearest reservoir. The flow capacity of the pumps was
determined from the data, and headgain was set to 75 m. Since the model was intended to
be used in steady-state simulations for this analysis, no demand patterns were added to
the model. Given that the tank levels were unknown, the model was simulated for 48 h
in an extended period steady-state simulation, and steady-state tank levels were assigned
based on the time when the model system average pressure stabilized. While valve data
existed, they were not added to the model due to uncertainty in their operations. The
water distribution system in Mayagüez was known to have numerous pressure-reducing
valves. Modeled pressures were generally higher than expected because those valves were
not added to the model. Pertinent model attributes and the percentage of data that were

https://gis.pr.gov/
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available for each asset are also listed in Appendix A. The resulting water distribution
system model is shown in Figure 1. The Mayagüez model includes 7496 pipes, 6287
junctions, 124 tanks, 89 pumps, and 6 reservoirs. The average system pressure from a
steady-state simulation was 75 m.

Figure 1. Pipe, reservoir, tank, and pump datasets in Mayagüez. Service area shown in transparent gray.

2.2. Synthetic Network Generation

The method for generating synthetic water distribution systems was built on previous
work. In particular, the use of the minimum cost flow algorithm for pipe diameters came
from Ahmad et al. [10], and the method of using a connectivity index for adding loops to
a network came from Mair et al. [17]. Similar to the approaches of both papers, the road
network covering the water service area was used as a candidate network structure, a subset
of which was selected to form the synthetic water network. However, the method presented
here differs from these methods through the use of a minimum cost flow to determine
both a minimal spanning tree as well as the pipe diameters of the edges. Additionally, a
modification of the minimum cost flow optimization problem (MMCF) allowed for the
incorporation of real pipe data (location and diameters) to drive network generation toward
the real system. Once the minimal water network was generated using the MMCF, network
redundancy was added using the connectivity index from Mair et al. [17], and the rest of
the water model was built by adding real reservoirs, tanks, and pumps from the utility
dataset to the synthetic network via geospatial operations.

The following subsections further detail the methodology, including the data require-
ments and sources, steps involved in synthetic network generation, and a description of
the synthetic networks generated to produce comparisons with the validation model.

2.2.1. Data Requirements and Sources

The minimum data requirements to produce a water distribution system model using
this method were the service area boundary, road network, the location and magnitude of
demand points, the location and capacity supplied from each reservoir, and elevation data
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within the service area. In situations where the location and magnitude of demand were
unknown (i.e., when there were no utility data or validation model), demands could be
approximated using the building footprint.

Data sources used in this experiment include OpenStreetMaps [34] for road data, the
Humanitarian Data Exchange [36] for building data, USGS [35] for elevation data, and the
Puerto Rico infrastructure database [28] for data related to the Mayagüez water distribution
system (i.e., service area, demands, and reservoirs).

2.2.2. Initialization

The service area boundary was approximated by creating a polygon around the water
distribution assets within the Mayagüez Water Service Area. Road data within the service
area were obtained and converted to a topological network using the Python package
OSMNX [33].

Next, the water demand and supply were attached to the nodes of the road network.
In this case, demand locations and magnitude were approximated from building footprints,
using the same methods as those used to develop the validation model. The demand data
were attached to the road network through a basic geospatial data processing technique
known as “snapping”, which determines the nearest road node for each demand. If multiple
demands attach to the same road node, their summed demand was assigned to the node.

Water treatment plants were added as new nodes and connected to the nearest node
in the road network. To ensure adequate connectivity between reservoirs and surrounding
roadways, additional roads were added to the road network in each cardinal direction
(north, south, east, west) within a 1500 m radius surrounding the facility. These additional
roadways were potential pathways that would only be assigned flow if needed by the
minimum cost flow problem. This approach generalized previous reservoir attachment
methods, which assume that reservoirs have a single connection to the network [10,17].
This assumption does not hold true in Mayagüez, and negatively impacts synthetic model
performance. A supply value for the MMCF was assigned to each reservoir using the total
capacity of the reservoir.

2.2.3. Incorporation of Pipe Data

In order to leverage the capabilities of the MMCF, there must be a source of pipe
diameter assignments to road edges. There were multiple options for where the diameters
can come from. For example, known pipe diameters and locations could come from a
subject matter expert (e.g., utility engineer), numerical analysis, machine learning, or sparse
datasets.

In this analysis, a sparse dataset of pipe diameters was sourced from the utility dataset.
The known pipe diameters were transferred from the pipe network to the road segments
via a geospatial data processing technique called spatial association. The objective of spatial
association was to accurately assign pipe diameters from a dataset to road segments based
on nearby pipes. If no pipes were associated with a road, the assigned diameter was 0, and
if there was at least one pipe associated to a road the assigned diameter was equal to the
diameter of the largest pipe. These values were input into the MMCF to inform how the
network layout and diameters were chosen. The spatial association method expands on the
infrastructure collocation work by Mair et al. [21] and includes additional steps to account
for potential road–pipe misalignment.

2.2.4. Modified Minimum Cost Flow

Minimum cost flow is an optimization problem designed to distribute a resource from
sources to demands across a network. A candidate solution is one that finds flow values
for each edge that balances the resource across source and demand nodes. In the standard
formulation of minimum cost flow, a minimal spanning tree is a candidate solution that
minimizes the sum of flows multiplied by corresponding weights.



Water 2024, 16, 3356 7 of 22

Through solving the minimum cost flow on a road network, using sources and de-
mands representing those of a water distribution system, a reasonable network for a water
distribution system model can be obtained. Flow assignments to the roads can be converted
to pipe diameters using the following formula:

d =
√
(4P f )/(πv) (1)

where d is diameter (m), P is the peak demand multiplier (unitless), f is flow (m3/s), and
v is velocity (m/s), which was set to 1.52 m/s for all pipes following the assumptions
made in [10]. The peak demand multiplier was used to convert the average demand to
peak demand to ensure the diameters were adjusted appropriately for high-flow periods.
The value can be estimated empirically; however, this analysis used a value for P that
was calibrated to produce a network with am average pipe diameter similar to that of
the validation network. A value of P = 6.76 was chosen so that the average length-
weighted diameter of the synthetic network matches that of the validation network, which
was approximately 0.152 m. After applying this conversion, diameters equal to zero can
be dropped from the network to obtain a synthetic network with diameters assigned to
each edge.

One of the central contributions of this work is a modification of the standard minimum
cost flow that allows for the input of target diameters. Target diameters are diameter values
for a subset of road edges representing desired diameters for the final pipe network. These
diameters could reflect known diameters of the system (e.g., a system operator knows that
there is a 0.2 m pipe running alongside a certain road) or could come from another source
such as machine learning predictions of pipe diameters for the system. In this analysis,
known pipe diameters were assigned to nearby roads using spatial association to provide
target diameters. The assignments from spatial association provide probable predictions of
what the pipe diameter should be on each edge.

The modification was a change to the optimization function to favor solutions with
flows close to the provided target flow, which were obtained by applying the inverse
of Equation (1) to target diameters. For edges with a target flow, the objective function
minimizes the difference between the target flow and the flow assigned to the edge. For
edges without a target flow, the objective function minimizes flow along the edge, which
was encoded by setting the target flow to zero.

Given a network with node set V and edge set E , the MMCF optimization problem is
formally defined as follows:

minimize ∑
(u,v)∈E

W(u, v) · |(F(u, v)− T(u, v))| (2)

subject to ∑
v:(u,v)∈E

F(u, v)− ∑
v:(v,u)∈E

F(u, v) = B(u) ∀u ∈ V (3)

L(u, v) ≤ F(u, v) ≤ U(u, v) ∀(u, v) ∈ E (4)

F(u, v) ≥ 0 ∀(u, v) ∈ E (5)

where

• E is the set of edges in the network;
• V is the set of nodes in the network;
• W(u, v) is the weight on edge (u, v) ∈ E ;
• F(u, v) is the flow on edge (u, v) ∈ E ;
• T(u, v) is the target flow on edge (u, v) ∈ E ;
• B(u) is the net supply (positive) or demand (negative) at node u ∈ V ;
• U(u, v) and L(u, v) are the lower and upper bounds on the flow for (u, v) ∈ E .

Equation (2) defines the objective of the optimization problem, which minimized the
difference between output flow and target flow if a target is provided and minimized the
flow to zero if no target is provided. Equation (3) conserves flow throughout the nodes of
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the network based on supply and demand values. Equation (4) enforces lower and upper
bounds for flow assignments on the edges. The lower bound was set to zero and the upper
bound was set to the flow value corresponding to a 1.829 m pipe diameter to ensure that
pipe diameters were not too large. Equation (5) ensures that all assigned flows are positive.

The results produced flow values for each edge on a continuous scale that corre-
sponded to continuous diameter values, as opposed to discrete values as is typically
expected by engineering standards. In this analysis, the continuous values were not modi-
fied to match preset discrete values. Through dropping all edges that were assigned a flow
value of zero, a minimal spanning tree that connects all demand nodes and reservoirs was
obtained. The flow values were then converted to diameters using Equation (1). The con-
tinuous nature of the MMCF means that diameters can be arbitrarily small, so a minimum
diameter of 0.051 m was applied (after dropping flow values that were zero). The resulting
network and diameter assignments were used as the foundation for the synthetic water
distribution system model, which was completed by following the steps outlined in the
next subsection.

2.2.5. Post-Processing

The solution from the MMCF was designed to be minimal. There were no loops
and no redundancy in the connectivity of the network. Since water distribution systems
typically have some level of redundancy, a technique using the connectivity index was used
to increase the connectivity of the network [22]. This process added additional paths along
roadways if the existing path was much longer than the existing shortest path between its
start and end node. This analysis added additional connections if the new path was at least
50% shorter.

Other major assets and data were added to the network to complete the model. Note
that while model calibration was an important aspect of model development, calibration
was not included in this analysis. The location and attributes of tanks and pumps were
extracted from the validation models. Elevations were extracted from DEM data. The
reservoir head was extracted from the validation model. Although the Puerto Rico datasets
include valves, they were not used in this analysis due to a lack of certainty in their
operation. Reservoirs and tanks were added by connecting them to the nearest junction
in the network. Pumps were attached to the nearest pipe and oriented so that the pump
faces away from the nearest reservoir. For more details, refer to Appendix A, where similar
methods were used to generate the validation model.

2.2.6. Generated Models

Three synthetic models for Mayagüez were generated using the framework established
in the previous sections. Each synthetic network used a different amount of randomly
selected pipe layout and diameter data provided by spatial association, which assigned a
diameter to each road based on real pipe data, with a diameter of zero indicating no pipe.
A network built using 0% of the pipe data was generated to represent a typical synthetic
network that had no external knowledge of the real pipe layout. Two networks were built
using 50% and 100% of the pipe data to represent cases with partial and full access to the
real pipe data, respectively. It is important to note that while the network built with 100%
utilizes all pipe data, the data had been transferred from the real water pipe network to
the road network and therefore lost accuracy. These synthetic networks are referred to
as “Synthetic X%”, where X is the percentage of pipe layout and diameter data that the
network was built with. The validation network is referred to simply as “Validation”.

2.3. Performance Metrics

To understand how the synthetic models compare to the validation model, several
performance criteria were selected. Global topological metrics were included to get a
sense of the network structure and compare the results to the work performed by Paez
et al. [23]. The distribution of diameters and node pressure was included to identify
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differences in network attributes and hydraulics. Finally, a disruption scenario was used
to track how synthetic networks mimic the behavior of the validation model under stress.
The disruption scenario selected for this analysis approximates a failure scenario that has
frequently occurred at one of the primary water treatment plants in Mayagüez [37,38].
In addition to evaluating the similarity of synthetic networks to the validation network,
the goal of this diverse suite of metrics was to understand how model-related quantities
changed through the incorporation of various amounts of known pipe data to the MMCF.

2.3.1. Topology

A collection of global topological metrics were used to compare the overall structure
of the networks. While not an exhaustive list, the chosen metrics aimed to cover a breadth
of network qualities. Metric choices were informed by the work of Paez et al. [23]. To define
these metrics, let V and E represent the nodes and edges of a network, and let the size of V
be n and the size of E be m. Four topological metrics are given as follows [39]:

q =
2m

n(n − 1)
< k > =

2m
n

Rm =
m − n + 1

2n − 5
∆λ = λ1(A)− λ2(A)

Edge density q is the fraction between the number of edges in a network and max-
imum amount of edges possible and measures the overall connectivity of the network.
Larger values indicate higher connectivity. An average node degree < k > also captures
connectivity but uses data from the nodes rather than edges. The meshedness coefficient Rm
is the fraction between the number of independent loops in a network and the maximum
number possible and captures the redundancy of the network. Larger values indicate
higher redundancy. Spectral gap ∆λ is the difference between the first and second eigenval-
ues of the adjacency matrix for the network and measures the robustness of the network
by determining whether a network has “good expansion” [39]. Good-expansion networks
are those that have a high minimum number of components that must be removed before
creating a disconnected network. While spectral gap is an abstract, unitless measurement,
it can be used to compare networks where a larger value indicates a more robust network.
Authors Paez et al. [23] called out spectral gap as uniquely useful for identifying differences
in networks where other metrics indicate similarity. Together, these metrics summarize
fundamental topological dimensions of water networks, facilitating a broad topological
comparison across the synthetic and validation network structures.

2.3.2. Diameter

To evaluate the impact of including known pipe diameters in the MMCF, the diameter
assignments and distributions of the synthetic networks were compared to those of the
validation networks. A direct comparison of diameter assignments cannot be made between
a synthetic network and the validation network since they exist on different topologies.
Instead, diameter assignments of synthetic networks were evaluated against the spatial
association results, which do share the same topological structure as the synthetic networks.
The chosen metric was the length-weighted mean absolute diameter error (D-MAE) and is
computed as the mean over the absolute value of each diameter error, which is the difference
between the synthetically assigned diameter and the spatially associated diameter, and
weighted by the edges’ proportion of the total network length. Because the discretization
of pipe segments differs between the synthetic networks and the validation network,
weighting by length was used to normalize the error rather than treating all errors with
equal weight. Let E be the set of edges in the road network data for the service area, let
l(e) be the fraction of total network length for edge e, let dSA(e) be the spatially associated
diameter assigned to edge e, and let dsynth(e) be the synthetic diameter assigned to edge e,
and then the D-MAE is computed via
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D-MAE = l(e)× ∑
e∈E

∣∣∣dSA(e)− dsynth(e)
∣∣∣

The D-MAE retained the units of the input variables and was useful for its straightfor-
ward interpretation; for example, a D-MAE of 1 indicates that, on average, a pipe in the
synthetic network deviates 1 m from the spatially associated diameter. High values for the
D-MAE indicate a large mismatch between the diameter assignments of the given synthetic
network and those captured by spatial association, whereas low values indicate similarity
between synthetic diameters and spatial association diameters.

The following set of diameter bin centroids were used to generate diameter distribu-
tions: 0.051, 0.102, 0.152, 0.203, 0.254, 0.305, 0.356, 0.406, and 0.457 m. This binning scheme
was designed to separate the major diameter sizes seen in Mayagüez while also remaining
compatible with the continuous nature of the MMCF outputs. Instead of reporting on total
edge counts for each bin, the percentage of network length was computed to account for
the varying discretization of pipes across networks.

2.3.3. Pressure

Steady-state pressures were simulated and compared to form an understanding of
the hydraulic differences of the models during normal conditions. Initial tank levels were
highly influential in these simulations; however, these levels were uncalibrated in the
validation model for Mayagüez since it was built from basic data. To obtain reasonable
initial values, a 96 h simulation starting with all tanks being 90% full was run for the
validation model, and tank levels were extracted from a time point where the system
pressure had stabilized. These individual tank levels were then applied to the validation
and synthetic models.

The synthetic models have distinct network structures from that of the validation
model, so there cannot be a direct comparison at the node level. Given this restraint, a
comparison of pressure was generated by averaging nodal pressures within each census
block group. While some resolution in the pressure results was lost when aggregating to
census block groups, general spatial patterns of pressure were still able to be captured.
It is important to note that pressure-dependent demand simulations using EPANET can
still result in junctions with negative pressure. Since negative pressure has no physical
meaning beyond the absence of pressure, the negative pressures were converted to zero
before averaging the nodal pressures within each census block group.

To quantitatively compare pressure between models, the mean absolute error (MAE)
was used to summarize differences in the census block group pressure. MAE is defined
as follows, where i indexes over the census block groups, psynth(i) is the ith census block
group pressure in one of the synthetic networks, and pvalid(i) is the ith census block group
pressure for the validation network:

P-MAE = ∑
i

∣∣∣psynth(i)− pvalid(i)
∣∣∣.

2.4. Response to Disruption

A disruption scenario was developed based on recent events where water service
from the Miradero water treatment plant was temporarily disabled. The Miradero water
treatment plant in Mayagüez, Puerto Rico, has experienced multiple breakdowns in its
raw water supply line, causing significant water shortages in the area. In April 2023, raw
water intake from the Río Grande de Añasco to the Miradero plant required emergency
replacement [37], and similarly, in late December 2023, the pumping system for the same
plant experienced a breakdown over multiple days, preventing the plant from distributing
drinking water to many residents and critical locations such as hospitals [38]. After repairs
began on the pumping system, additional leaks on a 0.1524 m pipe were identified, which
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extended the period of repair. The event was declared a state of emergency by the mayor
to supply water to residents via trucks.

This disruptive event was modeled by setting the base head of the Miradero reservoir
to zero meters in the model and simulating for 48 h using the same initial conditions as the
steady-state simulations in Section 2.3.3. While the models were not fully calibrated for
long-term simulation (lacking demand patterns, valves, and controls), these details were
consistent across the validation and synthetic models. Nodal pressure drops between the
baseline and failure scenarios are plotted at the last time step (48th hour) to reveal spatial
patterns that do or do not emerge across the synthetic and validation models.

3. Results

Throughout the following sections, the synthetic networks are compared to the val-
idation network across multiple performance metrics. These results seek to answer two
questions: (1) how are the synthetic models different or similar to the validation model and
(2) how do the performance criteria change as different amounts of pipe data are provided
to the MMCF algorithm. In Section 3.1, four global topological metrics are evaluated across
the networks. In Section 3.2, diameters assigned to pipes are compared. In Section 3.3,
steady-state nodal pressures are compared. In Section 3.4, the pressure response to the
same disruptive event is compared across the networks.

3.1. Topology Comparison

The four topological metrics described in Section 2.3.1 were evaluated for the three
synthetic networks and the validation network. The results are presented in Table 1. The
metrics include edge density, average node degree, meshedness coefficient, and spectral
gap. While there are countless metrics to choose from, the chosen metrics cover a range of
network qualities, as laid out by Yazdani et al. [39]. In addition to the computed topological
metrics, the number of nodes and edges, as well as total network length for each network,
are included.

Table 1. Topological metrics.

Validation Synthetic-0% Synthetic-50% Synthetic-100%

Total edges 7585 8570 9014 9459

Total nodes 6417 7460 7657 7802

Network length (m) 1,302,762 1,190,159 1,233,406 1,287,466

Edge density, q 0.00037 0.00031 0.00031 0.00031

Average node degree, < k > 2.36 2.30 2.35 2.42

Meshedness coefficent, Rm 0.091 0.075 0.089 0.11

Spectral gap, ∆λ 1.35 7.12 7.29 7.34

The three synthetic networks generally have one to two thousand more edges and
nodes than the validation network; however, the validation network has a longer total
network length than the synthetic networks. The difference in edge and node count can be
attributed to differences in the discretization of the water pipe data (longer line segments)
versus the road data (shorter line segments). When pipe diameter data are included in
synthetic network generation in the case of the Synthetic-50% and Synthetic-100% networks,
additional target flows are added to the MMCF, which results in more edges being included
in the network diameter since edges with a target flow are encouraged to have positive
values, instead of being minimized to zero.

By design, the MMCF will minimize flow on edges where no pipe data are present, so
the outputs with no or partial data (Synthetic 0% and Synthetic 50%) tend to have a shorter
total length than the networks built with all of the data (Validation and Synthetic 100%).
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Edge density measures the overall connectivity of a network, and its value can be
directly interpreted as the percentage of edges in the network out of the total possible
number of edges given the node set. The validation network has a very low edge density,
which is matched closely by the synthetic networks. There is little difference among the
synthetic networks, indicating that the inclusion of pipe data does not affect the overall
connectivity of the networks. Average node degree gives an alternate view on the overall
connectivity of the networks. All four networks have an average node degree in the
range 2.3 to 2.4, and as the percentage of pipe data increases, there is a slight increase in
average node degree. The meshedness coefficient measures network redundancy and is
similar to edge density, but instead of measuring the percentage of total possible edges,
it measures the percentage of total possible loops. The synthetic networks have similar
meshedness coefficient percentages to the validation network; Synthetic 0% has a slightly
lower value, Synthetic 50% closely matches the validation network, and Synthetic 100% has
a slightly higher value. The overall similarity to the validation network indicated that the
choice of 50% for the connectivity index threshold when adding loops to the networks was
appropriate. Spectral gap is an abstract metric extracted from the eigendecomposition of
the adjacency matrix and is known as a measurement of network robustness. The spectral
gaps of the synthetic networks were all significantly higher than that of the validation
network, indicating that the synthetic networks were more robust. One interpretation of
spectral gap is that low values indicate the presence of edges or nodes that would disrupt
network flow if removed, while higher values indicate that many nodes and edges could
be removed before network flow is majorly effected [39].

3.2. Diameter Comparison

All four models share a similar overall network layout, indicating the effectiveness
of using the road network for synthetic pipe network generation (Figure 2). Despite these
large-scale similarities, there are details that indicate significant nuances. When focusing
on large-diameter pipes (those plotted in red), there are two areas in particular that vary
across the synthetic networks, which are captured in Figure 2 with black rectangles. The
large-diameter pipes in the western region and the northeast region are laid out very
differently between the validation network and the 0% network. However, the 50% and
100% networks appear to replicate the structure of the large-diameter pipes found in the
validation network much better.

The distribution of diameters in the synthetic models was distinct from that of the
validation model; however, the addition of more pipe data influenced the synthetic pipe
diameter distribution toward that of the validation model (Figure 3). In the synthetic
network, the majority of network length is covered by small pipes (between 0.0127 and
0.0635 m), and the network length covered by a diameter bin decreases as the diameter
size increases. This pattern mostly holds true for the validation network; however, it is
the second smallest diameter bin (between 0.0635 and 0.1143 m) that contains the majority
of network length. The synthetic networks built with more pipe data have distributions
that more closely match that of the validation network, particularly in the first three
bins. Synthetic 0% clearly favored small diameters, which is the natural conclusion of
an algorithm driven exclusively by minimizing flows. On the other hand, the Synthetic
50% and Synthetic 100% networks favor the smallest diameter bin less and assign larger
diameters more often, reflecting the incorporation of information about the real network
diameters. There is less of an improvement in the larger-diameter bins, which reported
much noisier results as data were added.

The length-weighted mean absolute error (D-MAE) is computed between the diameter
assignments in each synthetic network and the diameter assignments from spatial asso-
ciation. When pipe layout information was provided to the MMCF, there was a notable
decrease in the D-MAE of the synthetic model diameters on roads against those assigned
by spatial association, which confirmed that the MMCF was incorporating information
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about the network correctly. The D-MAE for Synthetic 0% was 0.0983 m, the D-MAE for
Synthetic 50% was 0.0711 m, and the D-MAE for Synthetic 100% was 0.0575 m.

(a) (b)

(c) (d)
Figure 2. Validation and synthetic models with pipes colored by diameter (meters). Two re-
gions, one western and one eastern, with significant structural differences are highlighted by boxes.
(a) Validation; (b) Synthetic 0%; (c) Synthetic 50%; (d) Synthetic 100%.

Figure 3. Distribution of network length across diameter bins.

3.3. Pressure Comparison

Nodal pressures from steady-state simulation are shown in Figure 4. In general,
pressures are very high across all models, resulting from the lack of pressure-reducing
valves. The models display a large amount of heterogeneity both internally and when
compared to each other. In the validation network, the city center along the west coast
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tends to have large pressures with pressure decreasing in all directions. However, the
synthetic networks maintain high pressure where the validation network does not to the
north and south of the city center.

(a) (b)

(c) (d)
Figure 4. Nodal pressures from steady-state simulation. (a) Validation; (b) Synthetic 0%; (c) Synthetic
50%; (d) Synthetic 100%.

To describe pressure more quantitatively, nodal pressures in each network are averaged
within census block groups (CBGs), and the CBG pressures of the synthetic networks are
plotted against the CBG pressures of the validation network in Figure 5. The CBG pressures
for each network roughly follow a linear relationship with the CBG pressures of the
validation network, indicating that CBGs with low pressure in the validation generally
have a low pressure in the synthetic networks and likewise for high pressures. There
is still a considerable amount of deviation from the validation pressures present in the
synthetic models, which can be summarized by computing the MAE between average CBG
pressures for the validation network and each synthetic network. The CBG pressure MAE
for Synthetic 0% is 31.6 m, the MAE for Synthetic 50% is 23.5 m, and the MAE for Synthetic
100% is 23.2 m.

3.4. Response to Disruption Comparison

The pressure response to the disruptive scenario of each synthetic network matched
the spatial patterns of the pressure response to the same scenario in the validation network,
Figure 6. The average nodal pressure drops across each model are as follows: 32.5 m for
validation, 64.0 m for Synthetic 0%, 21.0 m for Synthetic 50%, and 15.5 m for Synthetic
100%. The pressure drop for the Synthetic 0% model is much more severe than the other
models, and the synthetic models with additional pipe data experience pressure drops
smaller than the pressure drop in the validation model. The validation network shows
that the area affected by the disruption is primarily in the downtown area surrounding
the water treatment plant and the region of the network directly south (Figure 6a). This
spatial pattern is broadly captured by the synthetic networks, with some notable differences
occurring in the northern region of the network, where the synthetic networks model a drop
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in pressure that is not present in the validation network. In the affected region, Synthetic
0% (Figure 6b) has extreme pressure drops of up to 100 m, while Synthetic 50% (Figure 6c)
and Synthetic 100% (Figure 6d) have moderate pressure drops of around 40 m, matching
what is seen in the validation network more closely.

Figure 5. Scatterplot of synthetic pressures against validation pressures, averaged within CBGs. Each
CBG is represented three times for each synthetic model. CBG boundaries for Mayagüez are shown
in the inset map.

(a) (b)

(c) (d)
Figure 6. Nodal pressures drop 48 h after failure at the Miradero plant; pressure drop is computed as
the difference between the baseline and failure scenario. (a) Validation; (b) Synthetic 0%; (c) Synthetic
50%; (d) Synthetic 100%.
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4. Discussion

The MMCF algorithm successfully demonstrated the ability to improve synthetic
pipe layout and diameter generation by incorporating information provided by a pipe
dataset (Figures 2 and 3). The topological assessment of the models indicated that while
the incorporation of pipe data affected various topological metrics, it did not uniformly
increase similarity to the validation network’s topological properties (Table 1). Spectral gap
in particular suggested a deep structural difference between the road network and pipe
network that could not be overcome with the addition of data.

The steady-state pressure of the synthetic models reflected the pressures of the valida-
tion model more accurately as additional data were included in model generation (Figure 4).
However, even when the complete pipe dataset for the real system was used for synthetic
model generation, there was a sizeable gap between synthetic and validation pressure.
This suggested that constraining the synthetic models to the road network may come
with inherent limitations for reproducing the conditions of the real system. Additionally,
the pressure response of the synthetic models to a reservoir failure was compared to the
pressure response of the validation model. All synthetic models showed the capability of
capturing the same general spatial patterns of pressure drop caused by the reservoir failure
as those found in the validation model.

Limitations and Future Work

While Mayagüez is a complex and diverse water service area to study, containing
many reservoirs, tanks, and pumps and covering both urban and rural areas, a singular case
study is not enough to make generalizations about the methods. It would be informative to
evaluate additional locations for the suitability of synthetic networks for resilience analysis.
Additionally, it would be valuable to apply this comparison on models with valves and
controls, which was not implemented in this work. The lack of utility right-of-ways in
the road network could preclude certain critical network connections from being made
in the synthetic networks (e.g., large pipes that do not follow roads), so methodological
improvements could include the incorporation of the pipe network edges into the road
network, as was performed in the work by Mair et al. [22], or through the inclusion of
utility right-of-way datasets.

The MMCF algorithm provides an opportunity to customize synthetic network gener-
ation so that the layout and pipe diameters more closely reflect provided inputs. In this
work, pipe datasets are used in conjunction with spatial association to provide this input to
the MMCF; however, this water infrastructure information could come from data-driven
machine learning models [40,41] or operator expertise. While a single synthetic model
may never perfectly capture the dynamics of the real system, ensemble approaches that
generate many synthetic models may be able to provide a more accurate picture of system
resilience [41], which could be produced by incorporating uncertainty into the synthetic
network generation method [42]. Other types of failure (e.g., pipe breaks and leaks, pump
failures, water quality) and response actions could be simulated and compared along with
a response action for a deeper resilience assessment of synthetic models [27].

5. Conclusions

This work focused on the development of synthetic water distribution models from
sparse data with a focus on generating and evaluating site-specific synthetic models for
use in resilience analysis. The objectives of this work were to (1) design a synthetic model
generation technique that can leverage incomplete pipe data to improve model performance
and (2) provide a thorough comparison of multiple synthetic models generated with
various amounts of pipe data to the validation model in Mayagüez. The spatial association
and modified minimum cost flow (MMCF) methods presented in this paper provide a
way to incorporate pipe network data into the generation of a synthetic water network.
Three synthetic models were generated with this technique, each corresponding to models
generated using 0%, 50%, and 100% of real pipe data. These models were compared to a
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validation model in terms of topological metrics, pipe diameters, steady-state pressure, and
pressure response to a disruptive scenario.

This research highlights opportunities for synthetic network generation for site-specific
analysis. The augmentation of synthetic network generation with partial pipe data allows
for the creation of synthetic models that more accurately reflect the real system than
those generated without any pipe data. The ability of the synthetically generated models
to reproduce the system response to a disruptive event that was seen in the validation
model suggests that synthetic models could be used in resilience analysis for systems
without access to a high-quality model. However, despite the promising similarity between
synthetic models and the validation model, even small differences could result in drastically
different simulation results due to the complexities of these systems. For this reason,
additional research must be performed on synthetic networks before they can be used to
make critical decisions for the system they represent.
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Appendix A. Mayagüez Water Distribution Model

Open source geospatial data of Puerto Rico infrastructure along with a digital elevation
map were used to create the ground truth, or validation, water distribution system model
for the Mayagüez water service area. The Puerto Rico infrastructure database are publicly

https://gis.pr.gov/
https://apps.nationalmap.gov/downloader/
https://apps.nationalmap.gov/downloader/
https://data.humdata.org/dataset/hotosm_pri_buildings
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available at https://gis.pr.gov/ (accessed on 1 October 2022) [28]. The United States
Geological Survey (USGS) Digital Elevation Model (DEM) data is available at https://apps.
nationalmap.gov/downloader/ (accessed on 1 February 2023) [35] and building footprint
data are available from the Humanitarian Data Exchange project at https://data.humdata.
org/dataset/hotosm_pri_buildings (accessed on 1 November 2022) [36]. The steps and
assumptions that were used to build the model are described below. Model attributes and
the percent of data that are available for each attribute are listed in Table A1. This table
includes a description of how missing data were handled. The Water Network Tool for
Resilience (WNTR) [5] was used to create a steady-state water distribution system model
and process geospatial data.

Note that while valve data exist for the water service area, valves were not added
to the model at this time due to uncertainty in their operations. Furthermore, the model
does not include pump controls or demand time series. These updates could be added in
future research.

Step 1: Extract data within the water service area: The database, which includes all
pipes across the island, is first filtered according to an attribute of water pipes that defines
the water service area. Data associated with the Mayagüez water service area are used
to create a polygon defined as the convex hull around this set of pipes. This polygon is
used to isolate additional data (i.e., water treatment plants, tanks, pumps) that should be
included in the water service area.

Step 2: Connect pipes and create junctions: Each pipe is defined with a line geom-
etry, which can include a single straight line segment or multiple straight line segments.
However, the data do not include junctions that define how pipes are linked together. In
order to connect pipes, a small threshold was used to identify pipe endpoints that are
within close proximity. In this analysis, this threshold was set to 10 m. Endpoints that are
within 10 m are grouped together to form a single junction. NetworkX [43] is then used
to identify regions of the pipe layout (network structure) that are not fully connected. For
the Mayagüez water service area, the largest connected component makes up 93.3% of
the pipes. The other unconnected regions are along the outer boundary of the system and
are removed.

Step 3: Assign elevation to each junction: Elevation is assigned to each junction using
DEM data from the USGS [35].

Step 4: Assign demand to each junction: Demand is assigned to each junction using
the assumption that demand is proportional to a nearby building footprint. Building
polygons were obtained from OpenStreetMaps [36]. WNTR was used to identify building
centers that are within 250 m of each pipe. The building footprint (measured in square
meters) was then assigned to the nearest pipe endpoint. The base demand for each junction
is defined as a weighted fraction of the total water treatment capacity for the water service
area. The water treatment capacity for each water treatment plant within the service area
was obtained from the database.

Step 5: Add junctions and pipes to the model: The junctions and pipes identified
above are then added to an empty water distribution system model. Junction attributes
include the junction coordinate, elevation, and base demand (described above). Pipe
attributes include the start and end junction, length, diameter, and roughness. Pipe length
was computed from the pipe line geometry. Pipe diameters and roughness are obtained
from the database. Pipes with a missing diameter were assigned a diameter of 6 inches.
Pipes with missing roughness were assigned a roughness of 100.

Step 6: Add reservoirs to the model: Water treatment plants are modeled as reservoirs.
The location and elevation of each reservoir is determined based on the nearest junction.
Water pressure from each reservoir is assumed to be 70 m. This sets the reservoir head at
70 m (100 psi) above the reservoir elevation.

Step 7: Add tanks to the model: The location and elevation of each tank is determined
based on the nearest junction. Tank height and diameter are obtained from the database.
Some tank diameters were corrected using aerial photography. The tank height is used to

https://gis.pr.gov/
https://apps.nationalmap.gov/downloader/
https://apps.nationalmap.gov/downloader/
https://data.humdata.org/dataset/hotosm_pri_buildings
https://data.humdata.org/dataset/hotosm_pri_buildings
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define the maximum fill level. The minimum fill level was set to 0, and the initial water
level was each tank was set to 90% of the maximum fill level.

Step 8: Add pumps to the model: The location of each pump is determined based on
the nearest pipe. Two junctions are added to the nearest pipe, and the pump is inserted
as a line geometry between them. The pump is oriented to face away from the nearest
reservoir. Distance to the nearest reservoir is computed using the NetworkX multi-source
Dijkstra path length algorithm [43]. The pump curve is defined using a flow capacity from
the database. The headgain for each pump is set to 75 m (106 psi). The pumps are not
assigned controls, the pumps are assumed to be on all the time.

Step 9: Refine the model: Minor model refinements were identified based on results
from hydraulic simulations. This identified potential missing pipes that would connect
critical pathways, and missing boundary conditions to represent water demands outside
the water service area.

Table A1. Water distribution system data for the Mayagüez water service area. The fraction of data
available is listed in Column 3. Notes on default values, additional data sources, and estimations are
listed in Column 4.

Attribute Data Availability Notes

Pipes Diameter 1.00 If missing, default value is 6 in
Roughness 0.97 If missing, default value is 100
Length 1.00 Computed from line geometry
Connectivity None Estimated from endpoint proximity

Junctions Elevation 1.00 Assigned using USGS DEM
Demand None Estimated from building footprint

Reservoirs Elevation 1.00 Assigned using USGS DEM
Head None Computed, elevation + 70 m pressure

Tanks Height 0.86 If missing, default value is average
tank height

Diameter 0.27
Override based on visual inspection
where applicable or use default value
of average tank diameter

Elevation 1.00 Assigned using USGS DEM

Pumps Direction None Estimated, pumps point away from
nearest reservoir

Flow capacity 0.64 If missing, default value is average
pump flow capacity

Headgain capacity None
Estimated, based on elevation difference
between pump and highest system ele-
vation (with a maximum of 500 m)

Appendix B. Spatial Association

Spatial association is used to assign properties from the utility dataset to their nearest
road segment. This facilitates the transfer of information from one network to another.
Spatial association assigns pipe properties to road segments that are in close proximity. Prox-
imity is captured using geometric buffers around the pipes and find which roads intersect
with a particular pipe. These intersections are used as a basis for associating a pipe and pipe
attributes (e.g., diameter, roughness) to a road. This approach works in certain ideal sce-
narios but fails to capture the nuance and variety present across water distribution system
models. Three key issues have been identified with the stated approach—segmentation mis-
alignment, directional misalignment, and positional misalignment—as shown in Figure A1.
In what follows, each of these issues and the measures taken to resolve them are described.
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(a) (b) (c)

Figure A1. Diagrams illustrating issues with spatial association: (a) segmentation misalignment,
(b) directional misalignment, and (c) positional misalignment. In each figure, the gray line is a road
segment, the dark blue line is a water pipe segment, and the light blue rectangle is a buffer around
the water pipe.

Segmentation misalignment occurs because individual pipes and roads do not neces-
sarily have the same breakpoints. For example a long segment of road may be represented
as a single linestring, but a parallel pipe that follows the road could be represented by
multiple smaller linestrings arranged in parallel.

These kinds of inconsistencies can misinform the statistics that are assigned for di-
ameter and roughness. To address this, a procedure known as “exploding” is applied to
the geometries before performing intersection. Exploding splits linestrings into multiple
straight line segments. For example, applying the procedure to a single pipe asset that has
a linestring geometry made of three connected straight line segments produces three new
pipe assets arranged in parallel. By exploding pipe and road geometries, the intersection of
the two infrastructures may be performed at a higher resolution, resulting in more accurate
statistics for diameter and roughness.

Directional misalignment occurs because some road geometries run perpendicular
to some pipe geometries. If direction is not considered, a pipe can be associated with a
perpendicular road, which is inaccurate. The computation of the relative bearing between
pipe and road intersections can be used to assess whether or not a road is aligned with
a pipe. The metric used for relative bearing here is cosine similarity, which is defined
as follows:

cosine similarity := cos(θ) =
A · B

∥A∥∥B∥ =
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(A1)

where A represents the geometry of a road, and B represents the geometry of a pipe.
A cosine similarity of 0 indicates orthogonality, and a cosine similarity closer to −1
or 1 indicates that the geometries are parallel. In this analysis, intersections where
|cosine similarity| < 0.7 are removed to prevent the spatial association of pipes with
perpendicular roads.

Positional misalignment occurs due to variations in how closely pipes and roads are
situated. Certain areas of the service region may have very tight proximity between roads
and pipes, whereas in other areas, the proximity may be much looser. A small pipe buffer
size can appropriately capture the intersections of the former scenario, but not the latter.
A larger pipe buffer size may capture the intersections in the latter scenario as well, but it
also captures undesirable intersections in the more tightly arranged areas.

This misalignment is addressed through the implementation of an iterative procedure
that makes use of variable buffer sizes, rather than choosing a single fixed buffer size.
Intersections are first identified with the smallest buffer, and for each road geometry, there
is a list of water pipes whose buffers overlap with the road. For each intersecting water pipe,
a copy of the road geometry is created and inherits the associated water pipe attributes.
These water pipes are then dropped out of the dataset, and the procedure is run again with
a larger buffer size.
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Below is a summary of the general spatial association procedure including the adjust-
ments made for the three types of misalignment:

• Explode pipes into straight line segments.
• Expand each pipe line segment into a rectangle by adding a small buffer around

the geometry.
• Intersect each pipe rectangle with the road linestrings using the iterative approach

described above.
• Filter intersections based on cosine similarity between the pipe and road. Intersections

that are too close to perpendicular are removed.
• Assign attributes of interest (e.g., diameter and roughness) to each road based on the

intersecting pipe geometries. In the case of multiple intersections, a statistic such as
the maximum or average should be taken.

The results from spatial association can be used to build synthetic networks with
pipe diameter data associated with road segments, as described in Section 2.2. Other
applications include machine learning, where the spatial associated pipe property is used
to predict the presence of pipes along roadways.
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