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Abstract: Taiwan faces intense rainfall during typhoon seasons, leading to rapid increases in water
level in rivers. Accurate flood forecasting in rivers is essential for protecting lives and property. The
objective of this study is to develop a river flood forecasting model combining multiple additive
regression trees (MART) and ensemble Kalman filtering (EnKF). MART, a machine learning technique,
predicts water levels for internal boundary conditions, correcting a one-dimensional (1D) unsteady
flow model. EnKF further refines these predictions, enabling precise real-time forecasts of water levels
in the Danshui River system for up to three hours lead time. The model was calibrated and validated
using observed data from four historical typhoons to evaluate its accuracy. For the present time at
three water level stations in the Danshui River system, the root mean square error (RMSE) ranged
from 0.088 to 0.343 m, while the coefficient of determination (R2) ranged from 0.954 to 0.999. The
validated model (module 1) was divided into two additional modules: module 2, which combined
the ensemble unsteady flow model with inner boundary correction and MART, and module 3, which
featured an ensemble 1D unsteady flow model without inner boundary correction. These modules
were employed to forecast water levels at three stations from the present time to 3 h lead time during
Typhoon Muifa in 2022. The study revealed that the Tu-Ti-Kung-Pi station was less affected by
inner boundaries due to significant tidal influences. Consequently, excluding the upstream and
downstream boundaries, Tu-Ti-Kung-Pi station showed a superior RMSE trend from present time to
3 h lead time across all three modules. Conversely, the Taipei Bridge and Bailing Bridge stations began
using inner boundary forecast values for correction from 1 h to 3 h lead times. This increased the
uncertainty of the inner boundary, resulting in higher RMSE values for these locations in modules 1
and 2 compared to module 3.

Keywords: machine learning; multiple additive regression trees; ensemble Kalman filter; water level
forecasting; Danshui River system

1. Introduction

Taiwan’s subtropical climate results in approximately 70% of its annual precipitation
occurring during the typhoon and rainy seasons, often leading to localized, intense, and
short-duration heavy rainfall events. These events are further exacerbated by Taiwan’s
distinctive topography, characterized by steep mountains and short river courses, which
amplify the impact of rainfall. Excessive precipitation can rapidly exceed river capacities,
causing sudden water level surges that result in severe flooding and landslides. The limited
response time intensifies the damage to lives and property. Consequently, the development
of an effective river flood forecasting system that provides timely and accurate warnings is
essential for mitigating flood-related disasters and enabling swift remedial actions [1,2].

Traditionally, flood control efforts in Taiwan have emphasized structural measures.
However, mitigating flood damage now requires an integrated approach that incorporates
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non-structural measures, such as advanced flood forecasting systems. By leveraging
modern communication technologies to collect real-time, accurate observational data
ahead of impending typhoons and applying dynamic analyses to estimate runoff and
river flood levels at critical points, timely warnings can be issued for flood-prone areas.
This proactive strategy enhances preparedness for disaster response teams and residents,
enabling precautionary measures that reduce flood-related losses. Contemporary disaster
mitigation strategies highlight the importance of adopting and advancing flood warning
systems. As a result, countries frequently affected by flood disasters are continuously
working to refine and improve the accuracy of flood level forecasts. To assess flood risks
and mitigate associated losses, studies by researchers [3–6] have employed advanced
technologies to develop flood warning systems. These systems disseminate alerts to
relevant institutions, key industries, and residents in high-risk areas, facilitating early
preparedness and the implementation of protective measures. This proactive approach
significantly reduces the potential loss of life and property, thereby advancing the objectives
of flood prevention and disaster mitigation.

One-dimensional hydrodynamic models have been extensively employed for river wa-
ter level forecasting [7–10]. Recent advancements in river water level predictions have lever-
aged machine learning and deep learning techniques, yielding promising results [11–13].
A comprehensive review of machine learning methods for estimating water levels and
discharges in tidal rivers and estuaries is also available [14]. Furthermore, integrating hy-
drodynamic models with the Kalman filter has proven effective in enhancing the accuracy
of water level predictions [15–20]. For instance, Barthelemy et al. [18] reported that the
ensemble Kalman filter improved the root mean square error of water level predictions by
up to 88% at the analysis time and 40% at a 4 h forecast lead time compared to a standalone
model. Similarly, Lee et al. [20] demonstrated that the conditional bias-penalized ensemble
Kalman filter increased the multi-basin mean skill score of the mean square error by ap-
proximately 0.15 over the ensemble Kalman filter, for lead times extending up to the basin’s
time to peak.

The application of multiple additive regression trees (MART) in water level forecasting
has also been investigated [21,22]. Fu et al. [21] proposed three MART models, each with
distinct approaches to model training and error correction. Their findings indicated that
while the original MART and real-time MART models were more effective at capturing
overall river stage variations, the naïve MART model demonstrated a higher accuracy in
predicting peak river stages. They concluded that the proposed MART models are both
efficient and accurate, making them suitable for practical flash flood early warning systems.
Jang et al. [22] developed a hybrid model integrating MART with Runge–Kutta numerical
schemes to enhance water level forecasting. Their study showed that the original MART
model without Runge–Kutta schemes and the hybrid models reduced errors in mean and
peak river stage predictions by 29% and 53%, respectively.

However, the combined use of MART and the ensemble Kalman filter in a flash flood
forecasting model for river water level forecasting remains underexplored. This study
presents a novel approach to water level forecasting by integrating a one-dimensional
unsteady flow model with multiple additive regression trees (MART) and the ensemble
Kalman filter (EnKF). The primary objective is to improve the accuracy of river water level
predictions. To achieve this, the hyperparameters of the MART model were first optimized
using the grid search method. Next, the river forecasting model was calibrated and
validated with observational data from four historical typhoon events at multiple locations,
ensuring the reliability of the predictions. Finally, the impact of different forecasting
modules on the accuracy of the water level forecasts was analyzed.

2. Materials and Methods
2.1. Description of Study Area

The Danshui River system, the largest river in northern Taiwan, serves as the study
area for this research. Originating from Mount Pintian in the central mountain range
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at an elevation of 3529 m, the Danshui River spans a watershed area of 2726 km2. It is
formed by the confluence of three main tributaries: the Dahan River, the Xindian River,
and the Keelung River (Figure 1). The main stream of the Danshui River, resulting from the
merging of the Dahan and Xindian Rivers at Jiangzicui, extends approximately 158.7 km to
Youchekou. It traverses several administrative regions, including Taipei City, New Taipei
City, Keelung City, and Taoyuan City. The river basin lies within a subtropical climate zone,
experiencing a rainy season from May to October and a dry season from November to
April. The average annual rainfall in the basin is 2996.1 mm.

The Dahan River’s main stream is 135 km long, with a watershed area of 1163 km2.
The Xindian River’s main stream is 82 km long, covering a watershed area of 916 km2. The
Keelung River’s main stream is 86.4 km long, with a watershed area of 490 km2. Due to the
river capture effect, the Keelung River changes direction in its upper, middle, and lower
reaches before ultimately joining the Danshui River near Guandu [23,24].
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2.2. Data Collection
2.2.1. Geographical Data

River cross-sections are essential for calculating discharge and predicting water level
variations. In this study, survey data from 102 cross-sections within the Danshui River
system were collected and incorporated into a one-dimensional hydrodynamic model. The
Manning’s coefficient (n), a critical parameter for estimating flow velocity and water levels,
quantifies the frictional resistance of flow within the channel. The Manning’s coefficients
used in this study were based on prior research [26,27]. Following model validation, the
Manning’s coefficients for the Danshui River system were determined to range from 0.016
to 0.050.

2.2.2. Rainfall Data

This study utilized rainfall data from 11 stations, sourced from the Water Information
Integration Platform of the Taiwan Water Resources Agency. The stations included Dapao,
Sanxia, Shanjia, Quchi, Huoshaoliao, Ruifang, Zhongzheng Bridge, Shezi, Guandu, Wudu,
and Shehou Bridge. The locations of these rainfall stations are presented in Figure 1.
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2.2.3. Water Level Data

Water level data were also collected from the Water Information Integration Platform
of the Taiwan Water Resources Agency. The dataset includes seven stations located from
downstream to upstream: River Mouth, Tu-Ti-Kung-Pi, Bailing Bridge, Dazhi Bridge, Taipei
Bridge, Zhongzheng Bridge, and Xinhai Bridge. The locations of these water level stations
are also shown in Figure 1.

2.3. Flash Flood Forecasting Model in River

This study examines several factors unique to Taiwan, including the 12 to 24 h duration
of typhoon impacts, short river lengths, steep slopes, tidal influences, and rapid changes
in water levels. These characteristics constrain the availability of observational data from
rivers during typhoon events. Consequently, simple polynomial equations are insufficient
for estimating water levels under such conditions. Accurate predictions require a more so-
phisticated hydrodynamic model grounded in robust theoretical principles. To address this,
this study adopts a river flood forecasting model based on the dynamic wave algorithm
of the Saint-Venant equations. The Saint-Venant equations, comprising continuity and
momentum equations, consider factors such as gravity, friction, convective acceleration,
and local acceleration in the water flow motion equation. These equations simplify into a
functional relationship between water depth (Y) and discharge (Q). However, hyperbolic
partial differential equations cannot be solved analytically and must be addressed using nu-
merical methods. In this study, the four-point implicit finite difference approximation [28]
was employed to solve the flow variables. Details of the discretization process and the
solution of the nonlinear system are provided in Hsu et al. [1,8].

For both past and real-time computations, the river flood forecasting model utilizes
upstream observed water levels and tidal model-calculated water levels at the river mouth
as boundary conditions. The model also incorporates internal boundary condition cor-
rections, including the initial value correction and real-time water level correction [1].
Data for internal boundary conditions were obtained by predicting water levels at three
stations (Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge) within the watershed using a
MART model.

During the internal boundary condition correction, while adhering to mass and mo-
tion conservation, the least squares method is employed to adjust the internal boundary
conditions. This ensures that the model’s calculated results closely match the observed
water depth at hydrological stations, thereby enhancing forecast accuracy [1]. Figure 2 illus-
trates the flow chart for calculating water levels, which comprises three main components:
present time calculation, lead time calculation, and water level computation at the inner
boundary. The lead time calculation incorporates the EnKF, while the MART method is
employed to forecast water levels at the inner boundary.

2.4. Multiple Additive Regression Trees (MART)

This study utilizes multiple additive regression trees (MART) to predict water levels
at various river stations. The results from these predictions will be employed for inner
boundary correction in the river flood level forecasting model, aiming to enhance its
accuracy. Decision trees serve as fundamental tree-based machine learning models, whereas
MART is a type of gradient boosting algorithm. Gradient boosting algorithms are ensemble
learning methods that iteratively build multiple weak learners (i.e., decision trees) and
combine them into a robust predictive model. MART specifically calculates the loss function
in a gradient manner, using multiple additive regression trees to fit and predict the target
variable. By progressively enhancing the performance of each regression tree to minimize
model residuals, MART improves overall predictive capability.
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To mitigate overfitting issues caused by complex decision trees, MART uses a boosting
method to prune the trees, involving four iterative steps:

1st step: Input the training factors z, the fitted values y, and the loss function into the
equation [29].

{(xi, yi)}n
i=1, L(yi, f (x)) (1)

2nd step: Before training gradient boosting trees, it is essential to determine an initial
prediction value. The optimal initial prediction can be obtained by solving the model to
find the value that minimizes the loss function [30,31]. Utilizing this value as the initial
prediction enhances the model’s predictive performance.

f0(x) = argmin
γ

∑N
i=1 L(yi, γ) (2)
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3rd step: By performing M computations across M trees, the residuals between each
prediction and the actual values can be calculated. The training data is then grouped based
on the characteristics of the tree type, and the residuals are updated by minimizing the loss
function [32]. To update each data point with the product of the updated residual and the
learning rate, the prediction for the mth iteration is represented as follows:

1. Compute the residual between each prediction value and the actual value.

γim = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f= fm−1

, i = 1, 2, ..., N (3)

2. Fit a regression tree model on the target variable γim and split it into multiple regions
Rjm, j = 1, 2, . . ..., Jm.

3. For each region Rjm, calculate the residual rim,i = 1, 2, . . .., Jm, where the residual is
obtained by minimizing the loss function.

γim = argmin
γ

∑
xi∈Rjm

L(yi, fm−1(xi + γ)) (4)

4. To obtain the prediction for the mth iteration (fm(x)), add the product of the updated
residual and the learning rate to the previous prediction value [21].

fm(x) = fm−1(x) + ∑Jm
j=1 γjm I

(
x ∈ Rjm

)
(5)

Final step: After completing M iterations, produce the final value.

f̂ (x) = fM(x) (6)

This study employs the gradient boosting regressor from Python’s Sklearn library
to establish the MART model. Sklearn is a machine learning library in Python. When
constructing the model, setting hyperparameters is crucial. These parameters, which
must be manually configured, affect the training process and the model’s results. The
hyperparameters include the learning rate, number of trees (N estimators), subsample rate,
and loss function. The Huber loss function [29] can be expressed as follows:{

1
2

[
yi − f (xi)

2
]
, f or|yi − f (xi)| ≤ α

α|yi − f (xi)| − 1
2 α2, otherwise

(7)

When utilizing the Huber loss function, setting the parameter α in Equation (7) is
essential. This study applies grid search to optimize hyperparameters, particularly targeting
the learning rate, number of trees, sampling rate, and Huber α. Grid search systematically
partitions the hyperparameter ranges into a grid and explores each combination to identify
the optimal set. This approach enables a thorough assessment of various hyperparameter
configurations to determine the most effective combination.

For water level forecasting, this study used the MART algorithm. Out of 10 typhoon
events, 7 were used as the training set, 2 as the validating set, and 1 as the test set (Table 1).
The training set trained the model, while the test set evaluated the model’s prediction
results. Water level predictions were conducted for 5 typhoon events, with the model
predicting water level variations for the next 3 h based on observational data from water
level and rainfall stations. The prediction model is expressed as follows:

Ht+1
z , Ht+2

z , Ht+3
z = f

(
Rt−3

o , Rt−2
o , Rt−1

o , Rt
o, Rt+1

o , Rt+2
o , Rt+3

o , Rt+4
o , Rt+5

o , Rt+6
o

Ht−3
r , Ht−2

r , Ht−1
r , Ht

r

)
(8)

where Ht+1
z ~Ht+3

z are the forecasted water level for hours t + 1~t + 3 at water level stations,
where z = 1~6, corresponding to the six water level stations: Tu-Ti-Kung-Pi, Taipei Bridge,
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Dazhi Bridge, Bailing Bridge, Zhongzheng Bridge, and Xinhai Bridge. Rt−3
o ∼ Rt+6

o denote
the hourly rainfall for hours t − 3~t + 6 at rainfall station o, where o = 1~11, correspond-
ing to the eleven rainfall stations: Dapao, Sanxia, Shanjia, Quchi, Huoshaoliao, Ruifang,
Zhongzheng Bridge, Shezi, Guandu, Wudu, and Shehou Bridge. Ht−3

r ∼ Ht
r represent the

water levels for hours t − 3~t at water level station r, where r = 1~7, corresponding to the
seven water level stations: river mouth, Tu-Ti-Kung-Pi, Taipei Bridge, Dazhi Bridge, Bailing
Bridge, Zhongzheng Bridge, and Xinhai Bridge.

Table 1. Date sets for determining the hyperparameters in MART.

Category Typhoon Event Time Period (Day Month Year) Duration (hours)

Training set

Typhoon Saola 30 July 2012~3 August 2012 120
Typhoon Haikui 6 August 2012~7 August 2012 48
Typhoon Soulik 12 July 2013~13 July 2013 42
Typhoon Trami 20 August 2013~22 August 2013 72
Typhoon Usagi 19 September 2013~21 September 2013 51
Typhoon Fitow 4 October 2013~7 October 2013 96

Typhoon Chan-How 9 July 2015~11 July 2015 72

Validating set Typhoon Soudelor 6 August 2015~9 August 2015 96

Test set
Typhoon Dujuan 27 September 2015~29 September 2015 72

Typhoon Megi 25 September 2016~28 September 2016 96

2.5. Ensemble Kalman Filter (EnKF)

The Ensemble Kalman Filter (EnKF) is a data assimilation technique derived from
the Kalman filter. This method accounts for uncertainties in both model forecasts and
observations, assuming these uncertainties follow a normal distribution with a mean
of zero. The primary concept involves updating forecast analysis values by integrating
information from both model forecasts and observations, thereby providing a more precise
estimation of the system’s true state.

The EnKF creates an ensemble based on initial model forecasts and observations. An
ensemble comprises multiple system models with varied initial states, generated through
random sampling or other techniques. Each ensemble member generates a model forecast,
producing a forecast value for the subsequent time step. These forecast values are compared
with observations to calculate errors, which are then used to update the forecast values.

Incorporating the ensemble concept into the Kalman filter provides an efficient ap-
proach to managing the computational challenges associated with storing and updating the
error covariance matrix. By employing a finite set of random samples to represent system
uncertainties, the Ensemble Kalman Filter (EnKF) eliminates the need for large error covari-
ance matrices, particularly in high-dimensional and nonlinear models, thereby significantly
reducing computational demands [27]. Figure 2 illustrates the EnKF workflow. The key
steps in executing the EnKF include computing the model error covariance, estimating the
observation error covariance, and calculating the Kalman gain matrix. Subsequently, the
model is updated to correct the forecasted water levels. The theoretical foundation of the
EnKF is detailed below.

2.5.1. Error Covariance and Analysis Equations

In a discrete time process, forecast variables can be represented in vector form, re-
ferred to as the state vector. To differentiate between the original forecast value and the
analysis value obtained after assimilating observation data, the symbols xf and xa are used,
respectively, where x represents the forecast water level. The errors of the elements in the
state vector can be calculated using the error covariance matrix P.

e f = x f − x̂ f (9)

ea = xa − x̂a (10)
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P f = cov[x f , x f ] = E[e f e f T
] (11)

Pa = cov[xa, xa] = E[eaeaT
] (12)

where the superscripts f and a denote the forecast state and the analysis state, respectively,
cov stands for covariance, x̂ indicates the estimated value of the state vector, e is the error,
and E represents the expectation function.

The ensemble forecast results serve as sample representations of the probability distri-
bution of the state vector. These samples can be directly utilized to calculate the error co-
variance.

P f = cov
[

x f , x f
]
=

1
N − 1

N

∑
k=1

[
x f

k − x f
][

x f
k − x f

]T
(13)

Pa = cov[xa, xa] =
1

N − 1

N

∑
k=1

[xa
k − xa][xa

k − xa]T (14)

where subscript k denotes the index of the ensemble member, N indicates the total number
of ensemble members, the overline expresses the ensemble mean, and [ ]T represents the
transpose of a matrix.

The data assimilation cycle comprises two main steps: forecast and analysis. In the
forecast step, the ensemble Kalman filter (EnKF) method is employed to compute forecast
results for all ensemble members. Each member represents a potential sample of the state
vector, and their forecast values are aggregated, typically by averaging, to produce the
ensemble forecast for the state vector.

In the subsequent analysis step, upon receiving new observational data, the EnKF
updates the forecast values of all ensemble members to derive the analysis values. During
this updating process, uncertainty is assessed using the error covariance between the
observed and forecast values, allowing for adjustments to the analysis values of the state
vector and the associated error covariance.

This forecast-analysis cycle is iteratively repeated. Notably, the model can continue to
refine and enhance the forecast results even in the absence of new observational data. The
EnKF innovates by incorporating ensemble forecasting in the forecast step. The equations
for the analysis step are as follows:

K = P f HT
(

HP f HT + R
)−1

(15)

xa
k = x f

k + K
[
y0

k − Hx f
k

]
(16)

where H represents the observation operator that transforms the model’s state vector into
an observation vector, R is the error covariance matrix of the observation values, and K
denotes the Kalman gain matrix, which reflects the weighting balance between the model
forecast and the observation data.

During the update of each ensemble member, the observation vector (e.g., observed
water level) must be perturbed with a random error εk of covariance R. This procedure is
essential to generate unbiased statistical estimates among the updated ensembles [33].

y0
k = y0 + εk (17)

cov
[
y0, y0

]
=

1
N − 1

N

∑
k=1

εkεk
T = R (18)

where y0
k represents the observation water level y0 at a future time step in the Kalman filter

model, including a random error εk. While ensemble members are treated as independent
samples in the analysis equation, they are actually updated together and influenced by
their interrelationships. Consequently, any modification to one ensemble member impacts
the overall error covariance.
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2.5.2. Ensemble Square Root Filtering

In the analysis phase of the Ensemble Kalman Filter (EnKF), deviations (i.e., ensemble
perturbations) between each ensemble member and the ensemble mean are employed to
determine the analysis values. This method effectively captures the variability among
ensemble members and accounts for possibilities beyond the ensemble mean. By incor-
porating ensemble perturbations into the ensemble mean, a new set of updated ensemble
members is produced.

x
′ f
k = x f

k − x f (19)

x
′ a
k = xa

k − xa (20)

where x
′ f
k represents the updated ensemble mean, and x

′ a
k denotes the updated ensemble

perturbations.
The ensemble square root filtering applied in this study follows the sequential process-

ing method [34]. This approach notably diminishes computational demands by incorporat-
ing each observation separately. By assimilating observations individually, the observation
vector is reduced to a one-dimensional scalar. The calculations for PfHT and HPfHT are
conducted as follows:

P f HT = cov
[

x f , Hx f
]
=

1
N − 1

N

∑
k=1

[
x f

k − x f
][

Hx f
k − Hx f

]
(21)

HP f HT = cov
[

Hx f , Hx f
]
=

1
N − 1

N

∑
k=1

[
Hx f

k − Hx f
]2

(22)

where H denotes the observation operator that transforms the state vector into observation,
and Hxf represents a scalar.

This ensemble square root filtering method separates the analysis step into two parts:
updating the ensemble mean and updating the ensemble perturbations. The update of the
ensemble mean adheres to the same procedure as standard Kalman filtering.

K = P f HT
(

HP f HT + R
)−1

(23)

xa = x f + K
[
y0 − Hx f

]
(24)

The equation for updating the ensemble perturbations can be expressed as follows:

x
′ a
k = x

′ f
k +

∼
KH

′
x f

k (25)

H
′
x f

k = Hx f
k − Hx f (26)

By utilizing sequential processing, the initial complex computation of the matrix

square root for
∼
K can be simplified as follows:

∼
K = γK, γ =

(
1 +

√
R

HP f HT + R

)−1

(27)

2.5.3. Covariance Localization

When the EnKF is applied to river flood forecasting models, water level observations
at any cross-section update all cross-section water levels using the error covariance matrix.
According to the principle of water level continuity, the correlation decreases with the
distance from the observed water level. However, with a small number of ensemble
samples, errors in estimating the correlation of cross-section water levels may occur, causing
abnormal updates for distant cross-sections.
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To address this issue, Hamill et al. [35] proposed a distance filter, known as covariance
localization, which allows the error covariance matrix to decrease with distance. At the
observation location, the maximum value is set to 1.0, and it gradually decreases with
distance, eventually reaching 0 beyond a certain range.

P f HT = S ◦ 1
N − 1

N

∑
k=1

[
x f

k − x f
][

Hx f
k − Hx f

]
(28)

where the operator o denotes the Schur product, used to perform element-wise multipli-
cation between the correlation matrix S and the corresponding elements of the posterior
matrix, yielding a new matrix PfHT. The correlation matrix S is constructed using the
fifth-order function Ω [36].

2.6. Comparison Criteria

Four metrics were used to evaluate the discrepancies between the model simulations
and observational data: mean absolute error (MAE), root mean square error (RMSE), Nash–
Sutcliffe efficiency (NSE) [37], and the coefficient of determination (R2) [38]. These metrics
are defined by the following equations:

MAE =
1
N∑N

i=1

∣∣yobs,i − ysim,i
∣∣ (29)

RMSE =

√
∑N

i=1(yobs,i − ysim,i)
2

N
(30)

NSE = 1 − ∑N
i=1(yobs,i − ysim,i)

2

∑N
i=1(yobs,i − yobs)

2 (31)

R2 = (
∑N

i=1 (yobs,i − yobs)(ysim,i − ysim)√
∑N

i=1(yobs,i − yobs)
2
√

∑N
i=1(ysim,i − ysim)

2
)2 (32)

where N represents the total number of data points, yobs,i denotes the observational data,
ysim,i indicates the simulation value, yobs indicates the mean of observational data, and ysim
indicates the mean of simulation value.

The MAE and RMSE provide insights into the degree of dispersion between the
predicted and observed values. Smaller MAE and RMSE values indicate lower dispersion,
suggesting that the predictions are closer to the observed values and that the forecasting
performance is more accurate. An NSE value closer to 1 indicates a higher degree of
agreement between predicted and observed values, reflecting greater forecasting accuracy
and improved model fit. The R2 value ranges from 0 to 1, with values closer to 1 indicating
higher predictive accuracy.

3. Results
3.1. Determination of Hyperparameter in MART

The tuning of hyperparameters in machine learning directly impacts model results.
The goal of hyperparameter tuning is to identify the best combination of hyperparameters
within the hyperparameter space to optimize model performance. Default hyperparameter
values are set as follows: learning rate at 0.1, number of trees at 200, Huber alpha at 0.75,
and sampling rate at 1 [39]. Typhoon data is divided into a training set (seven typhoon
events), validation set (one typhoon event), and test set (two typhoon events) as shown in
Table 1.

Using the grid search method, all possible combinations of hyperparameters within
the hyperparameter space are evaluated to identify the optimal combination. Given that the
grid search method outputs only one optimal combination each time, multiple iterations of
hyperparameter tuning are conducted to obtain an average of the optimal hyperparameters.
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The number of hyperparameter tuning iterations is set to 5, 8, 10, 15, and 20 times. The
best parameters from each iteration are stored, and the average of these parameters is used
as the final setting. These optimal parameters are then used to build the model with the
training set, and the test set is used to evaluate the forecast results.

The optimal average parameter values across different hyperparameter tuning itera-
tions were identified using the validation set. Results indicated that the RMSE, MAE, and
NSE achieved after 10 iterations of hyperparameter tuning were superior compared to
other iteration counts. Consequently, the MART hyperparameters used in this study are set
to a learning rate of 0.09, 95 trees, Huber alpha of 0.76, and a sampling rate of 0.46.

Figure 3 illustrates the RMSE, MAE, and NSE values for 1 h lead time water level
forecasts at Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge during Typhoons Dujuan and
Megi, using both default and tuned hyperparameters. For Typhoon Dujuan, the RMSE
values of the 1 h forecast with default parameters at Tu-Ti-Kung-Pi, Taipei Bridge, and
Bailing Bridge are 0.17 m, 0.25 m, and 0.28 m, respectively. The corresponding MAE values
are 0.12 m, 0.16 m, and 0.13 m, with NSE values of 0.96, 0.95, and 0.93. When applying
parameters obtained through the grid search method, the RMSE values improve to 0.14 m,
0.19 m, and 0.27 m, respectively, while the MAE values remain at 0.12 m, 0.16 m, and 0.13
m, with NSE values of 0.97, 0.97, and 0.94.
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(d–f) hyperparameters.
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For Typhoon Megi, the RMSE values with default parameters at Tu-Ti-Kung-Pi, Taipei
Bridge, and Bailing Bridge are 0.27 m, 0.29 m, and 0.26 m, respectively. The corresponding
MAE values are 0.21 m, 0.21 m, and 0.21 m, with NSE values of 0.81, 0.86, and 0.83. Using
grid search parameters, the RMSE values improve to 0.27 m, 0.22 m, and 0.25 m, respectively,
with MAE values of 0.23 m, 0.16 m, and 0.20 m, and NSE values of 0.81, 0.92, and 0.85.

Overall, the results demonstrate that hyperparameters tuned through the grid search
method generally yield better RMSE values for 1 h water level forecasts at Tu-Ti-Kung-Pi,
Taipei Bridge, and Bailing Bridge for both typhoons, compared to default parameters.
However, for Typhoon Megi, the MAE value at Tu-Ti-Kung-Pi is slightly higher with grid
search parameters, likely due to the model’s slight overestimation of observed water levels
at this location during high water events.

3.2. Water Level Forecasting

This study utilizes the Ensemble Kalman Filter (EnKF) in conjunction with a flood
routing model for river flood forecasting. The boundary conditions are defined as follows:
for the upstream boundaries at Hsinhai Bridge, Zhongzheng Bridge, Dazhi Bridge, and
Erchong Floodway, observed water levels from the Water Information Integration Platform
of the Taiwan Water Resources Agency are used. The downstream boundary at the river
mouth utilizes water levels calculated from a tidal level equation established in this study.
For the internal boundary, the MART forecasts water levels for 1 h to 3 h lead time at Bailing
Bridge (Keelung River) and at Tu-Ti-Kung-Pi and Taipei Bridge (main stream of Danshui
River). These boundary conditions generate an ensemble through random sampling, after
which the unsteady flow model forecasts water levels. The Kalman filter then corrects and
updates these forecasted levels, which serve as initial conditions for the next time step.
Before each new flood routing calculation, a fresh ensemble of boundary conditions is
randomly generated and applied for forecasting over the next hour. This iterative process
of flood routing, correction, and updating via the Kalman filter is repeated to obtain the
probabilistic distribution of forecasted water levels for a 1 h lead time, and similarly for 2 h
and 3 h lead times.

3.2.1. Model Calibration

The calibration of the model in this study involved evaluating the forecasting perfor-
mance for water levels at Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge during Typhoon
Dujuan in 2015 and Typhoon Nepartak in 2016. Figure 4 illustrates the RMSE values
of the forecasts at these locations from present time to 3 h lead time for both typhoons,
demonstrating a decline in forecast accuracy with increasing lead times. Figure 5 compares
the observed with the model-forecasted water levels at Tu-Ti-Kung-Pi, Taipei Bridge, and
Bailing Bridge at present time for both typhoons. It indicates that the model, employing
internal boundary adjustments and Kalman filter corrections, can provide relatively accu-
rate forecasts at present time, though forecast errors increase from 1 h to 3 h lead times due
to various uncertainties. Figures 6–8 show the R2 values calculated at the three stations
for Typhoon Dujuan and Typhoon Nepartak. These figures also illustrate that R2 values
decrease with longer lead times, yet all R2 values remain above 0.8, indicating that the
forecast results are generally good and within an acceptable range. Although the 3 h lead
time forecasted water levels at Bailing Bridge and Tu-Ti-Kung-Pi are less accurate, the
results still fall within an acceptable range.
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Figure 6. R2 values calculated at Tu-Ti-Kung-Pi for Typhoon Dujuan and Typhoon Nepartak,
(a,e) present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time.
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Figure 7. R2 values calculated at Taipei Bridge for Typhoon Dujuan and Typhoon Nepartak,
(a,e) present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time.
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Figure 8. R2 values calculated at Bailing Bridge for Typhoon Dujuan and Typhoon Nepartak,
(a,e) present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time.
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3.2.2. Model Validation

Further validation of the model was conducted using observed data from Typhoon
Megi in 2016 and Typhoon Hinnamnor in 2022 to assess its forecasting performance.
Figure 9 displays the RMSE values for forecasts at Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing
Bridge from present time to 3 h lead time for both typhoons, indicating good forecast
accuracy at various lead times. Figure 10 compares the observed water levels with the
model-forecasted water levels at the three stations at present time for Typhoon Megi and
Typhoon Hinnamnor, showing that the simulated water levels are generally close to the
observed levels. Figures 11–13 illustrate the R2 values obtained at Tu-Ti-Kung-Pi, Taipei
Bridge, and Bailing Bridge for both typhoons, spanning from the present time to a 3 h
lead time. The results indicate a decrease in R2 values as the forecast lead time increases.
Similarly, Wang and Babovic [17] applied a hybrid Kalman filter to enhance water level
forecasting and reported that RMSE values increased with longer lead times.

The forecasted water levels for Typhoon Hinnamnor are more accurate than those for
Typhoon Megi. For Typhoon Megi, uncertainties in boundary conditions likely caused a
significant decrease in R2 values at 2 h and 3 h lead time.
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Figure 10. Comparison of the observed and model-forecasted water levels at present time for Typhoon
Megi (a–c) and Typhoon Hinnamnor (d–f) at Tu-Ti-Kung-Pi (a,d), Taipei Bridge (b,e), and Bailing
Bridge (c,f).

Additionally, for Typhoon Hinnamnor, the water level profiles along the Danshui
River to Dahan River and along the Keelung River were plotted at present time (2:00 AM on
4 September 2022), and for the forecasted flood peak times over the next 1 to 3 h, as shown
in Figure 14. It demonstrates that the internal boundary adjustments and Kalman filter
corrections can align the forecasted water levels closely with the observations. Nonetheless,
as the forecast lead time extends, the correction effect weakens, leading to a gradual
divergence between the forecasted and observed water levels. Similarly, Fu et al. [21]
employed multiple additive regression trees for water level forecasting and observed a
decline in forecasting accuracy with increasing lead time.

This study applies the MART model, recognized for its rapid training capabilities and
robust performance, to predict flood water levels with lead times of 1 to 3 h. The model
integrates rainfall data spanning from t − 3 to t + 6 and water level data from t − 3 to t. The
findings demonstrate that MART effectively captures peak water levels and flood trends at
a 1 h lead time, even under conditions of abrupt, extreme changes or outlier observations.
However, forecast errors increase with lead times of 2 and 3 h, due to factors such as
unaccounted errors from the preceding forecast step, uncertainties in rainfall forecasts, and
the omission of lateral inflows along riverbanks in the modeling process.



Water 2024, 16, 3530 19 of 28Water 2024, 16, x FOR PEER REVIEW 20 of 29 
 

 

 

Figure 11. R² values calculated at Tu-Ti-Kung-Pi for Typhoon Megi and Typhoon Hinnamnor, (a,e) 

present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time. 
Figure 11. R2 values calculated at Tu-Ti-Kung-Pi for Typhoon Megi and Typhoon Hinnamnor,
(a,e) present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time.
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Figure 12. R2 values calculated at Taipei Bridge for Typhoon Megi and Typhoon Hinnamnor,
(a,e) present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time.
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Figure 13. R2 values calculated at Bailing Bridge for Typhoon Megi and Typhoon Hinnamnor,
(a,e) present time, (b,f) 1 h lead time, (c,g) 2 h lead time, and (d,h) 3 h lead time.
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Figure 14. Water level profiles along the Danshui River to Dahan River (a–d) and along the Keelung
River (e–h) for Typhoon Hinnamnor at (a,e) present time (2:00 AM on 4 September 2022), 1 h lead
time (b,f), 2 h lead time (c,g), and 3 h lead time (d,h).

4. Discussion

This study presents a water level forecast by integrating the flood forecasting model
with MART and EnKF (module 1). Module 1 is compared with two other methods:
module 2, which uses an ensemble unsteady flow model with internal boundary correction
combined with MART, and module 3, which utilizes an ensemble unsteady flow model
without internal boundary correction. The effects of these different correction methods on
water level forecast results are analyzed. The evaluation, using a 95% confidence interval,
is based on data from Typhoon Muifa in 2022, providing insights into the performance of
the three forecasting methods.
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4.1. Water Level Forecast with Module 1

Figure 15 illustrates the water level hydrographs and 95% confidence intervals for
Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge, forecasted from 1 to 3 h lead times, using
the unsteady flow model with internal boundary correction combined with MART and
EnKF. The forecasted hydrographs at these stations generally match the observed water
level trends at a 1 h lead time, but accuracy decreases with longer forecast times. At Taipei
Bridge, deviations from observed values occur between the 1st and 6th hours and the
13th and 18th hours, due to the influence of internal boundary forecast values. However,
accurate forecasts of internal boundary water levels allow the 95% confidence interval to
reliably capture actual values, indicating that boundary condition uncertainty is closely
related to forecast accuracy.
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Figure 15. Hydrographs of water levels and 95% confidence intervals from 1 h to 3 h lead times using
module 1 at Tu-Ti-Kung-Pi (a–c), Taipei Bridge (d–f), and Bailing Bridge (g–i). Note that the first hour
corresponds to 5:00 AM on 12 September 2022.

4.2. Water Level Forecast with Module 2

Figure 16 shows the water level hydrographs and 95% confidence intervals for Tu-
Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge, forecasted from 1 to 3 h lead times, using
the ensemble unsteady flow model with internal boundary correction and MART. The
forecasted hydrographs generally match observed trends at a 1 h lead time, though some
deviations occur as the forecast time increases. At Taipei Bridge, the 1 to 3 h forecast results
are influenced by forecasted internal boundary water levels, leading to deviations from
observed values between the 1st and 6th hours and the 13th and 18th hours. Within the
95% confidence interval, accurate forecasted internal boundary water levels result in the
effective prediction of actual levels. As forecast time increases, the confidence interval
widens, indicating increasing uncertainty.
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Figure 16. Hydrographs of water levels and 95% confidence intervals from 1 h to 3 h lead times using
module 2 at Tu-Ti-Kung-Pi (a–c), Taipei Bridge (d–f), and Bailing Bridge (g–i). Note that the first hour
corresponds to 5:00 AM on 12 September 2022.

4.3. Water Level Forecast with Module 3

Figure 17 displays the water level hydrographs and 95% confidence intervals for
Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge, from forecasted 1 to 3 h lead times, using
the ensemble unsteady flow model without internal boundary correction. The forecasted
hydrographs are similar to observed levels from 1 to 3 h lead times, but accuracy decreases
as forecast time increases.
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Figure 17. Hydrographs of water levels and 95% confidence intervals from 1 h to 3 h lead times using
module 3 at Tu-Ti-Kung-Pi (a–c), Taipei Bridge (d–f), and Bailing Bridge (g–i). Note that the first hour
corresponds to 5:00 AM on 12 September 2022.
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Figure 18 depicts the RMSE values of forecasted water levels for the three modules
at Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge from present time to 3 h lead time.
The RMSE at Tu-Ti-Kung-Pi indicates relatively ideal forecast results. Module 1 produces
superior results compared to module 2, which in turn outperforms module 3. This is be-
cause Tu-Ti-Kung-Pi is more affected by tides, making its RMSE more reasonable compared
to Taipei Bridge and Bailing Bridge. Forecasts at Taipei Bridge and Bailing Bridge are
influenced by internal boundary water levels, resulting in better RMSE results for module 3
from 1 to 3 h lead times, as it does not use internal boundary forecasts, unlike modules 1
and 2.
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Figure 18. RMSE values of water levels from present time to 3 h lead time using three modules at
(a) Tu-Ti-Kung-Pi, (b) Taipei Bridge, and (c) Bailing Bridge.

Analysis of Variance (ANOVA) [40] is a widely used statistical method for identifying
sources of variation in data and assessing whether the mean values of different groups
differ significantly. In this study, ANOVA was employed to evaluate the variance between
observed water levels and predicted water levels generated by various ensemble models at
multiple stations for lead times of 1–3 h. The results indicate that all significance p-values,
ranging from 0.148 to 0.997, exceed the threshold of 0.05. This finding suggests no statisti-
cally significant differences between the predicted water levels from the ensemble models
and the observed water levels, indicating that the ensemble models provide appropriate
predictions of water level distributions across the groups analyzed.

Previous research by Chung [41] used neural networks to forecast water levels at
internal hydrological stations within river segments, correcting initial values in dynamic
wave calculations. This method improved forecast accuracy for the first and second hours,
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with limited improvement for the third hour. Tsao [26] and Wu et al. [15] enhanced
flood forecast accuracy by incorporating the error statistics features of the Kalman filter
method, effectively reducing error propagation over time. Yu [27] demonstrated that a
95% confidence interval from probabilistic forecasts could effectively predict flood levels.
The results from Chung [41] and Tsao [26] align with this study’s findings, showing
that corrections using internal boundaries and the Kalman filter significantly improve
forecast accuracy, though accuracy degrades over time. Consistent with Yu [27], this study
found that accurate boundary condition forecasts allow the 95% confidence interval to
reliably predict flood levels. However, improvements are needed in internal boundary
water level forecasts. Comparisons between internal boundary forecasts and forecasted
water level hydrographs indicate that boundary condition uncertainty is closely related to
forecast accuracy.

4.4. Advantages, Limitations, and Future Work

To enhance stand-alone model performance, this study highlights the potential of
machine learning and ensemble Kalman filtering in forecasting river water levels. The
combination of machine learning and ensemble models typically yields more accurate
results. This approach effectively captures the overall trends in river water level changes
during typhoon events, providing vital information for issuing flood warnings, coordinat-
ing evacuations, and implementing disaster prevention and response measures. However,
a limitation of the current model lies in its lack of integration of additional monitoring and
forecasting data.

Future work should aim to expand the model by incorporating more observational
data, such as additional water level measurements, upstream reservoir release discharges,
lateral inflows from riverbanks, and pumping volumes. Forecasting information, such as
predicted tidal levels at the river mouth, should also be included. Furthermore, the bound-
ary scope of the water level forecasting model should be extended to encompass a broader
region, enabling forecasts with lead times exceeding 12 h. These advancements would
enhance the ability to conduct disaster prevention and emergency response operations
with increased preparation time and improved readiness.

5. Conclusions

This study developed a flash flood forecasting model integrating multiple additive
regression trees (MART) and the ensemble Kalman filter (EnKF) to predict water levels in
the Danshui River system during typhoon periods. The model was calibrated and validated
using observational data from four typhoons, and the impact of different correction methods
on water level forecasting was evaluated. The findings of this study are summarized
as follows.

(1) Hyperparameters in MART were tuned using the grid search method, and the per-
formance of adjusted hyperparameters was compared against default values using
RMSE and MAE metrics. Results demonstrated that water level forecasts with ad-
justed parameters outperformed those with default parameters.

(2) Model calibration and validation indicated that simulated water levels at present time
generally aligned with forecasted levels. However, as the forecast lead time extended,
the accuracy of the corrections diminished, leading to increasing divergence between
forecasted and observed levels.

(3) A 95% confidence interval generated through probabilistic forecasting was utilized
to explore the potential range of forecasted water levels. Findings indicated that
with smaller uncertainty in boundary conditions, the confidence interval was more
accurate and often encompassed the actual water level. However, as the forecast lead
time increased, uncertainties in boundary conditions and other factors grew, resulting
in an expanded confidence interval.

(4) Comparison of RMSE values for water level forecasts from present time to 3 h lead
time at Tu-Ti-Kung-Pi, Taipei Bridge, and Bailing Bridge under modules one, two, and



Water 2024, 16, 3530 27 of 28

three revealed that the RMSE value at Tu-Ti-Kung-Pi was consistently more reasonable
than those at Taipei Bridge and Bailing Bridge. This is attributed to the significant
tidal influence and reduced impact from internal boundaries at Tu-Ti-Kung-Pi. After
accounting for uncertainties in upstream and downstream boundaries, the primary
source of uncertainty affecting Taipei Bridge and Bailing Bridge was the forecasted
water level at the internal boundary.
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