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Abstract

:

Debris flows are highly unpredictable and destructive natural hazards that present significant risks to both human life and infrastructure. Despite advances in machine learning techniques, current predictive models often fall short due to the insufficient and low-quality historical data available for training. In this study, we introduce a hybrid approach that combines physical model experiments with a gradient boosting regression model to enhance the accuracy and reliability of debris flow predictions. By integrating experimental data that closely simulate real-world flow conditions, the gradient boosting regression model is trained on a more robust foundation, enabling it to capture the complex dynamics of debris flows under various conditions. Selecting slide mass, slope length, yield stress, and slope angle as explanatory variables, we focus on quantify two critical debris flow parameters—frontal thickness and velocity—at indicated locations within the flow. The model demonstrates strong predictive performance in forecasting these key parameters, achieving coefficients of determination of 0.938 for slide thickness and 0.934 for slide velocity. This hybrid approach not only simplifies the prediction process but also significantly improves its precision, offering a valuable tool for real-time risk assessment and mitigation strategies in debris flow-prone regions.
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1. Introduction


Mountain torrents, characterized by their rapid water flow and steep gradients, are a major trigger for debris flow in mountainous regions. These powerful torrents can rapidly mobilize loose debris, transforming it into destructive debris flows with high velocity and the capacity to transport large volumes of material with little warning, that pose significant risks to infrastructure and human life [1,2]. Effective prediction of dynamics of debris flow induced by mountain torrent is crucial for mitigating their impact and implementing early warning systems. Traditional models based on empirical observations and theoretical frameworks have been widely used in debris flow predictions [3]. However, these approaches often struggle to fully capture the complex and non-linear behaviors inherent in debris flows, leading to challenges in accurately predicting their occurrence and movement.



Debris flows can be characterized as either viscoplastic fluids or granular flows, depending on their composition, rheological properties, and flow dynamics. Viscoplastic fluids are continuous media that exhibit both viscous and plastic behavior, meaning they can flow like a liquid when stressed beyond a certain yield point but behave like a solid under lower stress conditions. Granular flows are dominated by the interactions between discrete solid particles, where flow behavior is largely influenced by particle collisions, friction, and rearrangement within the debris mass. The choice of model (viscoplastic fluid or granular flow) depends on the relative importance of the fluid phase versus the solid particle interactions in the debris flow. For mountain torrent-induced debris flows, adopting the viscoplastic fluid assumption is more reasonable, as it better accounts for debris flows where the material is a mixture of fine particles and water, resulting in a behavior that exhibits both viscous and plastic characteristics. The Herschel–Bulkley model, a widely used rheological model for viscoplastic fluids, effectively describes this behavior by incorporating key parameters such as yield stress, consistency, and flow index [4,5]. These parameters allow for a more accurate representation of the debris flow dynamics, especially when integrated with additional theoretical frameworks like the kinematic wave model and lubrication theory, which further refine the understanding of debris flow movement and its influencing factors [6,7,8].



Recent research has explored a wide range of modeling techniques to predict debris flows, including theoretical models, numerical simulations, and empirical equations [9,10,11]. However, these models often rely on simplifications that fail to fully capture the complexity of real-world debris flows. For instance, theoretical models typically assume idealized conditions, and while numerical simulations can provide more accurate results, they tend to be computationally intensive and struggle to capture the highly non-linear interactions present in debris flows [12,13,14]. Empirical models, though useful for site-specific predictions, often lack the generalizability required for broader applications [15,16,17].



Over the recent decade, machine learning has emerged as a powerful tool in debris flow prediction, utilizing large datasets to uncover patterns and correlations that may not be immediately evident through traditional methods. Techniques such as Support Vector Machines, Random Forests, and Neural Networks have shown promise [18,19,20], but these approaches often require careful tuning to avoid overfitting, especially in data-scarce regions [21,22]. Furthermore, hybrid models that integrate machine learning with physical simulations have garnered attention for combining the strengths of both approaches, improving prediction accuracy and robustness [23,24].



Recent advancements in deep learning, such as Convolutional Neural Networks and Recurrent Neural Networks, have significantly enhanced the accuracy of debris flow predictions by capturing complex spatiotemporal patterns [25,26,27]. Additionally, hybrid models combining deep learning with physical-based simulations have shown great potential, particularly in addressing the challenges posed by different geographic and climatic contexts [28,29,30]. Emerging approaches like transfer learning and few-shot learning hold promise for making debris flow models more robust in regions with limited data, allowing for more generalizable predictions. As the body of research in this area continues to expand, integrating real-time data from monitoring systems and satellite imagery with machine learning algorithms may further refine prediction capabilities and provide new insights into debris flow dynamics.



Deep learning models that rely on real-world case studies often face limitations due to the scarcity and quality of available data, leading to potential overfitting and reduced model performance in new or unseen scenarios [31,32]. These challenges underscore the need for a more integrated approach that can account for the intricate dynamics of debris flows and offer reliable predictions. In this study, we address these challenges by conducting physical model experiments, which allow us to capture the real-world complexities of debris flow behavior under controlled conditions. Unlike real-world case studies, where data may be sparse or incomplete, experimental data offer a controlled environment that generates high-quality, diverse, and comprehensive datasets. By systematically varying parameters such as slide mass, slope angle, and yield stress, the experimental data can reflect a wide range of debris flow behaviors, which improves the model’s ability to generalize and reduces the risk of overfitting. This is particularly important when building predictive models for real-world applications, where accurate predictions are essential for risk assessment and early warning systems.



To model the complex relationships in the experimental data, we use gradient boosting regression (GBR), which is effective for handling non-linear interactions and capturing the intricacies of debris flow behavior. GBR was chosen due to its robustness, flexibility, and ability to provide interpretable results, which are crucial when building models that must be validated against physical data [33]. While other techniques like XGBoost or LightGBM may offer more sophisticated approaches for handling large datasets or complex interactions, GBR strikes a balance between model simplicity, computational efficiency, and predictive accuracy . Its adaptability allows it to handle varying scenarios and complex interactions without requiring extensive modifications or hyperparameter tuning, which makes it well suited for our experimental dataset. The combination of physical modeling and machine learning in this study not only provides a more reliable approach to debris flow prediction but also enhances the interpretability and practicality of the results. By leveraging experimental data, the GBR model can more accurately capture the non-linearities and complexities inherent in debris flows, while avoiding the limitations of models based on assumptions or oversimplifications.




2. Experiments


2.1. Physical Model


We provide insights into the dynamics of debris flows and their potential impact on buildings located downslope. This analysis can be simplified to examining the characteristics of debris flow as it reaches a building positioned at the impacting position. The simplified physical model, illustrated in Figure 1, serves for understanding the critical parameters that influence the impact of debris flows on buildings [34,35]. By examining the frontal depth and velocity of the slide material on impact, this study aims to offer valuable insights for risk assessment of debris flow hazards.




2.2. Experimental Facilities


Figure 2 provides a comprehensive illustration of both the conceptual design and the practical implementation of the experimental setup, while also offering visual evidence of the material’s behavior under the test conditions. The experimental facilities consist of two parts. The first part was an inclined plane, 1.5 m long and 0.12 m wide, which could be tilted at angles  θ , ranging from   25 °   to   50 °  . The side walls of the slope were made of PVC. The second part was a glass-sided flume, 2.5 m long, 0.4 m deep and 0.12 m wide. The inclined plane, serving as the core element of the experiment, was meticulously designed to allow precise control over the angle of inclination. The slide material was initially contained in a box located at the chute entrance, closed by a locked gate 0.2 m high and 0.12 m wide. Once the gate was released, the slide material accelerated under gravity. This design ensured that the slide material can be released from a specific height, facilitating controlled flow down the slope for accurate data collection. A camera with a frequency of 400 frames per second (fps) and a resolution of 600 × 800 pixels was used to capture the flow behavior of the slide material.




2.3. Experimental Material


Debris flows have often been considered as single-phase viscouplastic fluid [36]. Carbopol Ultrez 10, hereafter abbreviated as Carbopol, is adopted as the slide material to mimic debris flow. The material is an excellent material for experimental studies of viscoplastic flow due to its unique and consistent rheological properties, which follow the Herschel–Bulkley model—a generalized model for viscouplastic fluids—whose constitutive equation is:


  τ =  τ c  + μ   γ ˙  n   



(1)




where   τ c   is the yield stress,   γ ˙   the shear rate,  μ  the consistency and n a flow behavior index. This model accurately describes the material’s flow characteristics by incorporating yield stress, consistency index, and flow behavior index, making it ideal for representing viscoplastic behavior under different shear conditions.



As a viscoplastic material, Carbopol exhibits well-defined yield stress, transitioning from a solid-like state under low stress to a fluid-like state when the stress exceeds a critical threshold. Unlike some viscoplastic materials that exhibit time-dependent viscosity changes, Carbopol maintains a stable structure over time, simplifying the analysis of steady-state flow behavior and ensuring consistent results throughout experiments. In addition, the material’s viscosity can be easily adjusted by altering the polymer concentration, providing researchers with the flexibility to study a wide range of rheological behaviors. Figure 3 shows the variation of shear stress with shear rate for Carbopol of different concentrations.





3. The Mathematical Procedure of GBR Model


Gradient boosting is a machine learning technique that extends the concept of boosting into a functional space, targeting pseudo-residuals instead of the standard residuals used in conventional boosting approaches. This technique produces a predictive model composed of an ensemble of weak learners, typically simple decision trees that make minimal assumptions about the data. The gradient-boosted tree model is constructed incrementally, like other boosting methods, but it stands out by allowing the optimization of any differentiable loss function. Figure 4 illustrates the flow chart of the GBR model [37].



The GBR model begins with an initial guess for the model, typically the mean of the target values. For a dataset with n observations, where the target variable is y, the initial model    F 0   ( x )    is defined as


   F 0   ( x )  =   1 n    ∑  i = 1  n   y i   



(2)







This initial model is a constant function, which serves as the starting point for further iterations. The model is improved iteratively by adding a new function (usually a decision tree) at each step. The goal at each iteration is to find a function    h m   ( x )    that, when added to the current model    F  m − 1    ( x )   , reduces the overall loss. At each iteration m, we calculate the residuals, which are the negative gradients of the loss function with respect to the current model’s predictions. For the squared error loss function, the residuals   r  i   ( m )    are calculated as


   r  i   ( m )   =  y i  −  F  m − 1    (  x i  )   



(3)







These residuals represent the errors of the current model and are the targets for the next decision tree. A new decision tree    h m   ( x )    is fitted to the residuals. This tree is selected to minimize the residual sum of squares:


   h m   ( x )  = arg  min h   ∑  i = 1  n     r  i   ( m )   − h  (  x i  )   2   



(4)







The function    h m   ( x )    is the weak learner that best approximates the residuals at iteration m. The current model is updated by adding the new tree to the previous model, scaled by a learning rate  ν :


   F m   ( x )  =  F  m − 1    ( x )  + ν ·  h m   ( x )   



(5)







The learning rate  ν  controls the contribution of each new tree, with smaller values leading to more gradual updates and potentially better generalization. The update step can be interpreted as performing a gradient descent in function space. The residuals   r  i   ( m )    are the negative gradients of the loss function, and adding the new tree corresponds to moving in the direction that most reduces the loss:


   F m   ( x )  =  F  m − 1    ( x )  − ν ·  ∇  F  m − 1    L  ( y ,  F  m − 1    ( x )  )   



(6)







For a general differentiable loss function   L ( y , F ( x ) )  , the gradient at each point is


   r  i   ( m )   = −      ∂ L (  y i  , F  (  x i  )  )   ∂ F (  x i  )      F  ( x )  =  F  m − 1    ( x )     



(7)







The choice of loss function   L ( y , F ( x ) )   depends on the nature of the problem. The most common loss function in regression problems is the mean squared error:


  L  ( y , F  ( x )  )  =   1 2    ∑  i = 1  n    (  y i  − F  (  x i  )  )  2   



(8)







For robust regression, the Huber loss function can be used, which is less sensitive to outliers:


  L  ( y , F  ( x )  )  =  ∑  i = 1  n         1 2     (  y i  − F  (  x i  )  )  2       if  |   y i  − F  (  x i  )   | ≤ δ         δ · |   y i  − F  (  x i  )   | −    1 2    δ 2     otherwise      



(9)







The residuals for the Huber loss would involve a conditional gradient calculation:


   r  i   ( m )   =       y i  −  F  m − 1    (  x i  )       if  |   y i  −  F  m − 1    (  x i  )   | ≤ δ        δ · sign (  y i  −  F  m − 1    (  x i  )  )    otherwise      



(10)







Regularization is crucial to prevent overfitting in the GBR model. The most common regularization techniques include the following:



The learning rate  ν  acts as a shrinkage parameter, reducing the influence of each new tree. The updated model with shrinkage is Equation (5).



Smaller values of  ν  typically require more iterations M but can lead to better model performance. Instead of using the entire dataset to fit each tree, subsampling uses a random subset of the data. If  α  is the fraction of the dataset used for each tree, then


  Sample  Size = α · n  



(11)







The complexity of each tree can be controlled by parameters such as maximum depth, minimum samples per leaf, and minimum samples per split. To prevent the model from overfitting, the tree depth is limited to d:


  Max  Depth = d  



(12)







After M iterations, the final model is a sum of the initial model and all the decision trees:


  F  ( x )  =  F 0   ( x )  +  ∑  m = 1  M  ν ·  h m   ( x )   



(13)







The GBR model is a powerful method that builds a predictive model in a stage-wise fashion by sequentially adding decision trees that correct the errors of the previous model. The model is refined iteratively, with each tree fitting the residuals of the current model and updating the model’s predictions. Several key parameters, such as number of boosting stages (n estimators), maximum depth and learning rate were tuned to achieve the best performance. A higher learning rate may speed up convergence but can also lead to overfitting, while a larger number of n estimators may improve accuracy at the cost of increased computational time. On the other hand, overly low maximum depth might result in underfitting, failing to capture complex patterns in the data. Hyperparameter optimization was carried out using a grid search, aiming to find the most optimal combination of parameters for the best predictive performance. Every combination was evaluated through cross-validation to identify the optimal set of hyperparameters. The training process was conducted using multi-core CPU resources to parallelize operations, ensuring computational efficiency. Given the relatively low computational cost of the model, it was trained on machines with sufficient memory to handle the dataset efficiently, ensuring that the training process remained manageable despite the number of boosting stages.




4. Results


4.1. Input Variables and Mathematical Representations


When training a machine learning model to predict fluid thickness   s 0   and velocity   u 0   at a specific position   l s  , it is crucial to carefully select input variables that strongly relate to the underlying dynamics of the system. The chosen variables should be relevant to the fluid’s behavior, independent to avoid multicollinearity, and possess significant predictive power based on established physical laws or prior research. Figure 5 illustrates the variables involved in the theoretical analysis of the problem. The solid line denotes the initial stage, that is, the material is at rest. The dash line denotes the second stage, where the material moves along the slope and reaches the impacting position. Details of the theoretical basis can be seen in Appendix A.



In the context of the Herschel–Bulkley fluid dam-break problem, several key variables emerge as important factors in the model. Initial height   h 0   and initial length   l 0   play critical roles in determining the initial volume, which impacts how the fluid spreads along the slope. Distance l is the position where the thickness and velocity are being predicted. It is directly related to the target values   h 0   and   u 0  , making it a crucial variable. Time t affects how far and how fast the fluid has moved, capturing the temporal evolution of the fluid dynamics. Yield stress   τ y  , consistency index k, and flow behavior index n describe the rheological behavior of the fluid. Fluid density  ρ  affects the gravitational force acting on the fluid, influencing both velocity and pressure distribution. The slope angle  θ  determines the gravitational force component driving the fluid down the slope, affecting the speed and extent of fluid spreading. As a fundamental parameter driving the flow, gravitational acceleration g affects both the velocity and deformation of the fluid body.



The relationship between these input variables and the target outputs—fluid thickness   s 0   and velocity   u 0  —can be expressed mathematically as


  Y = f  ( X )  = f   h 0  ,  l 0  ,  l s  , t ,  τ y  , k , n , ρ , θ , g   



(14)




where   X =   h 0  ,  l 0  , l , t ,  τ y  , k , n , ρ , θ , g    represents the vector of input variables,   Y =   s 0  ,  u 0     represents the vector of output variables, and   f ( · )   represents the machine learning model mapping the input variables to the outputs. In addition to the above-introduced parameters, several other critical factors—such as runout path, flow duration, shear strength, vegetation, porosity, and water content—also influence debris flow behavior. However, these parameters were not included in the current study due to the increased complexity they would introduce to the experimental design. As a result, we focused on the most impactful and manageable parameters. Future research could aim to design more realistic and data-rich experiments that incorporate these additional factors, allowing for a more nuanced model that better reflects real-world debris flow dynamics.



As indicated in Figure 5, the slide material at the initial stage is modeled as rectangular forms. The initial height   h 0  , initial length   l 0  , and density  ρ  of the fluid can be combined into a single variable representing the initial mass    m I  = ρ  h 0   l 0   . The fluid density  ρ  is constant in the experiments, which simplifies the modeling but also presents a limitation. However, it is challenging to find other materials whose rheological parameters can be regularly changed in the laboratory, limiting our ability to explore the effects of varying density on the model. Time t, representing the duration taken for the fluid to reach a specific position   l s  , inherently depends on the initial settings such as volume and initial flow conditions. Gravitational acceleration g is a constant and does not contribute to variability in the model, so it is excluded from the inputs. For rheological properties, yield stress   τ y  , consistency index k, and flow behavior index n are highly correlated (See Figure 6). To streamline the model while retaining essential information about the fluid’s behavior, yield stress   τ y   is selected as the representative variable for these properties. This allows the model to focus on a single parameter that captures the fluid’s critical flow characteristics.



The refined set of input variables includes the slide mass   m I  , distance   l s  , yield stress   τ y  , and slope angle  θ . These variables collectively capture the most critical aspects of the fluid’s behavior and the environmental conditions that influence its motion. The relation between these refined input variables and the target outputs—fluid thickness   s 0   and velocity   u 0  —can be expressed as


  Y = f  ( X )  = f   m I  ,  l s  ,  τ y  , θ   



(15)




where   X =   m I  ,  l s  ,  τ y  , θ    represents the vector of input variables, while   Y =   s 0  ,  u 0     represents the vector of output variables. The function   f ( · )   denotes the machine learning model that maps the input variables to the outputs. See Table 1 for the list of the explanatory variables and target variables. Reducing the number of input variables simplifies the model, reduces computational complexity, and avoids potential overfitting. With the reduced set of input variables, the next steps involve training a machine learning model using this simplified input set.




4.2. Experimental Results


The slide thickness on impact   s 0   and velocity on impact   u 0   were estimated using the material’s frontal velocity and thickness. The initial parameters were varied symmetrically: the slope length   l s   was set to 0.85 m, 0.95 m, and 1.05 m; the initial slide mass   m I   ranged from 2 to 5.8 kg; the slope angle  θ  varied between   6 / π   and   4 / π  ; and the yield stress of Carbopol   τ c   was 60 Pa, 75 Pa, and 90 Pa. Within the experimental range,   s 0   varied between 0.025 m and 0.05 m, and   u 0   ranged from 1.1 m/s to 2.4 m/s.



Figure 7 further elucidates the variation of   s 0   and   u 0   to the initial settings. In general,   s 0   increases with the increase in   m I  ,  θ , and   τ c  , and decreases with   l s  .   u 0   increases with an increase in   m I   and  θ , while it decreases with an increase   τ c   and   l s  . However, these trends are non-linear and complex, making it challenging to directly construct a fitting equation to quantify these interactions. Even though numerical simulations and theoretical models have provided valuable insights, they often prove too complicated for the purpose of practical engineering applications. In this situation, machine learning methods, such as the GBR model, emerge as a promising alternative.




4.3. Regression Analysis Using the GBR Model


The dataset consists of 93 experimental tests, which are randomly split into two subsets: 80% of the data are used for training the model, while the remaining 20% are reserved for testing. Figure 8 shows the variation of the mean squared error (MSE) as a function of the number of trees (epochs) during the training process of the predictive model. The plot reveals a steep decline in the MSE at the early stages, indicating rapid improvement in model accuracy as more trees are added. As the number of trees increases beyond approximately 20, the rate of the MSE reduction diminishes, eventually plateauing. This means that the model has reached a point of diminishing returns in terms of accuracy improvement. The curve’s asymptotic behavior demonstrates the model’s efficiency in learning the underlying patterns in the data during the early stages of training.



Figure 9 illustrates the performance of the predictive model by comparing the observed and predicted values for the variables   s 0   and   u 0   across both training and testing datasets. Figure 9a shows the predicted versus observed values for   s 0   in the training data, where the points closely align with the diagonal line, indicating a strong fit. Figure 9b presents the same comparison for   u 0   in the training data, also demonstrating a high level of accuracy. Figure 9c,d display the model’s performance on the testing data for   s 0   and   u 0  , respectively. While the testing data points show a slightly larger deviation from the diagonal, they still generally follow the trend, reflecting the model’s ability to generalize effectively to unseen data. Overall, the figure confirms the model’s strong predictive accuracy for both variables across different datasets.



Figure 10 presents the error histogram distribution for both the training and testing datasets of the variables   s 0   and   u 0  . The training errors for   s 0   are highly concentrated around zero, with the majority of errors falling within the range of   − 0.00005   to   0.00005  , indicating very low prediction errors during training. The testing errors for   s 0  , where the errors are more dispersed, range from approximately   − 0.003   to   0.002  , with a notable decrease in frequency compared to the training set. The training errors for   u 0   are also tightly clustered around zero, predominantly within the range of   − 0.002   to   0.002  , reflecting the model’s strong performance in predicting   u 0   during training. The testing errors for   u 0  , showing a wider distribution of errors ranging from approximately   − 0.05   to   0.10  , with a clear increase in variability, indicating more significant prediction challenges when applied to unseen data.



Figure 11 presents the probability density function (PDF) distributions of the relative residuals for the variables   s 0   and   u 0  . The PDF for   s 0   (blue curve) is centered around a relative residual of approximately   − 0.025   to   0.025  , with the peak density occurring near zero, indicating that the majority of residuals are small, suggesting good model accuracy. The distribution is relatively symmetric, with a slight skew towards negative residuals. The PDF for   u 0   (orange curve) is also centered around zero but exhibits a wider spread, with residuals ranging more broadly from approximately   − 0.075   to   0.075  . The peak density for   u 0   is lower than that of   s 0  , around 10, indicating more variability in the residuals. The wider spread and lower peak density suggest that the predictions for   u 0   have greater variance compared to   s 0  . Overall, the PDFs indicate that while both variables are centered near zero, the model’s predictions for   u 0   are less concentrated and more spread out, reflecting a larger range of prediction errors compared to   s 0  .



Figure 12 displays the cumulative distribution function (CDF) of the absolute relative residuals for the variables   s 0   and   u 0  . The CDF for   s 0   (blue curve) shows that approximately 50% of the absolute relative residuals are below 0.01, indicating that half of the predictions for   s 0   have very small errors. The curve rapidly rises and reaches close to 100% cumulative probability by an absolute relative residual of 0.04, showing that almost all residuals for   s 0   are within this small range. In contrast, the CDF for   u 0   (orange curve) indicates that 50% of the absolute relative residuals are below approximately 0.02, which is double the error observed for   s 0  . The curve for   u 0   also rises more gradually, reaching 100% cumulative probability at around 0.08, suggesting that the predictions for   u 0   exhibit more variability and larger errors compared to those for   s 0  .



Evaluating the performance of predictive models is essential to ensure their accuracy and reliability. To achieve this, several key metrics are employed, each offering unique insights into the model’s effectiveness. The mean squared error (MSE) measures the average squared differences between actual and predicted values, with a focus on penalizing larger errors. The mean absolute error (MAE) provides a straightforward measure of the average magnitude of errors, regardless of their direction. The coefficient of determination (  R 2  ) quantifies the proportion of variance in the dependent variable that can be explained by the independent variables. These metrics offer a comprehensive understanding of the model’s predictive capabilities, whose expressions are as follows:


  MSE =   1 n    ∑  i = 1  n    (  y i  − F  (  x i  )  )  2   



(16)






  MAE =   1 n    ∑  i = 1  n   |  y i  − F  (  x i  )  |   



(17)






   R 2  = 1 −     ∑  i = 1  n    (  y i  − F  (  x i  )  )  2     ∑  i = 1  n    (  y i  −  y ¯  )  2      



(18)




where    y ¯  =   1 n    ∑  i = 1  n   y i    is the mean of the observed values.



Table 2 presents the evaluation criteria for the predictive model, specifically assessing its performance on both the training and testing datasets for two output variables,   s 0   and   u 0  . The metrics include the MSE, MAE, and   R 2  . For the training dataset, the model exhibits extremely low MSE values and high   R 2   values for both   s 0   and   u 0  , indicating an excellent fit with minimal prediction error. However, while the testing dataset also shows strong performance with reasonably low MSE and high   R 2   values, the errors are slightly higher compared to the training set, reflecting the model’s ability to generalize to new data while still maintaining a high level of accuracy. This table effectively summarizes the model’s accuracy and reliability across different datasets and output variables.



The results of the experiments are highly sensitive to changes in various parameters, such as slide mass, distance, yield stress, slide density, and slope angle, each of which can significantly impact the outcomes. Table 3 shows the results of the sensitive analysis based on Sobol first-order sensitivity indices. The slide mass (0.45) exhibits the highest sensitivity index, indicating that it is the most influential parameter in determining the model’s output, such as landslide displacement. Variations in the slide mass result in the most significant changes in the model’s response, making it crucial for accurate predictions. Slope angle (0.35) also has a relatively high impact, but its influence is slightly less than that of the slide mass. Yield stress (0.20) and slide density (0.25) contribute moderately to the output variation; while important, its effect is less significant than that of the slope angle and slide mass.





5. Discussion


This study introduces a hybrid approach to debris flow prediction by integrating physical model experiments with a gradient boosting regression (GBR) model. The primary motivation for this approach was to overcome the limitations of traditional prediction methods, such as numerical simulations, theoretical models, and deep learning approaches that rely heavily on historical case studies with limited datasets.



One of the most significant advantages of this hybrid method is its ability to accurately capture the complex, non-linear behavior of debris flows, which traditional methods often struggle to model. The use of data from controlled physical experiments ensures that the GBR model is groumpirical observationnded in es that closely mimic real-world conditions. This grounding not only improves the model’s accuracy but also enhances its reliability when predicting debris flow dynamics across varying scenarios. By training the model on high-quality experimental data, we mitigate the risk of overfitting—a common issue in models based solely on historical case data—thus allowing for better generalization to different and unforeseen conditions. Another key benefit of this approach is the enhanced computational efficiency. Traditional numerical models, while offering valuable insights, typically require extensive computational resources and time, making them impractical for real-time applications. In contrast, the GBR model, once trained, can generate predictions rapidly. This efficiency makes the GBR model particularly suitable for real-time risk assessment and early warning systems in debris flow-prone areas. The reduced computational complexity also facilitates the deployment of the model in resource-constrained environments, broadening its practical applicability.



The adaptability of the GBR model further strengthens the hybrid approach. Unlike traditional models that often require significant recalibration when applied to new geographic areas or different debris flow scenarios, the GBR model can adjust to new conditions by continuing to train or tune hyperparameters, albeit this may involve more careful management compared to Neural Networks. While GBR can effectively handle the non-linear interactions and complex dependencies that characterize debris flows, it is worth noting that its performance heavily depends on careful tuning of parameters such as the number of trees, learning rate, and tree depth.



While the GBR model has demonstrated strong predictive accuracy in this study, it should be noted that it may underperform under certain conditions. In particular, GBR can struggle when the dataset contains significant noise, highly imbalanced classes, or complex outliers that are difficult to model. In such cases, the model might overfit or fail to capture the underlying patterns accurately, leading to a loss of generalization capability. The choice of hyperparameters plays a critical role in the model’s performance. For example, a higher learning rate allows the model to converge more quickly, but it may also increase the risk of overfitting if the value is too large. Conversely, a smaller learning rate requires a larger number of boosting stages (n estimators) to achieve optimal performance, increasing computational cost but potentially improving model robustness. Similarly, the maximum depth parameter, which controls the depth of each decision tree, must be carefully chosen. Trees that are too shallow may not capture the complex relationships in the data, leading to underfitting, while very deep trees might result in overfitting.



Despite the promising results, several challenges remain that warrant further attention. A significant challenge is the scalability of the experimental setup. While physical model experiments provide the high-quality data necessary for robust GBR training, they can be time-consuming and resource-intensive, particularly when scaling up to more complex or large-scale scenarios. To address this, future research could explore the integration of virtual experiments or synthetic data generation techniques, which would expand the training dataset without compromising the quality or relevance of the data. These methods could allow for the expansion of training datasets without the need for extensive physical experimentation. Virtual experiments, powered by advanced computational models, could simulate a wide range of conditions, providing additional data for training machine learning models. Similarly, synthetic data generation techniques, such as using generative adversarial networks or other simulation-based methods, could help create large, high-quality datasets that reflect real-world variability. Another challenge is the interpretability of the GBR model’s predictions. Although the GBR model offers improved predictive capabilities, it can still operate as a “black box” to some extent. However, unlike Deep Neural Networks, GBR models typically allow for more interpretability through techniques like feature importance analysis, partial dependence plots, and SHAP (Shapley additive explanations) values. Enhancing the interpretability of the model using these methods could be valuable, particularly when communicating results to non-technical stakeholders or decision makers, making the model’s outputs more understandable and actionable.




6. Conclusions


This study presents a novel hybrid approach to debris flow prediction by integrating physical model experiments with a gradient boosting regression (GBR) model. This approach addresses several limitations associated with traditional methods, such as numerical simulations, theoretical models, and earlier deep learning techniques that relied on limited datasets from historical case studies. By grounding the GBR model in high-quality experimental data, the method effectively captures the complex, non-linear behaviors inherent in debris flows, improving both the accuracy and reliability of predictions.



The GBR model, trained on experimental data, demonstrates the ability to generalize effectively across various debris flow scenarios, thereby overcoming challenges such as overfitting and computational inefficiency often encountered in traditional models. Furthermore, the adaptability of GBR enables it to manage the intricate interactions and dependencies within debris flows without requiring extensive recalibration for different conditions. By combining the strengths of physical modeling with the predictive power of machine learning, this method not only simplifies the prediction process but also enhances its accuracy and reliability. These improvements are crucial for developing more effective risk assessment and mitigation strategies in debris flow-prone areas.



Despite these promising results, the study highlights challenges that need to be addressed in future research, particularly regarding the scalability of experimental setups and the interpretability of the GBR model’s predictions. In addition, in regions with insufficient monitoring data, the model can be further enhanced by using experimental data as supplementary training data. These data can be combined with available monitoring data to jointly train the GBR model, improving its ability to predict debris flow behavior even in data-scarce environments. Additionally, the model could be integrated into existing monitoring systems by linking it to real-time sensor data, allowing for timely predictions of key debris flow parameters such as flow velocity and frontal thickness. This integration would facilitate real-time risk assessment and decision making in debris flow-prone areas. Tackling these challenges will be key to ensuring the broader adoption of this hybrid approach in practical applications.



Overall, this research contributes significantly to the field of debris flow prediction by providing a robust, efficient, and adaptable tool that enhances our ability to predict and mitigate the risks associated with these hazardous events. The findings offer a clear pathway toward more reliable and timely predictions, ultimately aiding in better risk management and disaster preparedness in debris flow-prone regions.
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Appendix A. Derivation of Herschel–Bulkley Fluid Dam-Break Problem


We use the lubrication approximation model to derive the frontal depth-averaged velocity   u 0   and the frontal thickness   s 0   in the Herschel–Bulkley fluid dam-break problem. The fluid slides down a slope with an angle  θ  starting from rest.



Appendix A.1. Initial Conditions and Herschel–Bulkley Fluid Model


Initially, the fluid is a rectangle with length   l 0   and height   h 0  . The fluid follows the Herschel–Bulkley model, where the shear stress is related to the velocity gradient as


   τ  x z   =  τ y  + k      ∂ u   ∂ z     n   



(A1)




where   τ y   is the yield stress, k is the consistency index, and n is the flow behavior index.




Appendix A.2. Momentum Equation in Lubrication Approximation Model


Under the lubrication approximation, assuming the fluid thickness   s ( x , t )   is small and varies slowly along the slope, the momentum equation in the z direction is


     ∂  τ  x z     ∂ z    = ρ g sin θ  



(A2)







By integrating, the shear stress distribution is


   τ  x z    ( z )  = ρ g sin θ  ( s  ( x , t )  − z )   



(A3)







For the yielded region (i.e.,    τ  x z   >  τ y   ), according to the Herschel–Bulkley model, we have


     ∂ u   ∂ z    =      ρ g sin θ  s ( x , t ) − z  −  τ y   k     1 / n    



(A4)







By integrating, the velocity profile is


  u  ( z )  =   n  n + 1         ρ g sin θ  k     1 / n    s   ( x , t )   ( n + 1 ) / n   −   s ( x , t ) − z   ( n + 1 ) / n     



(A5)







Then, the depth-averaged velocity formula is


   u 0  =   n  ( n + 1 ) ( n + 2 )         ρ g sin θ  k     1 / n    s 0  ( n + 1 ) / n    



(A6)








Appendix A.3. Derivation of Frontal Thickness


To obtain a more complex expression for thickness, we consider the effects of energy conservation and viscous dissipation. During the fluid’s sliding process, potential energy is converted into kinetic energy, with some energy dissipated due to viscosity. We consider the following energies:



The gravitational potential energy of the fluid initially   E pot   is


   E pot  = ρ g  h 0  sin θ ·  h 0   l 0   



(A7)







The kinetic energy   E kin   when the fluid reaches position   l s   is


   E kin  =   1 2   ρ V  u 0 2  =   1 2   ρ  s 0   l s   u 0 2   



(A8)







The viscous dissipation energy   E diss   related to the fluid’s viscous behavior is


   E diss  =  ∫ 0 t   ∫ 0  s ( x , t )     τ y  + k      ∂ u   ∂ z     n       ∂ u   ∂ z      d z  d t  



(A9)







According to energy conservation, we have


   E pot  =  E kin  +  E diss   



(A10)







By substituting the expressions for each part of the energy, we get


  ρ g  h 0  sin θ ·  h 0   l 0  =   1 2   ρ  s 0   l s   u 0 2  +  ∫ 0 t   ∫ 0  s 0     τ y  + k      ∂ u   ∂ z     n       ∂ u   ∂ z     d z d t  



(A11)







Finally, the expression for the frontal thickness   s 0   may be


   s 0  =      2 g  h 0 2   l 0  sin θ   ρ  l s  ·  u 0 2  +    k  1 / n    t  1 / n     ρ  1 / n      n  n + 1         1 / ( n + 2 )    



(A12)
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Figure 1. The (a) illustration and (b) simplified physical model of debris flow impacting constructions along a slope. 
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Figure 2. (a) Design sketch of the experimental setup; (b) photograph of the experimental facilities; (c) visualization of the slide material moving along the slope during the experiment. 
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Figure 3. The variation of shear stress with shear rate for Carbopol of different concentrations. 
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Figure 4. The flow chart of the GBR model. 
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Figure 5. The illustration of the variables involved in the theoretical analysis in Appendix A. 
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Figure 6. Contour plots of the rheological parameters: yield stress   τ c  , consistency  μ , and power-law index n. 
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Figure 7. Variation of (a) slide thickness   s 0   and (b) velocity   u 0   on impact with the initial settings of the experiments. 
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Figure 8. Variation in MSE in comparison to the number of trees (epochs). 
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Figure 9. Comparison of the predicted and original (a)   s 0   training data, (b)   u 0   training data, (c)   s 0   testing data, and (d)   u 0   testing data. 
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Figure 10. The error histogram distribution of the (a)   s 0   training, (b)   s 0   testing, (c)   u 0   training, and (d)   u 0   testing data. 
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Figure 11. The PDF distribution of   s 0   and   u 0  . 
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Figure 12. The CDF of   s 0   and   u 0  . 
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Table 1. The input and output parameters selected during model development.
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	Input
	Symbols
	Output
	Symbols





	slide mass
	   m I   
	frontal velocity
	   u 0   



	distance
	   l s   
	frontal thickness
	   s 0   



	yield stress
	   τ y   
	
	



	slope angle
	  θ  
	
	










 





Table 2. Evaluation criteria MSE, MAE, and   R 2   for the prediction model.
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	Dataset
	MSE of    s 0   
	MAE of    s 0   
	   R 2    of    s 0   
	MSE of    u 0   
	MAE of    u 0   
	   R 2    of    u 0   





	Training
	1.034418   ×    10  − 9    
	0.000016
	0.999962
	0.000002
	0.000797
	0.999974



	Testing
	1.719020   ×    10  − 6    
	0.001062
	0.938574
	0.003476
	0.049071
	0.933909










 





Table 3. Sobol first-order sensitivity indices.
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	Parameter
	Sobol First-Order Index





	slope angle  θ 
	0.35



	yield stress   τ c  
	0.20



	slide mass   m I  
	0.45



	distance   l s  
	0.25
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