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Abstract

:

The long-term characteristics of phytoplankton blooms and the relative importance of driving factors in the Yangtze River Estuary (YRE) and its adjacent waters remains unclear. This study explored the temporal and spatial patterns of blooms and their driving factors in the YRE and its adjacent waters using MODIS bloom data from 2003 to 2020. Bloom intensity varied along both longitudinal and latitudinal gradients, with very few blooms occurring near the shore and in the open sea. Temporally, blooms exhibited seasonal variations, peaking during the summer and being weakest during the winter. Sea surface temperature was the primary driving factor behind the seasonal variations in algal blooms. The implementation of controlling the pace of urban land development, returning farmland to forest, and initiating marine pollution prevention programs have contributed to a downward trend in the bloom intensity. Additionally, the operation of the Three Gorges Dam altered the Yangtze River’s diluted water during the summer months, thereby reducing the bloom intensity. Conversely, the Taiwan Warm Current promoted an increase in the bloom intensity. Elucidation of the spatiotemporal patterns and the driving factors of blooms in the YRE and its adjacent waters provide crucial support for the prediction and management of algal blooms.
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1. Introduction


Phytoplankton not only serve as primary producers in the food chain but also play a crucial role in biogeochemical earth processes, including the global carbon cycle [1,2,3]. However, under certain conditions, phytoplankton can proliferate excessively and aggregate to form harmful algal blooms (HABs), which can severely impact local economies, marine ecosystems, global biogeochemical cycles, and even human health [4,5,6]. In recent years, driven by intensifying phenomena such as water eutrophication and global climate change, the frequency and area of phytoplankton blooms have increased in numerous coastal waters around the world [7,8,9]. This trend has been recognized as a significant environmental issue. Therefore, it is necessary to conduct long-term monitoring of phytoplankton blooms to understand their dynamic changes, providing a scientific basis and foundational support for water quality management [10,11].



The coastal waters of China are currently facing a severe eutrophication trend. Driven by factors such as coastal eutrophication, the frequency, scope of influence, and harmful effects of algal blooms are continuously increasing [12,13]. In China’s coastal waters, the problem of algal blooms in the East China Sea is the most severe [14]. Over the past 20 years, the number of recorded red tides in the East China Sea has reached nearly one thousand, accounting for more than half of the recorded red tide occurrences nationwide [15]. Among them, the Yangtze River Estuary (YRE) and its adjacent waters are one of the most prone areas to harmful algal blooms in China’s coastal waters [16]. In the YRE and its adjacent waters, the significant influx of nutrients carried by the Yangtze River runoff has led to an increase in the concentration of inorganic nitrogen in seawater [17]. This has led to an ongoing aggravation of coastal eutrophication, subsequently affecting the biomass and community structure of phytoplankton, triggering HABs [18,19]. Since 2000, rapid urbanization around the YRE has been taking place. Additionally, the estuary and its adjacent waters experience large-scale harmful algal blooms annually, affecting sea areas extending over tens of thousands of square kilometers [19]. The marked increase in algae blooms can be attributed to both climatic and human factors, including the response of phytoplankton to global warming and increased nutrient loads [20,21]. However, the relative importance of driving factors on the frequency of phytoplankton increase in the YRE and its adjacent waters remains unclear [22]. A better understanding of the relative importance of climatic factors and human activities on phytoplankton blooms is necessary for improving the management of the YRE and its adjacent waters.



Satellite remote sensing of ocean color is a powerful method for analyzing the seasonal cycle and interannual trends of phytoplankton blooms [5,23]. Based on multi-source remote sensing data, various index methods such as the normalized difference vegetation index (NDVI), fluorescence line height (FLH), maximum chlorophyll index (MCI), and floating algae index (FAI) have been widely used to monitor phytoplankton blooms [24,25,26,27]. Dai et al. [28] have also developed a global coastal phytoplankton bloom monitoring algorithm for moderate resolution imaging spectroradiometer (MODIS) images based on the FUI index. These research findings make it possible to monitor the spatial and temporal variations in phytoplankton blooms in the YRE and adjacent waters, as well as their influencing factors. Compared to ocean and land color instrument (OLCI) and visible infrared imaging radiometer (VIIRS) images, MODIS Aqua images can be traced back to 2003, allowing access to longer-term data on phytoplankton blooms. While MODIS images do not have as long a temporal coverage as Landsat images, they provide daily data on blooms, which is beneficial for obtaining more precise spatiotemporal variation patterns [29]. Therefore, MODIS bloom data were selected to investigate the changes in phytoplankton blooms in the YRE and its adjacent waters after rapid urbanization. The objectives of this study are as follows: (1) to monitor the spatial and temporal variations in phytoplankton blooms in the YRE and the adjacent seas from 2003 to 2020 using MODIS data; (2) to explore the relationship between climatic factors and human activities and phytoplankton blooms in the YRE and its adjacent waters.




2. Materials and Methods


2.1. Study Area


This study selected the YRE and its adjacent waters as the study area (28°–32° N, 120°–124° E), which is one of the high-incidence areas of algae blooms in China’s coastal waters, as shown in Figure 1. The land area surrounding the YRE and its adjacent waters mainly includes the southern part of Jiangsu Province, the northern part of Zhejiang Province, and Shanghai, which is one of the fastest-developing regions in China. Compared to other marine areas, human activities in this region have become increasingly frequent, resulting in significantly higher concentrations of nitrogen and phosphorus in the seawater [30].The YRE and its adjacent waters receives an average of 890 km2 of diluted water and 3.97 × 1011 kg of sediment annually from the Yangtze River [31]. The hydrodynamic environment in the waters surrounding the YRE and its nearby areas is highly intricate. In addition to being influenced by the diluted water from the Yangtze River, it is also affected by the coastal currents along the Zhejiang and Fujian coasts near the shore (Zhe-Min coastal currents) and the Taiwan Warm Current further offshore. Moreover, the influence of the Yangtze River’s diluted water and the circulatory systems varies significantly across different seasons [32].




2.2. Remote Sensing Parameters for Phytoplankton Blooms


Dai et al. [28] have produced global coastal phytoplankton bloom data from 2003 to 2020 using MODIS Aqua images with a resolution of 1 km. This study downloaded the produced data from the zenodo website (https://doi.org/10.5281/zenodo.7359262 (accessed on 14 July 2024)) and extracted daily phytoplankton bloom data for the YRE and its adjacent waters from 2003 to 2020. In this study, the number of days with phytoplankton blooms occurring over a certain period for each pixel was defined as bloom intensity [13,28]. For a specific pixel, the monthly bloom intensity is the number of days that the bloom occurs within that month. Additionally, the area of blooms on each image was analyzed to determine the monthly and annual maximum bloom areas. Simultaneously, the total affected area by blooms was defined as the total number of pixels that have experienced a bloom at least once within a certain period. The total affected areas for both monthly and yearly periods were also calculated.




2.3. Environmental Variable Data


Temperature, precipitation, and wind speed are commonly regarded as important environmental factors affecting phytoplankton blooms [5,33,34,35]. Therefore, this study downloaded monthly precipitation, meridional wind speed, and zonal wind speed data from the climate reanalysis dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) at a resolution of 0.1° for the years 2003–2020 [36], and the monthly wind speed data were calculated. Monthly sea surface temperature (SST) data at a resolution of 1/12° for the Yangtze Estuary and its adjacent waters from 2003 to 2020 were collected from the E.U. Copernicus Marine Service Information (https://doi.org/10.48670/moi-00021 (accessed on 14 July 2024)). Monthly SST, precipitation, and wind speed were averaged to obtain the annual mean SST, precipitation, and wind speed data for the study area.



Land use can affect the nutrient runoff into the sea; therefore, this study also collected land use data from 2003 to 2020. Land use data for coastal cities within the study area were collected from the China land cover dataset (CLCD) [37] to analyze the impact of cropland, forest, water, and developed land on algal blooms. The parameters of relevant environmental variables used in this study are listed in Table 1.



In addition, statistical data on the volume of wastewater, ammonia nitrogen, and total phosphorus directly discharging into the sea in the study area since 2006 were obtained from the China Marine Ecological Environment Status Bulletin.




2.4. Statistical Analysis


Ensemble empirical mode decomposition (EEMD) is capable of decomposing non-linear and non-stationary time series signals into several intrinsic mode functions (IMFs) and a trend component [38], making it commonly used for the study of long-term changes [39]. In this study, EEMD was applied to the monthly data of algal bloom intensity, maximum affected area, total affected area, SST, precipitation, and wind speed, in order to investigate the long-term variation characteristics of these parameters.



Correlation analysis was used to discuss the relationships between variables. Linear regression was chosen to calculate the rate of change in algal bloom intensity for each pixel from 2003 to 2020 [40]. Correlation analysis and linear regression were both implemented using SPSS (Version 24.0). Statistical significance was determined based on the p-value. When p < 0.05, the relationship between the two variables is considered statistically significant. Conversely, when the p-value is greater than 0.05, the relationship is deemed statistically insignificant.



Generalized linear model (GLM) in Stata (Version 18.0) was used to determine the contribution rates of climatic factors and land use types to interannual changes in algal blooms. The variance inflation factor (VIF) was employed to identify and exclude collinear variables. When the VIF exceeds 10, it indicates significant collinearity among the factors, prompting the removal of such variables. Prior to utilizing the GLM for analysis, it is necessary to standardize each variable to mitigate the impact of scale differences [41]. The technical flow chart of this study is shown in Figure 2.





3. Results


3.1. Spatial Distribution of Phytoplankton Bloom Intensity


The spatial distribution characteristics of the annual average intensity of phytoplankton blooms in the YRE and its adjacent waters during 2003–2020 are illustrated in Figure 3. Overall, the annual average occurrence of phytoplankton blooms in the YRE and its adjacent waters was approximately 6.60 ± 5.65 days. Among these occurrences, 27.88% of the waters experienced more than 10 bloom events annually. It can be observed that phytoplankton blooms rarely occurred in the bays such as the YRE and Hangzhou Bay, as well as in the nearshore areas. As the distance from the coast increased, the frequency of phytoplankton blooms showed a trend of initially increasing and then decreasing.



Additionally, values of bloom intensities along several meridional and zonal transects were employed to conduct a more detailed analysis of spatial variations in bloom intensity, as illustrated in Figure 4. From Figure 4a, it could be observed that when the latitude was below 31° N, the peak occurrence frequency of phytoplankton blooms increased with increasing latitude, with the peak occurring further east. Conversely, when the latitude exceeded 31° N, the peak frequency decreased with increasing latitude, and the region of peak occurrence shifted westward.



Furthermore, the spatial distribution of phytoplankton bloom intensity across the four seasons was calculated and is illustrated in Figure 5. It can be concluded that the intensity of phytoplankton blooms was highest in summer (3.85 ± 3.46 days), with the largest area of high-intensity blooms, followed by autumn (1.88 ± 1.64 days) and spring (0.90 ± 0.78 days), while winter had very few blooms. In summer, 36.12% of the water areas had accumulated days of phytoplankton bloom exceeding 5 days, while in autumn, only 3.95% of the water areas had accumulated days of bloom exceeding 5 days. Meanwhile, regardless of the season, the intensity of phytoplankton blooms first increased and then decreased from the coastal regions to the open oceans.




3.2. Long-Term Changes in Phytoplankton Bloom Intensity


Based on daily phytoplankton bloom data, the monthly and annual average phytoplankton bloom intensities in the Yangtze Estuary and its adjacent waters were statistically analyzed, as depicted in Figure 6a. Phytoplankton bloom intensity typically peaked in July and August (1.71 days), while the lowest intensity was generally observed in January and February (0.0067 days). Throughout the year, the bloom intensity typically showed a trend of initially increasing and then decreasing. The annual average phytoplankton bloom intensity shows a pattern of continuous fluctuations, with the maximum value occurring in 2013 and the minimum value recorded in 2011. Strong bloom intensities were also observed in 2003, 2007, 2010, and 2017.



By applying EEMD to decompose the monthly bloom intensity, six IMFs and one trend component were derived, as illustrated in Figure 6a–h. The periods and variance contributions of each IMF were calculated and summarized in Table 2. The variation in bloom intensity was predominantly characterized by high-frequency components, where the IMF1 and IMF2 components contributed the most (84.87%), with periods of 4.04 months and 12.00 months, respectively. This indicated that the intensity of algal blooms primarily exhibits a one-year variation cycle, dominated by seasonal changes. Moreover, the trend component revealed that since 2003, the bloom intensity had exhibited a trend of initially increasing and then decreasing, with a turning point occurring between 2012 and 2013.



Furthermore, the change rate of bloom intensity for each pixel in the entire study area from 2003 to 2020 was calculated, as shown in Figure 7. In the coastal waters near Zhejiang, there is a general decreasing trend in bloom intensity, with an average change rate of −0.14 days/year. In the offshore areas, bloom intensity tends to increase, with an average change rate of 0.13 days/year. A total of 5.87% of the pixels showed a significant increasing trend in algal bloom intensity (p < 0.05), primarily in the offshore areas. North of 31° N, the region exhibited completely opposite characteristics. In coastal areas, bloom intensity generally rose, with a change rate of 0.09 days/year; whereas, offshore areas mostly showed a declining trend in bloom intensity, with a change rate of −0.16 days/year.




3.3. Long-Term Changes in the Annual Maximum Area and Total Affected Area of Phytoplankton Blooms


Utilizing daily data on phytoplankton blooms, the monthly and yearly maximum areas and cumulative impacted areas were calculated, and the data are illustrated in Figure 8a and Figure 9a, respectively. The monthly maximum area and cumulative affected area both reach their peak in July and their lowest point in February, exhibiting an overall pattern of increasing and then decreasing within the year. The annual maximum area of algal blooms in 2007, 2013, and 2015 represented significant peaks over the past 20 years, exceeding 4 × 104 km2, while the maximum area in 2009 was at its lowest level, at only 2.21 × 104 km2. The peaks and troughs of the annual total affected area occurred slightly earlier than the maximum area, reaching the highest value of 7.72 × 104 km2 in 2012 and the lowest value of 6.42 × 104 km2 in 2008.



Meanwhile, applying EEMD to decompose the monthly maximum area and the total affected area yielded six IMFs and one trend component for each, as illustrated in Figure 8 and Figure 9. The maximum area primarily exhibited periodic changes of 3.15, 11.37, and 14.90 months, with contributions of 24.13%, 64.21%, and 10.20%, respectively. The periodic variations in the total affected area at cycles of 3.15 months and 12.00 months together account for 95.11% of the total contribution. Therefore, both the maximum area of phytoplankton blooms and the total affected area primarily exhibited seasonal variations. Based on the trend components obtained, the total affected area first increased and then decreased, with a turning point between 2010 and 2011. Similarly, the maximum area also showed an initial increase followed by a decrease, but the turning point occurred later, around 2014.





4. Discussion


4.1. The Relationship Between Changes in Phytoplankton Blooms and Climate in the YRE and Its Adjacent Waters


Temperature, rainfall, and wind speed are commonly recognized as important factors influencing the occurrence of phytoplankton blooms [5,33,34,35]. This study discussed the relationships between phytoplankton blooms and SST, precipitation, and wind speed in the YRE and its adjacent waters across different time scales. SST, rainfall, and wind speed also exhibited strong intra-annual cyclical patterns, with mean periods of 3.13 and 13.29 months (Table S1). This periodicity was consistent with the main cycles observed in bloom intensity, maximum bloom area, and total affected area. The correlation between each climatic component and phytoplankton bloom parameter component, after EEMD, was calculated and illustrated in Figure 10. SST showed a significant positive correlation with bloom intensity, maximum bloom area, and total affected bloom area in the IMF2 component (r = 0.85, 0.79, 0.89), indicating that temperature significantly influenced seasonal variations in phytoplankton blooms. This was consistent with existing research findings, which state that an increase in temperature promotes the growth of phytoplankton [40,42]. Additionally, a warmer previous winter is also a factor that leads to the outbreak of phytoplankton blooms the following year [43]. The winter SSTs in 2006–2007, 2009–2010, and 2016–2017 were significantly higher than those in other years, which may have contributed to the peaks in phytoplankton bloom intensity observed during those years. Additionally, based on the GLM results (Figure 11), it was shown that the contribution rates of SST to the long-term changes in phytoplankton blooms were less than 6.14%, indicating that it was not a major factor affecting the long-term changes in blooms. Additionally, the influence of precipitation and wind speed was less pronounced than that of SST, as evidenced by Text S1.




4.2. The Relationship Between Changes in Phytoplankton Blooms and Human Activities in the YRE and Its Adjacent Waters


The GLM results showed that changes in land use were an important factor affecting the long-term changes in bloom intensity, maximum area, and total affected area in the YRE and its adjacent waters. The combined contribution of cropland, forest, and developed land could reach up to 65.29%. The changes in land use reflect the impact of human activities [44], indicating that human activities have a significant effect on the variations in phytoplankton blooms in the YRE and its adjacent waters that cannot be overlooked. Developed land had the greatest impact on phytoplankton blooms among several land use parameters, with a maximum contribution of up to 32.01%. The contributions of other land use types could be observed in Table S2 and Text S2. With the development of coastal waters and the intensification of intertidal zone activities, domestic and industrial wastewater in many high-intensity activity areas was directly discharged into the sea, introducing a large amount of N, P, and other substances, which in turn triggered the outbreak of phytoplankton blooms [45,46]. The spatial distribution of algal bloom intensity in the YRE and its adjacent waters was associated with the spatial distribution of land use. The bloom intensity was higher in the waters around southern Jiangsu and Shanghai, where developed land and cropland predominate, compared to the waters around northern Zhejiang. Since around 2012, the intensity of algal blooms, maximum area, and total affected area have begun to decline. This trend was closely related to the formulation and implementation of certain national policies. As can be observed from Figure 12, since 2012, coastal cities have begun to control the pace of developed-land development, resulting in a continuous decrease in the growth rate of developed land. On the other hand, the rate of forest reduction has also decreased. Measures such as returning farmland to forest have curbed regional soil erosion, increased the land’s capacity to store substances, and restricted the rapid influx of pollutants into the sea. These factors had collectively helped reduce the intensity and extent of algal blooms. Furthermore, in 2010, China initiated the development of its first national marine pollution prevention plan, which was enacted in 2012. This plan set specific targets for controlling the emissions of major pollutants by coastal cities and established nationwide standards for the quality of coastal waters. This plan significantly enhanced measures to prevent and control land-based pollution. From 2012 onwards, the direct discharge of ammonia nitrogen and total phosphorus into the sea showed a fluctuating downward trend, further contributing to the reduction in the intensity and area of algal blooms.




4.3. The Relationship Between Changes in Phytoplankton Blooms and Hydrodynamic Environment in the YRE and Its Adjacent Waters


The study area is mainly influenced by the Yangtze River’s diluted water, the Zhe-Min coastal current, and the Taiwan Warm Current [47,48,49]. The differences in the Yangtze River’s diluted water during different seasons can be found in Text S3. Figure 13 illustrates the differences in algal bloom intensity variations among the four regions influenced by the Yangtze River’s diluted water, Zhe-Min coastal current, and Taiwan Warm Current. When comparing the differences in algal bloom intensity between Region 1 and Region 2, which are both affected by the Yangtze River diluted water, it was found that the variation between the two regions was primarily significant before 2011. In contrast to Region 1, Region 2 experienced a fluctuating but overall decreasing trend in algal bloom intensity during the spring, summer, fall, and across the entire year from 2003 to 2011, and the decrease was more notable. This is likely mainly due to the impact of the Three Gorges Dam (TGD). The TGD has altered the monthly distribution of the Yangtze River’s outflow into the sea, particularly impacting sediment during the May–September period [50]. The dam’s retention effect on sediment is more pronounced during the storage phase of water impoundment. Region 2 is primarily influenced by the summer Yangtze River plume, thus exhibiting a decreasing trend in algal bloom intensity. Meanwhile, Region 1 is mainly affected by the winter Yangtze River plume, so the decreasing trend in algal bloom intensity was not as pronounced. Therefore, the operation of the TGD has reduced the intensity of algal blooms in regions affected by the summer Yangtze River plume. Additionally, the Zhe-Min coastal current originates from the Hangzhou Bay, formed by the confluences of the Yangtze River and Qiantang River, primarily occurring in winter [48]. Therefore, the trends in the changes in Region 3 were similar to those in Region 1. In contrast, Region 4, influenced by the high-temperature and high-salinity Taiwan Warm Current, exhibited an increasing trend in algal bloom intensity. The Taiwan Warm Current primarily originates from the waters of the Taiwan Strait during summer. Previous study [51] have found that SST in most areas of the Taiwan Strait show a significant upward trend during the summer and autumn months. Specifically, an average increase of 0.22 °C per decade in summer and 0.19 °C per decade in autumn has been observed [51]. Therefore, the increasing SST of the Taiwan Warm Current, coupled with the continuous accumulation of nutrient inputs, has led to a growing possibility of algal bloom outbreaks in offshore regions.





5. Conclusions


	(1)

	
Spatially, areas frequently affected by phytoplankton blooms were concentrated around 123° E, with relatively fewer blooms occurring near the shore and in the open sea. Temporally, before 2012, the intensity of blooms was increasing, but since 2012, the intensity has been decreasing;




	(2)

	
SST primarily influenced the intra-annual variations in phytoplankton blooms in the YRE and its adjacent waters, while the impact of precipitation on algal blooms had a lag effect;




	(3)

	
Land use changes and the implementation of national policies had primarily driven the long-term variations in phytoplankton blooms;




	(4)

	
The operation of the Three Gorges Dam had reduced the intensity of algal blooms in areas affected by the summer Yangtze River diluted discharge.
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Figure 1. Study area. 
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Figure 2. The technical flow chart of this study. 
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Figure 3. Spatial distribution characteristics of average phytoplankton bloom intensity from 2003 to 2020. 
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Figure 4. Changes in phytoplankton bloom intensity along several meridional (a) and zonal (b) transects. 
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Figure 5. Spatial distribution of average phytoplankton bloom intensity in the four seasons. 
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Figure 6. Characteristics of long-term changes in the annual average intensity of phytoplankton blooms. Subfigure (a) indicates the change of monthly and annual mean bloom intensity from 2003 to 2020. Subfigures (b–h) represent IMF1-6 and trend characteristics after EEMD decomposition, respectively. 
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Figure 7. Spatial distribution of the annual average intensity change rate of phytoplankton blooms. 
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Figure 8. Characteristics of long-term changes in the annual maximum area of phytoplankton blooms. Subfigure (a) indicates the change of monthly and annual maximum area from 2003 to 2020. Subfigures (b–h) represent IMF1-6 and trend characteristics after EEMD decomposition, respectively. 
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Figure 9. Characteristics of long-term changes in the annual total affected area of phytoplankton blooms. Subfigure (a) indicates the change of monthly and annual total affected area from 2003 to 2020. Subfigures (b–h) represent IMF1-6 and trend characteristics after EEMD decomposition, respectively. 
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Figure 10. The correlation among the seven IMFs of SST, precipitation, and wind speed and the intensity, maximum area, and total affected area of algal blooms. 
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Figure 11. The contribution of environmental variables to the long-term changes in algal bloom intensity, maximum area, and total affected area. 
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Figure 12. The relationship between the change rate of developed land and the intensity, maximum area, and total affected area of algal blooms. 
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Figure 13. Differences in algal bloom intensity among the four regions influenced by the Yangtze River’s diluted water, Zhe-Min coastal current, and Taiwan Warm Current. 
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Table 1. Specific parameters of environmental variable data.
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	Parameter
	Spatial Resolution
	Temporal Resolution
	Temporal Range
	Data Source





	SST
	1/12°
	Monthly
	2003–2020
	E.U. Copernicus Marine Service Information



	Precipitation
	0.1°
	Monthly
	2003–2020
	ECMWF



	Wind speed
	0.1°
	Monthly
	2003–2020
	ECMWF



	Land use
	30 m
	Yearly
	2003–2020
	CLCD










 





Table 2. Periods and variance contributions of IMFs and trends of algal intensity, maximum area and total affected area of phytoplankton blooms. * denotes that the IMF has passed significance testing (p < 0.05).
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Parameters

	
IMF 1

	
IMF 2

	
IMF 3

	
IMF 4

	
IMF 5

	
IMF 6

	
Trend






	
Intensity

	
Period (months)

	
4.04 *

	
12.00 *

	
12.71 *

	
36.00

	
108.00

	
108.00

	
-




	
Contribution (%)

	
30.84

	
54.03

	
11.43

	
1.88

	
0.51

	
0.50

	
0.81




	
Maximum area

	
Period (months)

	
3.15 *

	
11.37 *

	
14.90 *

	
39.27

	
108.00

	
108.00

	
-




	
Contribution (%)

	
24.13

	
64.21

	
10.20

	
0.83

	
0.33

	
0.15

	
0.15




	
Total affected area

	
Period (months)

	
3.15 *

	
12.00 *

	
18.00

	
39.27

	
72

	
216

	
-




	
Contribution (%)

	
15.94

	
79.17

	
3.22

	
0.71

	
0.07

	
0.27

	
0.63
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